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Figure 1: Results from our system, Social Street View. (a) shows the rendering results in a regular display. Users can look through the
museum in Paris for geo-tagged artworks inside as well as the dishes in nearby restaurants. (b) shows the stereo rendering results in a VR
headset. Geo-tagged images are automatically aligned with building geometry and laid out aesthetically. (c) shows the deployment in an
immersive curved screen environment with 15 projectors. Users can explore hundreds of social media messages near a New York city street
at a resolution of 6k × 3k pixels. Please refer to the supplementary video at http://augmentarium.umd.edu and http:// socialstreetview.com.

Abstract

This paper presents an immersive geo-spatial social media system
for virtual and augmented reality environments. With the rapid
growth of photo-sharing social media sites such as Flickr, Pinter-
est, and Instagram, geo-tagged photographs are now ubiquitous.
However, the current systems for their navigation are unsatisfy-
ingly one- or two-dimensional. In this paper, we present our pro-
totype system, Social Street View, which renders the geo-tagged
social media in its natural geo-spatial context provided by immer-
sive maps, such as Google Street View. This paper presents new
algorithms for fusing and laying out the social media in an aesthet-
ically pleasing manner with geospatial renderings, validates them
with respect to visual saliency metrics, suggests spatio-temporal
filters, and presents a system architecture that is able to stream
geo-tagged social media and render it across a range of display
platforms spanning tablets, desktops, head-mounted displays, and
large-area room-sized curved tiled displays. The paper concludes
by exploring several potential use cases including immersive social
storytelling, learning about culture and crowd-sourced tourism.
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1 Introduction

Social media plays a vital role in our lives because of its interac-
tivity, versatility, popularity, and social relevance. Every day, bil-
lions of users create, share, and exchange information from their
lives among their social circles [Kaplan and Haenlein 2010]. So-
cial media spans several modalities that include text, photos, au-
dio, videos, and even 3D models. In addition to the content visi-
ble on the social networks, social media also consists of metadata
that is useful for understanding the relationship amongst users, sen-
timent mining, and propagation of influence. Specifically, digital
photographs often embed metadata such as time of creation, loca-
tion of creation (through GPS coordinates), and camera parameters,
that are included in the EXIF data fields. In spite of the availability
of such rich spatio-temporal metadata, the current-generation social
media content is most often visualized as a linear narrative, rarely
in a 2D layout, and almost never in a natural immersive space-time
setting. For small screens of mobile devices, perhaps a linear nar-
rative ordered by time or relevance, makes the most sense given the
limitations of interaction modalities and display real-estate. How-
ever, in immersive virtual environments such as those afforded by
virtual and augmented reality headsets, a spatio-temporal view of
the social media in a mixed reality setting may be the most natural.

Immersive interfaces that interleave visual navigation of our sur-
roundings with social media content have not yet been designed.
NewsStand [Teitler et al. 2008], Flickr [Serdyukov et al. 2009], and
Panoramio1 have taken important first steps towards this goal by
using a user’s geo-location information on 2D maps to display con-
tent. Still, we have not come across any system that (a) enables
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user exploration of social media in an immersive 3D spatial context
in real time, and (b) allows temporal filtering of social messages
in their spatial setting. Such a system will facilitate new genres
of social interactions in spatial contexts mediated through virtual
and augmented reality. These could be widely adopted in immer-
sive social storytelling, learning about culture, and crowd-sourced
tourism.

As a proof-of-concept, we have developed a prototype system
called the Social Street View (SSV) (Fig. 1), the first immersive
social media navigation system for exploring social media in large-
scale urbanscapes and landscapes. Given a requested location, SSV
builds a 3D world using tiles of panorama data from Google Street
View2 and Bing Maps Streetside3, depths and normal maps, and
road orientations. It then downloads geo-tagged data near the re-
quested location from public-domain social media sites such as In-
stagram and Twitter. After building the 3D world, SSV renders the
social media onto buildings or as virtual billboards along the road.
The user can see photos of food uploaded by social media users next
to the relevant restaurants, visual memories with friends in specific
locations, identify accessibility issues on roads, as well as preview
the coming attractions on scenic drives and nature hikes. The main
contributions of our work are:

• conception, architecting, and implementation of Social Street
View, a mixed reality system that can depict geo-tagged social
media in an immersive 3D environment,

• blending multiple modalities of panoramic view metadata, in-
cluding depth maps, normal maps, and road orientation, with
social media meta data including GPS coordinates and time
of creation,

• enhancing visual augmentation by using maximal Poisson-
disk sampling and image saliency metrics,

• using WebGL and WebVR to achieve cross-platform compati-
bility across a range of clients including smartphones, tablets,
desktop, high-resolution large-area wide-field-of-view tiled
display walls, as well as head-mounted displays.

2 Background and Related Work

Our work builds upon a rich literature of prior art on creation of
immersive maps as well as related work in visual management of
geo-tagged information, analysis of geo-tagged social media and
mixed reality in immersive maps.

2.1 Immersive Maps

In this paper we refer the term immersive maps to refer to on-
line services that provide panoramic 360◦ bubbles at multiple way-
points. Since Google Street View (GSV) debuted in 2007, sev-
eral immersive maps have covered over 43 countries throughout
the world. Most street views are captured using a car equipped with
a spherical array of cameras. For places inaccessible to ordinary
cars, volunteers and trekkers on foot, tricycle, trolley, camel, snow
mobile and even underwater apparatus capture immersive panora-
mas [Anguelov et al. 2010]. Therefore, the latest immersive maps
include not only outdoor urbanscapes, but also indoor areas, ru-
ral areas, forests, deserts, and even under-water seascapes. Images
from a spherical array of cameras can recover depth and reconstruct
3D point clouds using structure-from-motion algorithms [Torii et al.
2009]. Recently, laser scanners are being coupled with the cameras
to directly acquire depth with omnidirectional panoramas.

2Google Street View: http://www.google.com/maps/streetview
3Bing Maps Streetside: http://www.bing.com/mapspreview

2.2 Visual Management of Geo-tagged Information

As a geographic information system, Social Street View is most
closely related to Panoramio, Newsstand [Teitler et al. 2008], and
PhotoStand [Samet et al. 2013]. These systems accomplish visual
management of geo-tagged information on 2D maps. Panoramio is
one of the first systems that collects user-submitted scenery pho-
tographs and overlays them on a 2D map. NewsStand [Teitler et al.
2008] is a pioneering system that allows users to interactively ex-
plore photos directly from news articles depending on the query
location and the zoom-level on a 2D map). Its successor, Twit-
terStand [Sankaranarayanan et al. 2009] is able to visualize tweets
on a 2D map by using geo-tagged information as well as inferring
geospatial relevance from the content of the tweets. Recently, Pho-
toStand [Samet et al. 2013], has shown how to visualize geo-tagged
images from real-time scraped news on a 2D map. A primary dis-
tinction between Social Street View and the above systems is the
use of immersive maps instead of 2D maps. In virtual environ-
ments, immersive maps require us to address challenges such as
visual clutter, design of content layout in 3D, and registration.

In 3D environments, the well-known view-management system by
Bell et al. [2001] registers user-annotated text and images to a par-
ticular point in 3D space. Their algorithm reduces visual disconti-
nuities in dynamically labeled and annotated environments. Our
system does not involve manual steps to visualize social media
in immersive maps. SSV also reduces the visual clutter by max-
imal Poisson-disk sampling or road orientations. Recent efforts
in novel social media visualization interfaces include Social Snap-
shot [Patro et al. 2010], Photo Tourism [Snavely et al. 2006] and 3D
Wikipedia [Russell and Martin-Brualla 2013]. Instead of using im-
mersive maps, Photo Tourism uses image-based modeling and ren-
dering for navigating thousands of photographs at a single location.
However, since Photo Tourism performs 3D scene reconstruction
from unstructured photos, it is slow, taking a few hours to process a
few hundred photos. The system also discards noisy, dark, cluttered
photos due to registration failure. Similarly, 3D Wikipedia automat-
ically transforms text and photos to an immersive 3D visualization
but suffers from a relatively slow bundle adjustment and multi-view
reconstruction. In contrast, Social Street View takes advantage of
the large-scale 2.5D data and can visualize multiple geo-relevant
photos in immersive environments at interactive rendering rates.

2.3 Analysis of Geo-tagged Social Media

An important question to consider for us is the accuracy of the
geo-tagged media corresponding to the real geographic location.
Zielstra and Hochmair [2013] conducted an experiment to inves-
tigate the positional accuracy of 211 image footprints for 6 cities
in Europe by comparing the geo-tagged position of photos to the
most likely place that they were taken at, based on image content.
In this study, they found Panoramio has a median error distance
of 24.5 meters and Flickr images have a median error distance of
58.5 meters. With the growing popularity of global positioning sys-
tem (GPS) and Wi-Fi positioning systems on mobile devices, the
geospatial metadata information is increasingly reliable and accu-
rate. We have observed that occasionally there may be some irrele-
vant social media based on location query, but this is not common.
Nevertheless, we have implemented a mechanism for users to report
the abuse of geo-tagged social media in our system.

2.4 Mixed Reality in Immersive Maps

Past work on mixed reality in immersive maps generally required
users to manually augment content for immersive maps. Devaux
and Paparoditis [2010] added laser-scanned depth data to some
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street views and enabled users to manually add images or videos
at their desired 3D position. Their system also had additional inter-
active features including human labelling, crowd sourcing mode to
blur faces, and localizing and measuring objects. In contrast, by au-
tomatically extracting proximal social media content, SSV dynam-
ically enhances the user experience in immersive maps and allows
user to focus on social media interactions. Korah and Tsai [2011]
convert large collections of LIDAR scans and street-view panora-
mas into a presentation that extracts semantically meaningful com-
ponents of the scene via point-cloud segmentation. In addition,
they propose an innovative compression algorithm and also show
how to augment the scene with physics simulation, environmen-
tal lighting and shadows. Past research on analysis of immer-
sive maps also addresses the important problems of segmentation,
human recognition, and accessibility identification. For instance,
Xiao and Quan [2009] propose a multi-view semantic segmenta-
tion framework using pair-wise Markov Random Fields (MRF) to
differentiate ground, buildings, and people in street views.

3 System Architecture

In this section we discuss the overview of the system architecture
of Social Street View presented in Fig 2. Social Street View con-
sists of a street view scraper, a social media scraper, distributed
SQL databases, a web-server powered by Apache and PHP, and op-
tional modules such as a temporal filter, a geo-location filter, and a
computer-vision-based face filter.

Figure 2: The work flow of Social Street View. Our system streams
data from two scrapers based on users’ geo-location requests and
renders social media in WebGL. Users can access the system via
any WebGL-supported browser on a desktop, a tablet, a head-
mounted display, or an immersive room-sized tiled display (see
Fig. 1).

3.1 Street View Scraper

Our street view scraper is a custom web-scraper tool written in
Javascript and PHP that downloads GIS-related panoramic images
and metadata at any geolocation where Google street view (GSV)
data is available. Our tool is inspired by GSVPano.js4, but we ad-
ditionally scrape normal maps and road orientations. Currently, we
request all street view data from Google Maps API. Each location
query is analyzed by regular expressions, and thus it can be either
a mailing address (e.g. 129 St., New York) or a pair of latitude and
longitude coordinates (e.g. 40.2384, −70.2394). For each location
query, the scraper finds the closest panorama and downloads the
following types of data:

1. Tiles of panoramic images with five types of resolution:

4GSVPano.js: https://github.com/heganoo/GSVPano
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Figure 3: The illustration of (a) stitched panoramic image tiles,
(b) depth map and (c) normal map from Google Street View. The
depth map is visualized in a yellow-red-black color scheme, where
black indicates 255 meters or more, red indicates 128 meters and
yellow indicates 0 meters. The normal map contains a 3D normal
vector for each pixel. We visualize the normal data by converting
the normal vector to HSV color space with blue-purple hues.

from highest 13312 × 6656 pixels to the lowest 832 × 416
pixels. A stitched panorama is shown in Fig. 3(a).

2. Depth map from GSV meta data with a coarser resolution of
512× 256 pixels. We normalize and up-sample the depth and
normal maps in our GLSL shaders (Fig. 3(b)).

3. Normal map of 512× 256 pixels (Fig. 3(c)).

4. Road orientation and heading direction indicates the travel
direction of the GSV car or trekker.

5. Geolocation and other information including latitude, lon-
gitude, image age, and adjacent panoramas’ hash IDs.

3.2 Mining Social Media

Our geo-tagged social media scraper is a back-end program writ-
ten in PHP. Tuchinda et al. [Tuchinda et al. 2008] have proposed to
model the web services as information sources in a mediator-based
architecture and have built exemplary application, Mashup. Using
similar architecture, Social Street View is able to integrate informa-
tion from several web services. For now, we use Instagram as the
major source of social media in our proof-of-concept system. Since
Instagram only allows users to upload images or videos from mo-
bile devices, it largely avoids incorrect geo-tagged data from desk-
top clients. Our social media scraper collects the following data:

1. Geospatial and textual location including latitude and longi-
tude coordinates, street names and user-tagged location name.

2. Media type indicating whether it is an image or a video.

3. Caption and tags containing text information.

4. Published Time containing the exact time-stamp when pub-
lished.

5. User comments and likes reflecting the popularity level.

6. URL provides a link to the images or videos on the web.

Instagram API supports social-media query based on both geolo-
cation and time. We use two distance thresholds, α = 10m and
β = 5km for dense urban areas and rural areas, respectively.
Given a street view panorama, the scraper first requests social media
within a radius of α on Instagram. If nothing is found, the scraper
increases the threshold to β and queries again. If either threshold re-
turns social media content, we send out R requests to acquire data
over the past R months (we typically use R = 12). This allows
Social Street View to answer spatial queries with a temporal filter,
such as “What do people wear in winter at this location?.

https://github.com/heganoo/GSVPano


3.3 Servers and Relational Databases

At present, we use distributed MySQL databases to store infor-
mation of visited immersive maps and social media to reduce re-
sponse time for duplicated or similar queries. One of the impor-
tant components of our system is to build spatial data structures
to efficiently answer proximity queries relating geo-tagged social
media with spatially-located immersive panoramas. To accomplish
this effectively, we build a bipartite graph that establishes edges be-
tween social media message nodes on one side with the immersive
panorama nodes on the other side. This allows us to quickly an-
swer what social media messages are relevant to be shown in any
panorama. Since this can result in an all-pairs quadratic relation-
ship, we needed to do this in an efficient manner. Once the two
scrapers complete their tasks, the back-end servers build the bipar-
tite graph in a separate thread: G = 〈V ,S ,E〉, where V = {vi}
are the visited street views and S = {si} are scraped social media,
and E = {〈vi, sj , dij〉 | vi ∈ V , sj ∈ S} are the edges between
V and S. The weights of edges dij are defined by the distance
between si and vi according to the Haversine formula [Robusto
1957]:

αij = sin2(
ϕi − ϕj

2
) + cos(ϕi) · cos(ϕj) · sin2(

λi − λj

2
) (1)

βij = 2 · atan2(
√
αij ,

√
(1− αij)) (2)

dij = R · βij (3)

where ϕi, λi and ϕj , λj are the latitude and longitude of si and vj
respectively; R is the radius of the earth (R = 6371km); the result
dij is the great-circle distance between si and vj . Since both social
media and street views are indexed by a B+ tree, the insertion and
query without building the graphs takesO(log |V |+L) time, where
L = 100 is the maximum number of queried social media. There
could be an additional cost of sorting based on users’ query and
filters. However, the maintenance of the bipartite graph may take
O(k · |V |) for k newly scraped social media Sk. To solve this
issue, given a street view vi, SSV calculates Si = {sj | ∀sj ∈
S ∧ 〈vi, sj , dij〉 ∈ E} in O(log |V |+ L). If Si = ∅, Social Street
View returns Sk and builds the bipartite graph at the back-end for
the next query; otherwise, we return Sk∪Si for more results. Thus,
for each panorama, the streaming time is O(log |V |+ L log(L)).

3.4 Social Street View Interface

Using WebGL and WebVR, we have designed and implemented
an open-source and cross-platform system which is easy to ac-
cess via most modern browsers and is shown in Fig. 4. Users can
query any location in the input field on the top panel. The left op-
tional panel has filters to specify query words, temporal (month and
hour) ranges, distance ranges, number of faces and rendering con-
trols. The bottom panel is an optional 2D visualization. We use
Three.js5, a cross-browser and GPU-accelerated Javascript li-
brary. We use Bootstrap6 and jQuery7 for 2D elements of the
user interface.

4 Social Media Layout Algorithm

In this section, we present our approach to blend the visualization of
social media together with street view panoramas in an immersive
mixed reality setting.

5Three.js: http://www.threejs.org
6Bootstrap: http://www.getbootstrap.com
7jQuery: https://www.jquery.com

Figure 4: The Social Street View interface powered by WebGL and
WebVR.

4.1 Baseline: 2D Visualization

Since there is limited previous work on visualizing multiple social
media images in immersive maps, we first devised a basic 2D so-
lution for users to have a quick glimpse of social media near their
location. This is shown in the bottom panel of Fig 4. The users
can click on any image to see a higher-resolution (640 × 640) im-
age or video, text caption message, geo-location, and timestamp
data. In addition, the user can use the image to link to Instagram
to comment, like, or forward the social media. By clicking the geo-
location of the social media, the user can navigate to the closest
street view panorama to the image using Social Street View. Com-
pared with Stweet that places a single Tweet message on a top layer
above Google Street View with limited interactivity, this basic 2D
visualization provides multiple queries near the center of panorama
with richer information. In addition, the users can filter out the so-
cial media based on a desired time range and distance to the center
of panorama.

4.2 Uniform Random Sampling

From Social Street View’s server, the client acquires a subset of
images or videos Ŝ = {si | i = 1 . . . N}, Ŝ ⊆ S. Our goal is
to place them naturally in low-saliency areas in an immersive map
so that the social media rendering will minimize the visual clutter
in a users view. To do this, we first stitch the tiles of panoramic
images into a rectangle T . Next, we apply a projection P : T →
Ω from T to the sphere Ω, thus building an immersive panoramic
map with an inside camera looking outwards. For each point pi =
(ui, vi) ∈ T , the corresponding point qi = (xi, yi, zi) ∈ Ω is
projected uniformly on a sphere. The easiest way to place social
media is to randomly sample N points P̃ ⊆ T from the panorama.
For each p̃ = (ũ, ṽ) ∈ P̃ , calculate the corresponding 3D position
q̃ = (x̃, ỹ, z̃) ∈ Ω as the center of the social media. As shown in
Fig. 5(a), while we find that we can blend many interesting social
media in this interactive mixed-reality world such as photography,
food and people there are several drawbacks in the way they are laid
out. To address this, we propose the following desiderata:

1. Ground-level context is important for way-finding for pedes-
trians and drivers. Therefore a system blending social media
with immersive maps should minimize the rendering of the
social media at or near the ground level.

2. Since billboards and other structures in real world are often
aligned with physical landmarks, it is desirable to align social
media with the proximal geometric structures.

3. Social media imagery should be reasonably spaced apart to
avoid visual clutter and overlaps, if at all possible.

http://www.threejs.org
http://www.getbootstrap.com
https://www.jquery.com


(a) Uniform Random Sampling on Panoramic Sphere (b) After Adding Depth Map

(c) After Adding Normal Map (d) After Maximum Poisson-disk Sampling

(e) Panoramic Image

(f) Depth Map

(g) Normal Map

Figure 5: Results before and after applying the depth map, the normal map and maximal Poisson-disk sampling. (a) shows the random
layouts generated uniformly on the sphere, (b) shows results after using the depth map, (c) shows results after applying the normal map, (d)
show results after using maximal Poisson-disk distribution for laying out photographs, (e) shows the original street view image, (f) and (g)
visualize the depth map and the normal map respectively, for reference

We next discuss how we accomplished the above goals in our work.

4.3 Depth and Normal-map-driven placement of social
media

A depth map D = {di} in which each depth value di corresponds
to a pixel pi in T , could be used to filter out points that are too close
(e.g., the ground) or too far away (e.g., the sky). Additionally, we
scale the size of images based on depth to give a perspective effect.
The result is shown in Fig 5(b). This minimizes the images that are
projected on to the ground or the sky.

We use the normal map N = {ni} to project the images onto the
surfaces of buildings. Denoting the normal vector of the ground as
ng = (0, 1, 0), we define the ground level Ωg as follows:

Ωg = {qi | ∀qi ∈ Ω ∧ ‖ni − ng‖ < δ} (4)

where ‖ni−ng‖ is the Euclidean distance between two vectors ni

and ng , δ = 0.5 is a user-defined threshold. Next, for each sampled
point p̃i, we use the corresponding normal vector ni and rotate the
social media to the correct orientation. The results are illustrated
in Fig. 5(c). As one can see, the images are now well-aligned with
the geometry of the buildings. However, the rendering still suffers
from visual clutter and overlaps.

4.4 Maximal Poisson-disk Sampling

We use maximal Poisson-disk sampling to solve the problem of
visual clutter. Poisson-disk distribution has been widely used in
the field of computer graphics for global illumination [Shirley et al.
1991], object placement [McCool and Fiume 1992] and stochastic
ray tracing [Cook 1986]. In our work, we follow the approach of the

PixelPie algorithm devised by Ip et al. [Ip et al. 2013], which uses
vertex and fragment shaders and GPU-based depth-testing features
to efficiently implement the dart-throwing algorithm for maximal
Poisson-disk sampling.8

After sampling points from the building surfaces, we sort them ac-
cording to their depth. We preferentially place more popular social
media closer, where popularity is defined in section 4.7. We outline
this approach in Algorithm 1.

ALGORITHM 1: Social Media Layout using Poisson-disk Samples

Input: N sorted social media images Ŝ = {si | i = 1 . . . N}, acquired from SSV
servers.

Output: A set of image planes to display social media: I = I1 . . . IM ,M ≤ N .
Generate the set of candidate sample points P̃ by the PixelPie algorithm;
Sort points in P̃ in descending order according to their corresponding values in the

depth mapD so that the closest sample point is laid out first;
Set I ← ∅;
for i← 1 . . .min(N, |P̃ |) do

Place Ii with texture from si ∈ Ŝ at the projected position q̃i ←P(p̃i);
Rescale Ii according to the corresponding depth value: τi ← τ/di for

perspective visual effects;
Rotate Ii so that it is perpendicular to the normal vector ni ← N(ui, vi);
Add Ii to the result set: I ← I ∪ Ii;

end

This provides us an aesthetic layout to display social media blended
in with the immersive panorama. A screenshot of the resulting
placement after this algorithm appears in Fig 5(d).

8Code of PixelPie: http://sourceforge.net/projects/pixelpie/

http://sourceforge.net/projects/pixelpie/
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Figure 6: Evaluation of processing time in different resolutions using 100 panoramas in Manhattan, (a) shows the initialization time de-
creases as the resolution goes down, (b) shows that by pre-fetching, initialization time is reduced by over 3 times; (c) shows after initialization,
the rendering time costs about 16ms (about 60 FPS) in WebGL while the rendering of social media does not affect the rendering performance
much.

4.5 Placement of Social Media in Scenic Landscapes

In open and scenic areas, there are a limited number of surfaces on
which to place social media. However, with the high-level knowl-
edge of where the Google Street View camera is traveling from and
traveling to, it is possible to place social media along the way with-
out depth or normal maps. To generalize our system from urban-
scapes with buildings to more general scenic landscapes, we pro-
pose Algorithm 2. Results are shown in Fig. 8.

ALGORITHM 2: Social Media Layout using Road Orientations

Input: |O| road orientations with oi ∈ [0, 2π]. K social media to be placed for
each orientation. Typically, |O| = 2 for a road with two orientations.

Output: A set of image planes to display social media:
I = I1 . . . IM ,M ≥ K · |O|.

Set I ← ∅;
for i← 1 . . . |O| do

Set the position qi ← (KR cos oi, h, KR sin oi) at height h and radius
R;

(Optional based on user’s preference) Add a frontal image plane to I at qi;
Set the translation t← (T cos(oi +

π
2 ), 0, T sin(oi +

π
2 )) with constant

T ;
for k ← 1 . . . K do

Set q̃← (kR cos oi, h, kR sin oi);
Add a left side image plane to I at position q′ ← q̃ + t;
Add a right side image plane to I at position q′ ← q̃− t;

end
end

4.6 Post-processing, Rendering and Interaction

To enhance the visual effects of the social media in an immersive
setting, our system allows the users to add shadows, glowing shader
effects, and alpha blending to the virtual billboards that depict the
social media message. We can also model the difference between
daytime and nights by using a blooming shader and an additive
layer based on depth and normal. To experience the static street
view in different seasons, we have implemented particle systems to
render snow, falling leaves, or cherry petals in the scene. Addition-
ally, we implemented a simple ray tracer that enables users to click
on social media to read associated text.

4.7 Filtering of Social Media

In crowded areas such as the New York city, it is almost impossible
to visualize every message in Social Street View. One solution is to
give preference to the most popular social media. However, quanti-
fying popularity itself is subjective since popularity spans features
such as comments, replies, creation time, likes, and number of times
forwarded. We have adopted the following criteria as a substitute
for popularity:

αCi + Li

∆Ti
(5)

where, for a given social media si, Ci is the number of comments,
Li is the number of likes, and ∆Ti is age of the social media mes-
sage. Since comments generally have a higher impact than likes,
we scale comments by a user-defined scaling factor α.

To protect potential privacy concerns or to find celebrity figures
from news, we also incorporate the face filter using Face++ API 9.
Users can also filter social media based on time and distance.

5 Experiments and Evaluation

We have carried out a number of experiments to evaluate the Social
Street View system. Here we report some of our results for a variety
of Google Street View resolutions and social media.

5.1 Dataset Acquisition and Hardware Setup

We scraped 100 Google Street View panoramas from Manhattan in
New York City as our main dataset. We found over 84, 055 social
media images on Instagram within a query distance of 20 meters in
these panoramas. For each query, our system returns 100 closest
social media images according to the distance to the panorama by
searching in B+ trees. The experiments were conducted in Google
Chrome (Version 40.0.2214.115 m) with Nvidia Quadro K6000 and
Intel Xeon CPU E5-2667 2.90GHz. The rendering resolution we
used is 2650 × 1440 pixels. To reduce the effects of different net-
work latency, we store all the panoramas and social media on the

9Face++: http://www.faceplusplus.com

http://www.faceplusplus.com
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Figure 8: Potential applications of Social Street View: (a) Users can link to Social Street View to tell immersive stories (b) Business owners
can use Social Street View for impressive advertising (c) Children can learn culture from local social media (d) Tourists can preview the trip
from crowd-sourced photographs embedded in the immersive maps.

local disk of the workstation. We present the file sizes in Table 1
for a variety of panoramas.

Table 1: Resolution, tile counts and file size of Google Street View
(GSV) panoramic data

Pixels Resolution Number of tiles File size
88.6M 13312× 6656 26× 13 ∼ 5M
22.2M 6656× 3328 13× 7 ∼ 2M
5.5M 3328× 1664 7× 4 ∼ 800K
1.4M 1664× 832 4× 2 ∼ 300K
0.3M 832× 416 2× 1 ∼ 90K

5.2 Evaluation of Initialization and Rendering Time

Interactivity and latency are of great importance for user naviga-
tion in the Social Street View. Fig. 6(a) shows the initialization
time based on five different resolutions in Table 1. The initializa-
tion mainly includes the time spent in querying for panorama and
social media, as well as loading texture to memory and WebGL
initialization. We notice that when the size of the panoramic tex-
ture is reduced to 6656 × 3328, the overall time cost is reduced
from approximate two seconds to one. Choosing an appropriate
resolution based on a users display, downloading speed, and GPU
power can therefore make a meaningful difference. We noticed that
at least 900ms was being spent on initializing panoramas and so-
cial media. To reduce the time when switching between adjacent
street views, we pre-fetch the data in memory for faster initializa-
tion. Google Street View uses progressive refinement to address
latency by initially loading low-resolution images that are refined
to higher-resolution ones over time. We can also rely on such an
approach when the local disk is unable to support pre-fetching. In
Fig. 6(b), we show how querying time is reduced by pre-fetching.
Further, maximal Poisson-disk samples to place 100 social media
can be generated at interactive rates. However, the texture loading
can still take hundreds of milliseconds and we hope that it could
be improved with further advances in the WebGL technology. In
Fig. 6(c), we report the rendering time with and without social me-
dia. From the chart, it can be seen that the system runs at around 60
frames per second (fps) for all resolutions. Thus, the rendering of
the social media does not affect the experience of navigating Social
Street View.

5.3 Evaluation of Saliency Coverage

Saliency maps can represent regions where a user is likely to allo-
cate visual attention in a fixed-time free-viewing scenario [Itti et al.
1998; Harel et al. 2006; Kim et al. 2010; Ip and Varshney 2011]. We
compute image saliency using the Matlab tool by Hou et al. [Hou
et al. 2011] to evaluate the social media coverage of saliency maps.
An example of such a saliency map is shown in Fig 7 (a).

The average social media coverage of saliency maps over all the
100 immersive Google Street View panoramas is illustrated in
Fig 7(b). Initially, the saliency map is covered by uniform random
sampling algorithm at about 35%; after incorporating the depth
map, most sky areas are filtered out but social media are highly
likely to cover the vanishing point where saliency is high; after in-
corporating depth and normal maps, most social media are aligned
to the building structures where saliency is low in most cases; with
maximal Poisson-disk sampling, the social media distributes evenly
and aesthetically, thus reducing the likelihood that several images
could overlap in a high-saliency area. This is the reason why the
maximal Poisson-disk sampling has a significantly lower standard
deviation in saliency coverage in Figure 7 (b). In contrast, the uni-
form and random sampling, as well as approaches that rely only on
depth-map-based placement, result in a larger coverage of higher
saliency regions.
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Figure 7: (a) Street view with saliency map overlay. The visual-
ization has a red-yellow-green-transparent scheme, where red in-
dicates high saliency and transparent indicates low-saliency. (b)
Evaluation results of saliency coverage from 100 immersive GSV
panoramas.

6 Use Cases and Discussion

While exploring Social Street View in a variety of scenarios using
publicly available social media, we discovered a number of poten-
tial use cases that are promising in enhancing storytelling, business
advertising, learning cultures and languages, and in visual analytics
of social media in a spatio-temporal context.

6.1 Storytelling

Social Street View could greatly enhance the storytelling experi-
ence. For example, users could see photos from recent trips of their
friends while allowing them to explore the 360◦ context in an im-
mersive setting.

In Fig. 8(a), we present how social media stories can be more con-
vincing using Social Street View. This panorama is along a road



in Baja California Sur within Mexico10. Since this open road does
not have vertical proximal structures, we use the scenic landscape
layout mode here. Further, because it is along a long road we did
not expect anyone to take photos and upload them to the social me-
dia. Nevertheless, our system found 3 images within a radius of
20 meters. In one of the images, Instagram user Daniela wrote on
July 12, 2014:

Stuck in traffic on our way to Cabo with this awesome
view #roadtrip #cabo #view #mexico

When we pan and walk around this location, we are also impressed
by this awesome view. We like to think of this as our system facili-
tating a democratized, crowd-sourced version of the Kodak Picture
Spot.

6.2 Business Advertising

Social Street View can also be used for business advertising. For ex-
ample, restaurant managers could showcase the social media pho-
tographs of their dishes shared by their customers in the context of
the interior ambiance of their restaurants. Similarly, real-estate cus-
tomers could view the neighborhood street view augmented by the
dynamism of the social media of that community to get a better feel
for their prospective neighbors.

Fig. 8(b) uses a panorama in 6 E 24th St, New York, United States.
In the rightmost image of dishes, an Instagram user frankiextah
commented:

... dinner started off with amazing oysters paired with
my favorite Ruinart blanc de blancs champagne

With mixed-reality rendering, Social Street View enhances future
consumers’ visual memories and makes it easier for them to seek
“amazing oysters” around this place.

6.3 Learning Culture and Crowd-sourced Tourism

Immersive virtual environments have been used to protect world’s
cultural heritage and serve as a useful medium for cultural educa-
tion [Addison 2001]. However, it is usually challenging to gen-
erate relevant captions and up-to-date photographs for each scene
of a virtual environment. By blending crowd-sourced social me-
dia content with panoramic imagery, Social Street View can (with
age-appropriate filters and curation) serve as an educational tool for
children and researchers to learn cultures and languages in differ-
ent cities and countries. As shown in Fig. 8(c), users can experience
the holiday atmosphere of the Spring Festivals in Taierzhuang An-
cient Town of China, where the oldest “living ancient canal” was
built in the Ming Dynasty and the Qing Dynasty. Here again, be-
cause of a lack of sufficient vertical structures, one can enable the
scenic-landscape mode and visualize recent photographs of the ar-
chitecture taken by tourists in the daytime and at night.

Fig. 8 (d) presents an example of the crowd-sourced tourism in ur-
ban areas. Using face and popularity filters, users can get rid of
most pictures with human faces and blend some high-quality pho-
tographs with a New York street. These photographs provide novel
views for the user’s exploring experience.

7 Conclusions and Future Work

In this paper we have presented Social Street View, a system to cre-
ate immersive social maps that blend street view panoramas with
geo-tagged social media. Our contributions include: (a) system

10Geo-location: North 25.855319593, West 111.333931591

architecture to scrape, query, and render geo-tagged street view
and social media together on clients ranging from smartphones to
tiled display walls to head-mounted displays using WebGL, (b)
techniques to carefully layout and display social media on vir-
tual billboards by a judicious combination of depth maps, nor-
mal maps, and maximal Poisson sampling, and (c) validating the
efficiency of such mixed-reality visualizations for saliency cover-
age. We have also presented several potential use cases of explor-
ing social media with temporal and spatial filters and storytelling
with spatial context. Further supplementary material is available at
http://augmentarium.umd.edu and http://socialstreetview.com.

There are several directions in which Social Street View could be
extended. First, we are currently using low-level image saliency
for evaluation but not for layout. With real-time or post-processed
saliency maps, we can avoid placing social media on high-saliency
regions to avoid occluding the important features in the panorama.
Also, it is important to note here that saliency maps can incorpo-
rate low-level image features, as well as high-level semantics in
guiding social media placement. Conversely, one can also extend
previous work on visual persuasion of gaze direction in the con-
text of social media by altering visual and geometric appearance
attributes [Kim and Varshney 2006; Kim and Varshney 2008] Sec-
ond, we plan to evaluate the relative merits of Social Street View use
in high-resolution large-area screens compared to head-mounted
displays. With the state-of-the-art interaction techniques such as
gesture, speech, and head-tracking, our system could provide VR
and AR users with real-time useful information from social media.
Other potential future directions include 3D reconstruction, depth
optimization and fusion, and spatial data mining of the social me-
dia with location-aware context. While our prototype system works
well for mapping social media onto immersive panoramas of build-
ings and grounds in both urban and rural areas, it currently uses
coarse depth maps. If accurate 3D reconstructions are available our
system could experience a quantum leap in features and usability.
The potential applications of visualizing geo-tagged social media
are immense. With geo-tagged news datasets, journalists could gen-
erate impressive news stories using Social Street View. With geo-
tagged restaurant datasets, customers could see through the restau-
rants in street view to explore the ambiance and the served dishes.
With geo-tagged accessibility information from social media, such
as missing curb ramps, we could enhance the street view to help the
disabled.
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