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Abstract

An interactive visualization of weighted three-dimensional
�-hulls is presented for static and dynamic spheres. The
�-hull is analytically computed and represented by a tri-
angulated mesh. The entire surface is computed and dis-
played in real-time at interactive rates. The weighted three-
dimensional �-hulls are equivalent to smooth molecular sur-
faces of biochemistry. Biochemistry applications of interac-
tive computation and display of �-hulls or smooth molecular
surfaces are outlined.

1 Introduction

The �-hull has been de�ned as a generalization of the con-
vex hull of point-sets by Edelsbrunner, Kirkpatrick, and Sei-
del [4, 3]. Given a set of points P , a ball b of radius � is
de�ned as an empty �-ball if b \ P = �. For 0 � � � 1,
the �-hull of P is de�ned as the complement of the union
of all empty �-balls [3]. It has been shown that it is pos-
sible to compute the �-hull of a set of points P from the
Voronoi diagram of P . For � = 1 the �-hull over the set
of points P is the same as their convex hull. Edelsbrunner
and M�ucke [5] have de�ned the �-shape over P to be the
polytope that approximates the �-hull over P by replacing
circular arcs of the �-hull by straight edges and spherical
caps by triangles. An �-shape of a set of points P is a sub-
set of the Delaunay triangulation of P . Edelsbrunner [3],
has extended the concept of �-shapes to deal with weighted
points (i.e. spheres with possibly unequal radii) in three di-
mensions. An �-shape of a set of weighted points Pw is a
subset of the regular triangulation of Pw.

The smooth molecular surface of a molecule is de�ned as
the surface which an exterior probe-sphere touches as it is
rolled over the spherical atoms of that molecule. This de�ni-
tion of a molecular surface was �rst proposed by Richards [8].
This surface is useful in studying the structure and inter-
actions of proteins, in particular for attacking the protein-
substrate docking problem. The analytic computation of
the molecular surface was �rst done by Connolly [2].

Looking at the above de�nitions, one can see that the

weighted �-hulls for three dimensions and the smooth molec-
ular surface of a molecule with a probe-radius � have the
same de�nitions. In this video we present the visualization
of weighted �-hulls as used to de�ne molecular surfaces.

2 Our Approach

Computation of �-hulls and �-shapes has traditionally been
done by �rst constructing power diagrams or regular tri-
angulations. Since these methods involve computing the
entire diagram or triangulation �rst and then culling away
the parts that are not required, their complexity is O(n2) in
time, where n is the number of points. This is worst-case
optimal, since an �-shape in three dimensions could have a
complexity of 
(n2).

However, when �-hulls are used as molecular surfaces,
one can do better. Let M = fS1; . . . ; Sng, be a set of
spheres, where each sphere, Si, is expressed as a pair (ci; ri),
ci being the center of the sphere and ri being the radius of
the sphere. Collections of spheres representing molecules
have two interesting properties: (i) the minimum distance
dij between any two centers ci and cj is greater than or
equal to a positive constant lmin | the smallest bond-length
in the molecule and (ii) the values of all the radii can be
bounded from above and below by strictly positive values,
0 < rmin � ri � rmax. We take advantage of the �rst prop-
erty to arrive at better running times for our algorithm.
Stated simply, the �rst property says that the number of
neighboring atoms within a �xed distance from any atom
i, is always bounded from above by a constant kmax that
depends on the minimum spacing between any two atoms.
We refer to two atoms i and j as neighboring if it is possible
to place a probe sphere such that it is contact with both Si
and Sj.

A power cell (as described by Aurenhammer [1]) for a
given sphere Si with respect to M can be computed as the
intersection of n� 1 halfspaces, each halfspace contributed
by the pair (Si; Sj); 1 � j � n; j 6= i. If the average number
of neighbors for an atom is k, then for our purposes it is suf-
�cient to just compute an approximation to the power cell,
which we call a feasible cell, as an intersection of k halfspaces
(one halfspace contributed by each neighbor). This can be
done in deterministic time O(k log k). For n atoms, this task
can be parallelized over n processors, each processor com-
puting the feasible cell for one atom. To check if a feasible
cell is non-null, we use a randomized linear programming
algorithm that has linear expected time complexity and is
quite fast in practice [9]. For details of our approach the
interested reader can refer to [10].



We have used ideas from the theory of packing and cover-
ing of spheres to estimate the value for k, the average num-
ber of neighboring atoms, for an atom in protein molecules.
We can prove that for proteins, k < 140 for a probe-sphere
radius of 1:4�A { the radius of a water molecule. Details
about this result can be found in [11]. In practice we have
found that for protein molecules and for a probe-radius of
1:4�A, k is around 45

In the algorithms for computing the convex hull of a set
of points, it is assumed that the points are in a general po-
sition, i.e. no more than d points lie on the same d � 1
dimensional hyperplane. In reality this assumption often
fails to hold, leading to problems. For example, planar ben-
zene rings occur often in proteins, causing six carbon and
six hydrogen atoms to be all coplanar. One of the recent
approaches to solving this problem has been to perturb the
input point set slightly to avoid these degeneracies. The ap-
proach of Emiris and Canny [6] perturbs the jth dimension

of the ith point as:

pi;j(�) = pi;j + �(ij mod q)1 � i � n; 1 � j � d (1)

where � is a symbolic in�nitesimal and q is the smallest
prime greater than n. Instead of performing exact integer
arithmetic, we just perturb the centers of the spheres by
the above scheme and that has worked quite well for us in
practice.

With no preprocessing, we can compute the molecular
surface for a 396 atom Crambin and a probe-radius of 1:4�A,
using 40 Intel i860 processors in 0.2 seconds. We have imple-
mented �-hulls on Pixel-Planes 5 [7], though the method is
general enough to be easily implemented on any other par-
allel architecture. Our approach is analytically exact. The
only approximation is the degree of tessellation of spherical
and toroidal patches.

3 Applications in Biochemistry

Interactive computation and display of molecular surfaces
should bene�t biochemists in three important ways. First,
the ability to change the probe-radius interactively helps one
study the surface. Second, it helps in visualizing the chang-
ing surface of a molecule as its atom positions are changed.
These changes in atom positions could be due to user-de�ned
forces as the user attempts to modify a molecular model on
a computer. Third, it assists in incorporating the e�ects of
the solvent into the overall potential energy computations
during the interactive modi�cations of a molecule on a com-
puter.

4 Scope for further work

At present we are not using any incremental temporal in-
formation in constructing these surfaces. Thus, if the atoms
move slightly from their positions, the whole surface is re-
computed from the beginning, although one could conceiv-
ably store the feasible cell description with each atom. As-
suming the atoms of the molecule move along continuous
trajectories, it should be possible to compute such surfaces
(and indeed �-hulls and �-shapes) incrementally and e�-
ciently by using the information from previous time steps.
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