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ABSTRACT

Analyzing live-cell images is particularly challenging be-

cause cells simultaneously move and undergo systematic

changes. Visually inspecting live-cell images therefore in-

volves simultaneously tracking individual cells and detect-

ing relevant spatio-temporal changes. The high cognitive

burden of such a complex task makes this kind of analy-

sis inefficient and error prone. In this paper, we describe a

deep-learning-assisted visualization based on automatically

derived high-level features to identify target cell changes

in live-cell images. Applying a novel user-mediated color

assignment scheme that maps abstract features into corre-

sponding colors, we create color-based visual annotations

that facilitate visual reasoning and analysis of complex time-

varying live-cell image datasets.

Index Terms— Visualization, deep learning, live-cell im-

ages

1. INTRODUCTION

Many studies of complex biological systems rely on live-cell

imagery to measure, qualitatively and quantitatively, tempo-

ral changes in cell structure and behavior. These biologically-

relevant changes, such as protein concentration, cell morphol-

ogy, and geometry, are closely related to cell proliferation and

cell life cycle. Several studies have shown that traumatic brain

injury (TBI) causes progressive neurodegenerative changes

and consequent dysfunction. The identification of highly-

expressed proteins related to TBI has enabled the definition

of possible therapeutic strategies to reduce TBI-induced neu-

ronal death [1]. In this work, we focus on identifying neuronal

death in live-cell images.

Besides the challenges in recognizing complex objects in

microscopy images, analyzing live-cell images is particularly

difficult because the cells can move in all directions, includ-

ing moving vertically across different focal planes, as the im-

ages are acquired. Furthermore, slight changes in the focus

of a microscope over time, a phenomenon referred to as focus

drift, may degrade the image quality significantly. A common

practice to accommodate for cell movements and focus drift

is taking multiple images at various focal planes (or depths) at

each time point; this practice ensures all cells are in-focus in

at least some of the images. For a cell at a given time point, a

small number of in-focus images may contribute much more

useful information than the other (out-of-focus) images in de-

termining the state of the cell.

In the past few years, convolutional neural networks

(CNNs) have been successful in many biomedical applica-

tions such as microscopy image segmentation [2] and subcel-

lular feature detection [3]. Most modern network architec-

tures resemble that of AlexNet [4], which interleaves convo-

lution layers and pooling layers to reduced spatial resolutions

progressively. This arrangement allows the network to learn

higher-level features in deeper (later) layers by combining

lower-level features in shallower (earlier) layers.

In this paper, we use 3D CNNs to determine the cell state

independently at each time point (Section 2.2). Targeting ex-

ploratory data analysis, we build an interactive visualization

tool that annotates cells by a user-defined transfer function,

which maps abstract features representing cell characteristics

to semantically-meaningful colors (Section 2.3). This color

assignment scheme allows users to create informative visu-

alizations despite their limited understanding of the abstract

features, such as the deep features derived automatically by

CNNs and other sophisticated hand-crafted features. The tool

also creates a visual summary to identify when and where

cells change their states (Section 2.4). Although many stud-

ies have exploited the power of CNNs for computer vision

applications, there have been hardly any studies that explore

the potential of CNNs for visualization. In this work, we

use these deep features as a set of robust features that allow

our color assignment scheme to create annotations depicting

high-level concepts, which are not easily defined either man-

ually or by conventional low-level features [5].

2. DEEP-LEARNING-ASSISTED VISUALIZATION

In contrast to the work that applies 3D convolutions to address

the temporal dimension of videos [6, 7], here we use 3D con-

volutions to combine features along the dimension formed by

the depths of various imaging focal planes. The CNN there-



fore must learn to differentiate in-focus images and out-of-

focus images and selectively combine information when pre-

dicting cell states. Ideally, we would want to use the (deep)

features derived from the CNN to identify potential interme-

diate states between the transition of cell states (from alive

to dead). These intermediate states can then be used to cre-

ate a graph-based visualization summarizing cell state tran-

sitions [8]. As a first step, we present in this paper a color

assignment scheme based on deep features, and then use the

assigned colors in our visualization.

2.1. Dataset

We use a time-varying dataset that contains 86 microscopy

images of adult mice neurons taken every 15 minutes. The

live cells in the first two time points are manually labeled.

Each image has two channels: the ordinary phase contrast

channel and the fluorescence channel, which measures the

mitochondrial potential. For each time point, ten images

of resolution 1024 × 1024 are captured at different focal

planes. The data at a time point t can be regarded as a stack

of ten images of different depths. In summary, the dataset

is a 5D dataset of dimensions (t, x, y, depth, channel) =
(86, 1024, 1024, 10, 2).

2.2. Feature extraction

Besides the typical x and y dimensions, we use depth as the

third dimension for the 3D convolution [6, 7] in our CNN.

The additional depth dimension allows the kernels to combine

features derived from images taken at different focal planes.

In the following, we describe the CNN we used for predict-

ing the cell state of the center pixel that resides in an input

patch of dimensions (x, y, depth, channel) = (65, 65, 10, 2)
sampled from the image stack at a given time point.

The CNN is composed of three groups of layers, each con-

taining two 3×3×3 convolutional layers with 64 kernels fol-

lowed by a 2×2×2 max-pooling layer that reduces the spatial

resolution in all three dimensions (including depth) by half.

We apply batch normalization [9] to all convolutional layers

and Parametric Rectified Linear Unit [10] as activation func-

tion. The last pooling layer (of the third group) is followed

by the first fully-connected layer with 200 neurons, which are

then connected to the second fully-connected layer that out-

puts the prediction probability of cell states. In this work, we

solve a binary classification problem (i.e. live cell versus dead

cells and others), and therefore the number of outputs of the

second fully-connected layer equals two.

A total of 400K samples, divided equally between the two

classes (i.e. live cells and others), are used to train the CNN

using a stochastic gradient descent solver with momentum

and decay equal to 0.9 and 0.0005, respectively. The train-

ing procedure ends after 240K iterations using a batch size of

50. We have implemented our CNN using the Caffe frame-

work [11]. After training the CNN, our color assignment

scheme uses the 200 outputs extracted from the first fully-

connected layer as the pixel representation.

2.3. Deep-feature-based visual annotations

The visual annotations used in our visualization tool distin-

guish cells of different states by colors, which provide salient

visual hints to users. The tool tracks and establishes the corre-

spondence of cells across different time points to allow coher-

ent cell annotations over time. In time-lapse live-cell imaging,

cell tracking and lineage construction is a complex problem

that requires a global context for long-term inter-relationship

across various frames [12]. Because neurons in our target

dataset do not undergo cell division, we choose Kernelized

Correlation Filter (KCF) [13] to track cell movements. Indi-

vidual KCF trackers, one for each cell, update the positions

of the bounding boxes frame-by-frame following the paths of

cell movement. The initial bounding boxes in the first frame

are labeled manually. Expert biologists have visually veri-

fied the correctness of both the initial bounding boxes and the

tracking results.
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Fig. 1. After extracting 200 deep features, we assign each

pixel p a color (Rp, Gp, Bp, Ap) based on the user-defined

transfer function, which can be easily modified after the 200
features are spectrally ordered along the x-axis.

We now describe a user-mediated color assignment

scheme (Fig. 1) to convert the 200 deep features, extracted

from a trained CNN, into the colors used in our visualiza-

tion. In the following we use (p0, p1, · · · , p199) to denote

the L2-normalized features extracted for a pixel p. Each

deep feature pi is assigned a weight wi, whose value is de-

termined by the curve given the control points. Each control

point is associated with a color assigned by users. After

interpolation the curve therefore creates a transfer function

that defines a mapping from i to the corresponding color

(ri, gi, bi) and weight wi. The color assigned to the pixel p,

denoted by (Rp, Gp, Bp), is generated by a weighted average

of (ri, gi, bi) using piwi as the weight (Equation 1, Gp and

Bp are calculated similarly). The i-th feature will contribute

more to the aggregated color of p when pi and wi are larger.

The opacity assigned to the pixel p, denoted by Ap, is the

sum of the weights used in color aggregation. The opacity Ap

represents the importance of the pixel p in comparison with

other pixels.



Rp =
199∑

i=0

(piwi)ri (1) Ap =
199∑

i=0

piwi (2)

Finally, we calculate the color of a bounding box by

blending the colors of the pixels inside of the bounding box

with respect to their opacities. By augmenting the bounding

boxes with the calculated composite colors, we can effec-

tively annotate cells by their characteristics. For example,

the transfer function in Fig. 1 leads to the annotations in

Fig. 2, in which the change in color matches the change in

the appearance of a cell that died between frames 49 and 54.

t

Fig. 2. The change in color (from green to red) of cell 39 from

frame 49 to frame 54 suggests that the cell is dying.

The color assignment scheme requires all 200 features to

update the assigned color when the transfer function changes.

This requirement imposes a huge memory burden. For ex-

ample, we would need 69 gigabytes of memory to load the

features for all the 86 time points in our dataset. We could

assign colors offline but that would compromise interactivity,

which we consider crucial in the visual reasoning process. As

a result, we apply vector quantization using an incremental

k-means algorithm [14] to create a codebook with k code-

words (the centroids of clusters). Throughout this work, we

use k = 256 such that the indices of codewords are one byte

in size.

Because users can assign colors and weights to features in

groups based on their proximity along the x-axis in the design

widget, a proper ordering of features will reduce the com-

plexity of transfer functions. We address this usability issue

by spectral ordering [15] features along the x-axis in Fig. 1

based on pairwise feature similarity such that similar features

are closer to each other. This ordering allows users to de-

sign suitable transfer functions with far fewer control points,

thereby accelerating the design of transfer functions.

The spectral ordering of features consists of the following

steps. First, a feature-to-feature similarity matrix A is created

by assessing pairwise similarity using the inner product of

two feature vectors. Second, we calculate a diagonal matrix

D, in which the diagonal elements D(i, i) is the sum of the

i-th row vector of A. Finally, after calculating A and D, we

order the features using the Fiedler vector, which is the eigen-

vector corresponding to the second smallest eigenvalue of the

Laplacian matrix L = D − A. After re-ordering the feature,

the proximity of two features along the x-axis approximately

corresponds to their similarity.

2.4. Summarization of cell changes

The visualization we have presented in Fig. 2 is still a frame-

by-frame playback of cells between two time points. Here

we assume that cell positions are unrelated to their states and

use the position in screen space to represent the trajectory of

change in cell states, leading to a visualization that shows a

summarization over a period of time (Fig. 3).

(a) Trajectory of a cell

(b) Color change over time

Fig. 3. The state change of a cell is visualized as a segmented

line. The change in color from green to red indicates a state

change of cell 39 from live to dead between frame 49 and 54.

The 2D layout of cells is determined as follows. We use

the color histogram of pixels enclosed in the bounding box to

represent a cell at a specific time point. The dissimilarity be-

tween a pair of cells is assessed using the Earth mover’s dis-

tance (EMD) of the corresponding pair of color histograms.

We use the average EMD of three pairs of histograms (i.e.

R, G, and B) as the final dissimilarity between pairs of cells.

Given the pairwise dissimilarity matrix, we can now create

a 2D layout of cells such that similar (or dissimilar) cells

are closer (or farther) through multidimensional scaling [16].

After obtaining the 2D coordinates of cells, the trajectory

of a cell is represented as a segmented line formed by seg-

ments connecting the cells in adjacent frames (Fig. 3a). The

grayscale levels (white to black) of segments represent the

progress of time. For example, Fig. 3a shows the trajectory of

cell 39, which starts dying around frame 49 (c.f. Fig. 2). Be-

tween frame 49 and 54 the location of cell 39 in the 2D layout

changes from the bottom left to the top right while its color



changes from green to red. Based on this visual represen-

tation, we build an interactive visualization tool that allows

users to select cells with similar trajectory profiles. The tool

also shows the change in color over time (Fig. 3b). From left

to right, color lines depict the changes in red, green, and blue

over time for cell 39. During the time period within the orange

box, the red line increases while the green line decreases.

3. EXPERIMENTS AND RESULTS

The color-based annotations in most cases are consistent with

the changes in cell states. Fig. 4a–4d show the augmented

frames at t = 12, 49, 54, and 78, respectively. Users can

quickly identify which cells are dead by the color of their

bounding boxes. Fig. 5 shows the trajectories of cells 3, 38,

and 39. Because the color assigned to cell 3 is always green,

users can easily conclude that cell 3 stays alive from the first

time point to the last. Both cells 38 and 39 died but they have

distinct trajectory profiles. By looking at the color lines (top

of Fig. 5), we observe that the green line of cell 38 stays low

and never grows back again once it starts decreasing. The

green line of cell 39, however, shows a jagged pattern. Af-

ter having a closer look in Fig. 2 and Fig. 4, we believe the

fix-sized bounding boxes returned by KCF caused the jagged

pattern because the bounding box no longer tightly fits cell 39
after it died. As a result, the bounding box inevitably includes

many pixels that belong to the background, thereby introduc-

ing noise into our color assignment scheme.

4. CONCLUSIONS

We present a method that uses 3D CNN to detect and depict

temporal changes in cell states in live-cell images. Based on

the abstract features derived directly from the data, we build

a visual analytics tool that allows users to create comprehen-

sive color-based annotations of cells. Our tool also creates a

summarization-based visualization that shows the change of

a cell over time as a segmented line. This static 2D layout

allows users to compare cells or search for cells with simi-

lar trajectory profiles. The promising results show that our

tool can improve the understanding of complex time-varying

datasets. We plan to work with biomedical experts and ap-

ply the same analyses to other live-cell image datasets. We

also plan to extend our deep-learning-assisted techniques for

multi-dimensional volume visualization applications [17, 18].

5. ACKNOWLEDGEMENTS

This work has been supported in part by the NSF Grants

14-29404, 15-64212, NIH RO1 NS052568, NIST Grant

#70NANB15H329, the State of Maryland’s MPower ini-

tiative, and the NVIDIA CUDA Center of Excellence. Any

opinions, findings, conclusions, or recommendations ex-

pressed in this article are those of the authors and do not

necessarily reflect the views of the research sponsors.

(a) t = 12 (b) t = 49

(c) t = 54 (d) t = 78

Fig. 4. In this example, most of the cells are alive (green) at

time point 12. They die (red) gradually in subsequent time

points (t = 49, 54, and 78). Cell 39 (white arrow), which

changes color from green to red, is dead sometime during

frame 49 and 54.

Fig. 5. Our visualization allows users to select and compare

cell trajectories without consulting different frames. This ex-

ample shows three cells with distinct trajectories. Cell 3 stays

alive whereas cells 38 and 39 died at specific frames, hinted

by the drop in color green (and the growth in color red).
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