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Abstract

We propose a technique for performing view-dependent geometry and topology simplifications for level-of-detail-
based renderings of large models. The algorithm proceeds by preprocessing the input dataset into a binary tree, the
view-dependence tre&f general vertex-pair collapses. A subset of the Delaunay edges is used to limit the number
of vertex pairs considered for topology simplification. Dependencies to avoid mesh foldovers in manifold regions of
the input object are stored in the view-dependence tree in an implicit fashion. We have observed that this not only
reduces the space requirements by a factor of two, it also highly localizes the memory accesses at run time. The
view-dependence tree is used at run time to generate the triangles for display. We also propose a cubic-spline-based
distance metric that can be used to unify the geometry and topology simplifications by considering the \itotex pos

and normals in an integrated manner.

1. Introduction hence, vertices which are not connectedvia an edge. This leads
us to the first issue that we address in this paper — how can one
limit the potentiallyn? such vertex pairs under consideration
(wheren is the number of vertices of the model).

Recent advances in three-dimensional shape atiqnissim-
ulation, and design technologies have led to generation of
datasets that are beyond the interactive rendering déjesb

of the current graphics hardware. To bridge the increasinggap Second, we propose a unified distance metric that allows
between hardware capabilities and graphics dataset sizes, theneasurement of the distance between two vertices taking into
complexity of the graphics dataset is reduced such that its accounttheir coordinates as well as normals. Our spline-based
visual appearance is similar to the original. This reduction distance metric can also be used to provide a reasonable mea-
is achieved through several algorithms and techniques suchsure of the distance from the view point to the vertices of the
as level-of-detail rendering with multi-resolution hierarchies, object. Since our metric handles the normals and the coordi-
occlusion culling, and image-based rendering. Preserving the nates in a unified manner, we can use the same distance func-
topology of the input datasetis an important criterion for some tion during construction of the vertex hierarchy as we use dur-
graphics application such as tolerancing, drug design, geolog- ing the run-time view-dependent simplifications. This was not
ical, and medical volume visualization. However, for several possible in the past.

real-time graphics applications where interactivity is essential
and preserving the topology is not required, topology simpli-
fication has been shown to yield significant benefits with little
difference in visual appearante

Dependencies lists were introduced by Xtaal 24 and im-
proved later by Hopp#8 in order to prevent foldovers at run
time. But they are expensive to store and to test at run time
due to the memory overhead and several non-local accesses.

Recently, view-dependent simplifications have been intro- These non-local accesses lead to unnecessary paging for large
duced to enable various levels of detail to seamlessly co-exist datasets or on computers with less memory. In addition, it is
over different regions of the same surface. These levels of de- very hard to extend explicit dependencies lists to handle the
tail depend on parameters such as view location, illumination, view-dependent topology simplification. In this paper we in-
and speed of motion and are determined per-frame. However,troduce the concept diplicit dependenciethat ensure run-
most of these view-dependent simplification algorithms, with time consistency in the generated triangulations, with a very
the notable exception of the work by Luebke and Erik&)n small memory overhead and purely local accesses. We expect
are based on edge-collapse, which by itself is inadequate for implicit dependencies to be useful for view-dependent visu-
topology simplification. In order to be able to change the topol- alization applications dealing with networks external memory
ogy of a model we should be able to merge different objects, prefetching as well as over networks.
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2. Related Work using view position, view angle, variations in surface normal,

Since related work on geometry simplification has been well local illumination, sihouettes, and front/back-facing regions.

surveyed in several recent papé&¥$ 5 in this paper we shall Hoppe16 has independently developed a view-dependent
overview only the related work in the areas of topology and simplification algorithm. This algorithm proceeds to construct
view-dependent simplifications. a vertex hierarchy over a progressive mesh in a top-down fash-

ion by minimizing an energy function. Screen-space projec-
tion and orientation of the polygons is then used to guide
the run-time view-dependent simplifications. Guéaeal 13
Rossignacand Borrél use a global grid to subdivideamodel.  demonstrate a surface partition scheme for a progressive en-
This approach can simplify the topology if the desired simpli-  coding scheme for surfaces in the form of a directed acyclic
fication regions fall within a grid cell. Het al4 used low-pass graph (DAG). The DAG represents the partial ordering of the
filtering to perform a controlled simplification of the topology edge collapses with path compression. De Floridai. have

of volumetric datasets; however polygonal objects need to be jntroduced the multi-triagulation(MT). The decimation and
voxelized. El-Sana and Varshnéperform genus simplifica-  refinement in MT is achieved through a set of local operators
tion by extending the concept afhulls to triangles. Theirap-  that affect fragments of the mesh. Then the dependencies be-

2.1. Topology Simplification

proach is based on convolving individual triangles with-a tween these fragments are used to construct a DAG of these
cube of sidea and computing their union. The convolution  fragments. This DAG is used at run time to guide the change
operation effectively eliminates all holes less than of the resolution of each fragment.

Several edge-collapse-based schemes have been proposed gjein et al 18 have developed an illumination-dependent
for topology simpli_fication, though no_tin the context of vie‘_’V' refinement algorithm for multiresolution meshes. The algo-
dependentrenderings. Schroediras introduced vertex-split ithm stores maximum deviation from Phong interpolated nor-
and vertex-merge operations on polygonal meshes for modify- ma|s and introduces correspondence between the normals dur-
ing the topology of polygonal models. Vertexligpare per- ing the simplification algorithm. Schilling and Kle# have
formed along feature lines and at corners. Garland and Heck- introduced a refinement algorithm that is texture dependent.
bert? presenta quadric error metric that can be usedto perform Tpgjr algorithm measures the texture distortion in the simpli-
genus as well as geometric simplifications by using vertex- fieq mesh by mapping the triangulation into the texture space
pair collapses. Popovénd Hoppé® introduce the operator of - 44 then measuring the error at vertices and edge intersections.
a generalized vertex split to represent progressive changes 0Gjanget al 1 have presented a method to produce a hierarchy
the geometry as well as topology. of triangle meshes that can be used to blend different levels of

detail in a smooth fashion.

2.2. View-Dependent Simplification Luebke and Eriksod® use a scheme based on defining a

Adaptive, view-dependentlevels of detail were firstintroduced tight octreeover the vertices of the given model to generate hi-
in the context of terrains by Grost al 1. Grosset al de- erarchical view-dependent simplifications. This approach can
fine wavelet space filters that allow changes to the quality of simplify topology if the desired simplification regions fall
the surface approximations in locally-defined regions. Several within one cell. However, fine control over the simplification
other researchers have since then presented other methods foof the topology is not easy to achieve.

view-dependent rendering of terrains. However, keeping with

the focus of this paper, we shall only overview previous work

done in the area of view-dependent simplifications of general- 3. Our Approach

ized meshes. We present an algorithm that enables geometry and topology

Progressive meshes have been introduced by Hé&ppe simplification in a view-dependent fashion. In the preprocess-
provide a continuous resolution representation of polygonal ing stage we construct a hierarchy of vertex-pair collapses to
meshes. Progressive meshes are based upon two fundamentdiuild a view-dependence tree. Among tifevertex-pair can-
operators — edge collapse and its dual, the vertex split as showndidates we choose the vertex pairs that are connected by the

in Figure 1. A polygonal meskl = MK is simplified into suc- mesh edges and an additional set of vertex pairs determined us-
cessively coarser meshiB by applying a sequence of edge  ing a Voronoi diagram (details are in section 4). Details of how
collapses. The sequen(;mo, {splity,splity,... ,split,_1}) is the view-dependencetree is constructed are given in section 5.
referred to as @rogressive mestepresentation. Our view-dependence tree differs from previous wérké in

. that it enables topology simplification, does not store explicit
24 -
Merge trees have been introduced by Hizl** as a data dependencies, and handles non-manifold cases. At run-time

\s;it;lxt;;e ebnuclilénlipr)gg d;;rr?ngresf&\r/‘e lr)n esth?l'i to etrr1able :]ealc'itmtf the view-dependencetree is used to guide the selection of the
PE goran object. These rees encode eappropriate level of detail based on factors such as view and
vertex splits and edge collapses for an object in a hierarchical

) illumination parameters.
manner. The edge collapses are performed using the shortest- P

edge-first heuristic. Each vertex stores the distance from the We have found that distance metrics that combine vertex
user beyond which it will be collapsed to its parent and a dis- position and normal perform better than metrics that take into
tance at which it will be split. The distance metric is defined account only pason, such as the Euclidean distance metric.
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In section 7 we discuss a new metric that combines the nor- 4.1. Optimization

mals and positions of the collapsed vertex using cubic splines. We have found that a large fraction of the Delaunay edges con-
Our spline metric tests view frustum, foveation, backfacing re- nect vertices which are already connected via real edges. One
gions, and local illumination in a natural fashion. way to reduce this fraction is to reduce the number of Voronoi
sites, that is the number of vertices we consider. Recently,
4. Virtual Edges Amentaet al! have propos_ed the concept _of Voror_10i filter-
ing to reduce such connections between points during surface
A polygonal mesh can be simplified into successively coarser reconstruction from a set of unorganized sample points. In our
meshes by applying a sequence of edge collapses or vertex-case we achieve this reduction by combining the faces to su-
pair collapses. In ardge collaps¢he two vertices which are  perfaces and computing the Voronoi diagram for the vertices
connected by this edge are collapsed into one vertex and thethat form the boundary of these superfaces. Thus the virtual
adjacent triangles are updated appropriately as shown in Fig- edges that are generated are a subset of the edges connecting
ure 1. Avertex-pair collapsds a generalization of the edge the boundary vertices of such superfaces. To allow a rich col-
collapse and involves merging two vertices that may or may lection of such virtual edges for consideration, we require that
not be connected by an edge. The adjacent triangles are up-all the triangles of any superface form a manifold patch. We
dated in a manner similar to that for the edge collapse. define a superface normal as the average of the normals of all
the triangles that form it.

Some algorithms have been suggested to compute super-

faces* 7. Our algorithm for this construction is very similar
V3 to others. In the initialization step every triangle forms a su-
v St perface. Then in a recursive greedy fashion we combine the
two adjacent superfaces that have the minimum angle between

Collapse . . .
their normals and all the shared vertices are manifold. The al-

Vk gorithm stops when the minimum angle between the normals
Vl of any two adjacent superfacesis larger than a given threshold.
We are interested in superfacesthat do not contain sharp edges,

Figure 1: E Il nd vertex spli . !
gure dge collapse and vertex split hence we use threshold of 78 our current implementation.

After we have constructed the superfaces, we compute the
For our algorithm to allow topology simplification it needs  Voronoi diagram of the vertices which form the boundary of

to collapse vertex pairs that are not connected by an edge. Suchthese superfaces. We consider the virtual edges which connect
vertex-pair collapses allow merging of unconnected compo- any two vertices that (a) are not connected via a real edge, (b)
nents. We say that such a vertex pair is connected\istzal share a Voronoi face, and (c) do not lie on the boundary of the
edgewhile the original model edges are referred toreal same superface.
edges Virtual edges have been used by Garland and Heck-
bert®, PopovE and Hoppe®, and Schroede®. We rely on
the Delaunay triangulation to restrict potentiafiy such vir-
tual edges. The set of virtual edges that we consider is a subset
of the Delaunay edges over the dataset vertices. It is impor-
tant to note here that the Delaunay edges do not necessaril
suffice to represent all vertex-pair collapses that might be con-
sidered desirable by an application. However, we have found
that in practice, the Delaunay edges suffice for most topol-
ogy simplifications, particularly, when they are supplemented
by the real edges of the model as candidates for collapse. We
generate the virtual edges for consideration through a Voronoi
diagram in which the dataset vertices are the Voronoi sites. We 5. View-Dependence Tree

construct the virtual edges from the giVen set of Voronoi sites \/ieW_dependence treeis a genera"zation of the merge tree in-
by connecting every pair of vertices by a virtual edge if their troduced by Xizet alin following ways:

corresponding Voronoi cells share a Voronoi face and are not
connected via a real edge.

It is important to note that superfaces are used only to re-

duce the number of vertices we considerto generate the virtual

edges. As we pointed out earlier, the virtual edges are used to
establlsh connectivity across different components that would
otherwise not have readily merged. Beyond a certain size, the
Ys shape and extent of superfaces does not affect the run-time
view-dependent simplification to a great extent since they are
being primarily used to limit redundant connectivity. Hence
simple heuristics to define superfaces, like the one we use here,
work well in practice.

¢ View-dependence tree is capable of performing topology
and geometry simplifications whereas a merge tree can only
Three-dimensional Voronoi diagram can be constructed in  perform topology-preserving geometric simplifications.
O(nzlogn) time for n points. Several research groups have e The construction of the view-dependence tree is based on
developed software for computing three-dimensional Voronoi  a generalized vertex-pair collapse method to combine two
diagrams and Delaunay triangulations and released it in the vertices. In addition to the real edgesgaod representa-

public domain. We chose to ughull 2 to construct the three- tive subset of virtual edges is used for performing edge col-
dimensional Voronoi diagram since it is robust and can handle  lapses. This subsetis more general than simply considering
degeneracies well. all virtual edges with lengths less than a threshold.



¢ View-dependence tree does not store dependencies lists,respective PAT lists. The parent's CAT list is formed by ap-
since it uses implicit dependencies to ensure runtime con- pending the CAT list of the left child to the CAT list of the right
sistency in the generated triangulations. This allows highly child. Note that the triangles that have just become degenerate

localized memory accesses during run-time. and are represented by the PAT lists of the two child nodes are
¢ Itis notlimited to manifold surfaces. It can handle arbitrary not presentin the parent's CAT list. We then mark the position
polygonal meshes. of the start of the right-child CAT list in the parent’s CAT list

. i . by asplitindex(Sl). This is illustrated in Figure 2. We note that
In a vertex-pair collapse we define the vertices that are col- i, some cases the PAT list can have more than two triangles.
lapsed as thehildrenand the newly created vertex as 8- At the time of creation of a new node, we also store with it the
ent Each node of the view-dependence tree keeps vertex in- yigiance hetween the vertex-pair used in the collapse. We refer

formation and pointers to (a) its two children, (b) its parent, , this gistance as thewitch-valueof the node. This distance
and (c) two adjacent triangle lis{germanenandcurrent The can be computed using any reasonable distance metric. In our

permanent adjacent trianglgPAT) list holds pointers to the ¢ rent implementation we use the cubic spline metric intro-
triangles that are removed after the collapse of the vertex rep- y,ce in section 7. These switch values are used to determine

res_,ented by this node. Tbe_rrentgdjacen_ttriangléCAT) list i the level of detail in the view-dependence tree at run time.
exists only when the node is active and it holds a list of point-

ers to the current adjacent triangles. Each if¢ms) of the
PAT list consists of a pointer to a triangland an offses. The 5.1. Preventing Foldovers
offsetsis the index of the triangleon the CAT list of this node
before the collapse took place. Thisillastrated in Figure 2.

We shall refer to a view-dependence-tree nodeaeand a

split or collapse of the vertex represented by a node as the split
or collapse of the node.

As aresult of edge or vertex-pair collapses a triangle may “fold
back” on itself or change its normal by abautWe refer to
this as amesh fold-oveor just afoldover. In the construction

of a view-dependence tree we would like to prevent foldovers
and long sliver triangles. We define a vertex-pair collapse as
safeif it does not lead to any foldovers or long sliver triangles.

To determine the safety of a vertex-pair collapse we use two
heuristics. First, for any triangle adjacent to any of the two
@ @ @ collapsed vertices, the difference between the normal of this
triangle before and after the collapse is bounded by some user-
AVA’ 4N specified threshold. Second, for any triangle adjacentto any of
the two collapsed vertices the quality of this trianghosld

not drop below some user-determined threshold. We quantify

T ) the quality of a triangle with area and lengths of the three
‘ Split CAT:{b,d,e,f,g,h,l} . 4/3a -
T sidedg,l1, andl, to bem as proposed by Guézigt We
0 1772
Collapse s exclude from these tests triangles which become degenerate
A\ /N

after a vertex-pair collapse such as the two triangles adjacent
@ to the collapsed edge.
\

CAT{abcde CAT{af ghic PAT{a0,c2} PAT{a0, c:5} Since we use Delaunay tetrahedralizations to construct vir-
PAT{a0, c:2} PAT:{aO0, c:5} tual edges it might happen that a virtual edge is piercing a face
(a) (b) of the original mesh. A collapse of such an edge can produce

undetected self-intersection. To detect such self-intersections
Figure 2: Adjacent triangle update after split and collapse a global search is required after each collapse. However, such
self-intersections are limited in our case because we use su-
perfaces and the relative difference between normals of the
The vertices of the full-resolution mesh are represented by collapsing vertices. In a test we conducted on the ikary

the leaves of the view-dependence tree. In the initialization Machine Room dataset we found that onl9@% of the col-
step of constructing the view-dependence tree, we store all lapses resulted in such self-intersections.
LZﬂe%ng:IngaL;?Sr?sénb:nmc;f);hlexé T\/T:tiirelzzng ?hiag (;Sg e The safety ofa cc_JIIapse or splitcan be_lost du_ring the traver-
with respect to some distance metric (shortest-distance-first). sal of the vertex hierarchy tree_ at r“”'“”.‘e- l_:lgure 3 sho_vvs
Then while the priority heap is not empty we perform the fol- an example _of how an undesirable folding in the adaptive
lowing: (a) we remove the edge on the top of the priority heap, mesh can arise even _though all the vertex-palr collapses that
(b) we test whether the two vertices of the removed edge can were determined statically were correct. Figure 3(a) shows

be safely collapsed, and (c) if they can be safely collapsed we fjhe 'n'gal staie of the f_mtish.”Durmg co“r;s;ructmg (tjhfh view-
execute the collapse operation. ependence tree, we first collapsed vergto va and then

we collapsed vertexc to vq4. Now suppose at run-time we de-
The execution of a vertex-pair collapse involves creating a termined that we needed to display vertisgsv,, andvg and
new node (parent), and moving the adjacenttriangles that havecould possibly collapse vertes to vg, then this will lead to a
become degenerate from the two children’s CAT lists to their foldover (as shown in Figure 3(b)).
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Establishing such a tunnel enables simplification of the
topology as well as reduces the number of triangles of the
model. For example, the two spheres in Figure 4(a) are close
enough that a tunnel is established between them as shown in
Figure 4(b). The two spheres connected with a tunnel have the
(b) topology of a single sphere which is different from the topol-

ogy of two unconnected spheres as well as for two spheres that
just share a few vertices.

Vd VdVc

Figure 3: Foldover case
Some genus simplifying algorithms in the pastave pro-

posed eliminating the interior triangles after genus simplifi-
cation. The detection of such triangles is based on a region-
growing approach that is quite efficient for generating static
levels of details. However, for view-dependent simplifications
with strict frame-to-frame timing constraints, such techniques
are too expensive to be conducted in real-time. Therefore, in
our present approach we only remove the redundant triangles
that can be rapidly detected by a local search around the col-
lapsed vertices.

In order to prevent foldovers at run-time, previous algo-
rithms24 16 have use@éxplicit dependenciesnongstthe nodes
of the vertex-hierarchy tree. Let us define tiegion of influ-
enceas the set of triangles which are adjacent to one of the
collapsed vertices. We define thellapse boundaryo be the
set of vertices that form the boundary of the region of influ-
ence of the collapsed vertices. Explicit dependencies permit
the collapse of an edgeonly when all the vertices defining
the boundary of the region of influence of this collapse exist
and are adjacent to the edgeAs an example, consider Fig- 6. |mplicit Dependencies
ure 1. Vertexa can collapse with vertex, only when the ver-
ticesvp, V1, ... ,Vk exist and are adjacent taq andvy,. Hence,
the explicit dependencies can be stated as in Definition 1.

Previous work on view-dependent simplification has used ex-
plicit dependencies to prevent foldovers at run-time. These
constraints result in memory overhead and several non-local
memory accesses during testing of the palsilfor split or

Definition 1 Explicit dependenciefor the collapse of two
collapse.

verticesva andv, in Figure 1.
We next propose the conceptiofplicit dependenciesm-

plicit dependencies rely on the enumeration of vertices gener-

ated after each collapse. If the model hagrtices at the high-

est level of detail they are assigned vertex-id$,0. ,n— 1.

Every time a vertex pair is collapsed to generate a new ver-

tex, the id of the new vertex is assigned to be one more than

. o ~ the greatest vertex-id thus far. This process is continued till the
In our view-dependence tree we use implicit dependencies gntire view-dependence tree has been constructed.

(discussed in section 6) to prevent foldovers at run time.

i. Collapse:Vertex va can collapse to vertex,, only when
all the verticesvg, v, ..., Vi are present as neighbors of
verticesva andvy,.

ii. Split: Vertexvp can safely split to verticeg andvy, only if
verticesvp, vy, . .. , Vi are present and adjacentig

Before split or collapse operation is executed at runtime
we make a few simple tests based on vertex ids to ensure the
5.2. Component Merge consistency of the generated triangulations and to avoid mesh

One of the advantages of topology simplification is the abil- foldovers. These tests are given in Definition 2.
ity to connect previously unconnected components. In our al-
gorithm this connection is established through the collapse of Definition 2 Implicit Dependencies Tests
virtual edges. If these two components are connected through
one vertex only (one virtual edge collapse), further collapses if the vertex-id of their parent is less than the vertex-ids of
of rr:al Edgte s l:V |I\INnot mirtehast(?Nthe shared atreahbetwtien these the parents of the collapsed boundary vertices.
ggesptc;\a? fosr.m Z tﬁ\;iglle tﬁenc\)/v(;oizprf:veentfmz tar;} : d;?i(\:lglr- ii. Vertex Split:A vertex p can be safely split at runtime if its

. ; ’ ) vertex-id is gr r than the vertex-i f all its neigh .
triangles (since they face each other) and thereby establish a ertex-id is greater than the vertex-ids of all its neighbors
tunnelbetween these two components.

i. Vertex-Pair CollapseA vertex-pair(a,b) can be collapsed

Consider the example in Figure 5. Figure 5(a) shows the
original mesh, Figures 5 (b), (c), and (d) show the sequence
of the collapse$vo, Vi), (v7,Vg), and(vy1,vi2) respectively.
The explicit dependencies list for the collapée,vg) is
E(v7,vg) = {v1,V2,V3,v4,v11}. This means that the nodes ad-
jacent tov; andvg must be exactly the elements of the list
o o E(v7,vg) before the collapsevs, vg). When using implicit de-

(a) Original (b) Simplified pendencies, we rephrase the above as: the collapsg) can

Figure 4: Tunnel established between two spheres occur only after the collapse ¢¥g, v10) to v11 and before the
collapse of any of the verticels/y,v,,v3,V4,v11}. In terms of




@

(b)

(©

Figure 5: Explicit dependencies and implicit dependencies

carrying out the implicit dependency tests, we note that the
vertex ids of the parents of the collapse boundary(¥grvg)

are all going to b&> 12 (since v, vg) collapses to12). There-
fore, by Definition 2(i),(v7,vg) collapse should occur before
any of its other collapse boundary vertices. Similarly, split of
nodevy, has to occur before the split of nodg,.

In our current implementation of implicit dependencies we
store two integers with each node which are (i) the maximum
vertex-id M of the adjacent vertices and (ii) the minimum
vertex-id m of the parents of the collapse boundary vertices.
The two integers are updated after each change of the collaps
boundary as a result of split or collapse. As an example in Fig-
ure 5, the integer pa{M, m) for nodesv; as well assg for the
mesh state shown in Figure 5(a)( 0, 11) while it is (11,13)
for Figure 5(b). The readers might wish to verify for them-
selves the applicability of the implicit dependency tests given
above for various split and collapse operations.

Before we proceed with the proof of the correctness of the
implicit dependencies let us define some terms that help in
understanding this proof.

Definition 3 Two collapse boundaries aaéjacentif a vertex
of one vertex-pair collapse exists in the other collapse bound-
ary, otherwise they armgisjoint

Definition 4 A view-dependence tree is calldédidover-free

if during its construction no executed collapse leads to a
foldover. A sequence of vertex-pair collapses and vertex split
operations is called fmldover-free sequendeno foldover oc-
curs during the execution of this sequence.

Definition 5 A sequence of vertex-pair collapses and vertex
split operations on a view-dependence ffepreservesthe lo-
cal order of the collapses every two adjacent collapses are

carried out in the same order that they were executed during la

the construction of .

Lemma 1 For a given view-dependence tree, implicit depen-

Proof: Note that there is a one-to-one correspondence be-
tween the enumeration of the newly created nodes and the col-
lapses during the construction of the view-dependence tree.
For example, in the collap$& : (vi,vj) to create the new node
Vp, theid of the nodevp is equal ton+ a, wheren is the num-
ber of leaves of the view-dependence tree (which is the num-
ber of vertices of the dataset) aads the number of collapses
beforeCq. Thus, Definition 2(i) is equivalent toSelect the
collapse with the minimum id among the set of the given ad-
jacent collapses, but this statementimposes a local order on
the adjacent collapses. Following the same terminology, Defi-

Ghition 2(ii) can be stated asStlect the collapse with the max-

imum id among the set of the given adjacent collaj)dmsgt

again this imposes a local order on the collapses. These lo-
cal orders are the same as in the construction sequence of the
view-dependence tree by the way the node ids are assigned.

Theorem 1 For any foldover-free tree, a sequence of vertex-
pair collapses that preservesthe local order of the collapses is
a foldover-free sequence.

Proof: Let us assume by contradiction that a foldover oc-
curs in a foldover-free tree eveldugh the collapse sequence
preserves the local order of the collapses.Cgt (vp,Va) be
the first collapse which leads to a foldover. Now, we proceed
with the proof in two stages. In the first stage, we extend the se-
quence of vertex-pair collapses such that every collapse in the
rangeCy, ... ,C; exists in the sequence. We achieve this by ex-
ecuting the missing collapses in that range, without violating
the implicit dependencies. The execution of such collapses is
achievable, since it is always possible to execute the collapse
with the minimum index. However, during the execution of the
missing collapses we may encounter other foldovers. In such
cases, we rename the one with the lowest inde&to

In the second stage, we sort the complete sequence of col-
psesCy,Cy,... ,Ct, with respect to their index order. We
carry out this sort by only exchanging pair of consecutive col-
lapses which are not in an index order (suchCa€; and

i > j). Now, we show that this exchange preserves the implicit

dencies preserve the local order of the collapses, which meansdependencie€; andCj can be either adjacent or disjoint col-

that any two adjacent collapses occur in the same order as in
the construction sequence.

lapses. However such an adjacent pair can not exist because it
contradicts the implicit dependencies. If the two collapses are



disjoint, then they can not affect each other by the dtéim determined by the position and the normal of the two vertices
of collapse boundary. as depicted in Figure 6.

The resulting sequen€®,Cy, ... ,Cs is a prefix of the con-

struction collapse sequence, which means that this foldover 3
occurs during the construction too. But the given view de- P(t) = ZOHit' ta<<t <ty 1)
pendence tree was foldover-free. This contradiction proves the i=
theorem™

In the above proofs we have only dealt with the sequences LengtHP(t), va Vi) = /tb ‘GP(t) ‘ ‘ dt @)
of collapses. If we treat a split operation as undoing a collapse a ot

and removing the corresponding collapse from the sequence,
it suffices to show that the above proofs cover both splits and ~ The error introduced as a result of the collapse of two ver-
collapses. Theorem 1 proves that just maintaining the local or- tices is affected by the position of the new vertex (the collapse
der of the collapses ensures a foldover-free mesh and Lemma 1result). Hence, it important to select the position that mini-
proves that the implicit dependencies maintain the local order Mizes this error. Our spline metric relies on the fact that the
of the collapses. Thus, we can say that the implicit dependen- mesh represents a smooth surface and tries to keep the updated
cies suffice to ensure a foldover-free mesh. triangles as close as possible to the “smooth surface”. We have
found that selecting the pibien of the resulting vertex, to
be the the point that has the average of the tandgerasdT,
7. Spline-Based Distance Metric usually minimizes the distance between the two vertices and

Three-dimensional curves and surfaces play an important role € resulting curve as shown in Figure 7.

in design and manufacture of various products. Since it is
faster to render triangulated surfaces, most of these surfaces c
are triangulated before rendering. The triangulated datasets
can be classified as the following main types with respect

to their acquisition: (a) smooth surfaces such as parametric
CAD/CAM (b) range data such as terrains and laser-scanned
data, and (c) hand-digitized or designed polygonal data.

Figure 7: Computing the position of the collapsed vertex

The spline metric performs well on models that do not have
sharp edges. The ability to combine the normal and the vertex
position makes it suitable for datasets that represent smooth
surfaces. It is easy to see that for smooth surfaces, a spline-
) ) ) based metric that allows new collapsed vertices to lie above or
Figure 6: Hermite Cubic Curve below the line joining the child vertices will work better than a
metric that forces the collapsed vertex to lie on the collapsing
(real or virtual) edge as shown in Figure 8.

Automatic creation of multiresolution hierarchies is a cru-
cial first-step in any level-of-detail-based rendering system. In —
our approach we use vertex-pair collapses to reduce the com- collapsedJ Parent /

Y

plexity of the dataset. It is crucial to find a metric that well arrex
approximates the distance between two vertices along the sur-

face and gives a “good” measure of the distance between two
unconnected vertices. Since the two vertices may have repre-
sented two points on a continuous surface that was sampled
at an acceptable rate, splines enable faithful reconstruction of
this surface with respect to the sampling rate. A cubic-spline Figure 8: Effect of normals on the position of the collapsed
curve constructed using the normal and the coordinates of the vertex

two vertices results in a good approximation of the curve that
passes through these two vertices along the “original surface”.

Chi I d
Vertices

Chi I d J “
Vertices S

As shown in Figure 9, The cubic-spline-based metric re-
In order to keep the model as close as possible to its origi- sults in different simplifications when two closed boxes are
nal appearance, we need to carry out the collapses in the ordemlaced near each other as shown in Figure 9(a)-(c) as com-
which introduces the least error first. We determine this order pared to when two boxes with their closest faces missing are

by the length of the cubic curve that connects these two ver- placed near each other as shown in Figure 4f)As can be
tices. Cubic curves approximate the distances better in polygo- seenin first case the geometry gets simplified before the topol-
nal datasets that represent smooth surfaces. The cubic curve igy whereas in the second case the topology is simplified by

7



(a) Original (b) Geometry simplified (c) Topology simplified

ARSI
(d) Original (e) Topology simplified () Geometry simplified
Figure 9: Simplifying Closed and Open Boxes with Cubic-spline-based Metric

connecting the two boxes and then the geometry is simplified.
This is because the cubic-spline-based metric takes into ac-
count the normals of the vertices in atitsh to their position
coordinates.

We use Hermite interpolation to compute the parametric cu-
bic curve as in equation (1), whekg is determined by the
positions and the normals of the two vertices. To compute the
length of the curvé®(t) that connects the two vertices we use
equation (2). We can simplify this distance function in two
ways. First, one can approximate the curve length by a se- Figure 10: The curve tangents are computed as the firstinter-
quence of straight lines, which are determined by using the de Section of the two cylinders
Boor algorithm®. Second, one can analytically simplify equa-
tion 2. We have adopted the latter in our implementation; de-
tails are in section 7.2).

singulaities and unwanted inflection points by changing the
magnitudes of the tangent vectors. Su andd.have found a

7.1. Choosing Tangents bound on the length of the tangent that guarantees the elim-
ination of singulaities and unwanted inflection points. In the
special setting of our spline, assigning the length of the tangent
to be less than the Euclidean distance between the two vertices
Va,Vp guarantees the generation of a spline curve without sin-
gularities and unwanted inflection points.

Hermite interpolation requires a tangent at each of the two ver-
tices. We compute the tangents at the two vertices using the
normals at these vertices. Any vector perpendicular to the ver-
tex normal is a valid tangent at that vertex. Among these infi-
nite number of tangents we pick two for each curve (one from
each vertex) as follows: for vertesys we choose the tangent
that points to the other vertex. For vertexv, we choose the
tangent that points in the direction opposite that of the vertex
Va. The pointc (shown in Figure 10) is the intersection of the
tangentla and the extension of the tangéliat The pointc is

the closest point tea andv, that lies on the intersection of v SV v
the two planes defined by the two points andvy, and the (b) : ()
two normalsNa andNy, respectively, as shown in Figure 10.

A special case arises wh_en the angle betwe_en the two normalS‘Figure 11:Curves (a) and (b) have singulées, curve (c) has
is 11, then any two opposite tangents are valid. unwanted inflection points

The lengths of the tangent vectors at the two vertices partly
determine the behavior of the spline curve passing through
these two vertices. Hence, if we do not compute the tangent
vector lengths carefully, we may not get the desired spline.
For example, as shown in Figure 11, the spline between the We now explain the analytical approximation for curve length
two verticesva, vy can have, doop, a cusp or two inflec- in three-dimensional space, which is derived from (2) and can
tion pointsrespectively®. We can eliminate the loop and cusp  be written as in equation (3).

7.2. Analytical Approximation
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can be used to not only determine the distances amongst ver-

b s 5 tices but also can be used to determine distances to the light
Length (P(t), Va, vp) Z/t \/X(t) +Y(O)2+2(t)=dt (3) source as well as to the view point.

Since the length of the curve imposes a complete order on 7/
the vertex pairs set, we will get the same order if we remove - -Light
the square root of integral in (3). For spline curve we can al- .
ways reparameterizeto run from[0..1] instead ofta. .ty]. Af- ‘\
ter applying these these two changes on equation (3) we get
equation (4).

1. . .
Length (P(t),va, Vi) = / (XO2+Y ()2 +2(0)2)dt  (4)
0 Figure 12: View and light spline curves

The functionsX(t),Y(t),andZ(t) are cubic polynomials,
hence we can write these functions in a form similar to equa-  The level of detail at a vertexbased on the view parame-
tion (5) which represerX(t). ters is computed using the cubic spline that connects the eye
position with the vertew. Here, the normal of the vertex
and the negative look-at vector are used as tangents. The light
X(t) = axt® + bxt? + cxt + dy (5) contribution to the level of detail at the vertexs similarly
computed by using the vertex normal and the negative of the
Since the three equations are similar, it is enough to show light direction as tangents (as shown in Figure 12). In both of
only the solution offolX(t)zdt, which appears in (6). these distance measurements, short curve lengths are associ-
ated with high detail and long ones associated with low detail.
1 1 Note that dark regipns (no_t facing the light) are no_t displa_yed
/ X(t)zdt _ / (3axt2—|— 2yt + cx)zdt in th_e highest (_jetall even if they are plose to the viewer since
0 0 6) the light curve is long. As we seein F_|gure 12 the CUbIC-SPhﬂG
curves are short for front-facing regions close to the viewer
and long for far-away regions that are back-facing. When the
normal of a vertew falls into the silhouette cone, we tresas
special case by displaying it in higher detail.

= a(§a+ 3b)+c(2a+c)+ b(gb—l— 2c)
As we see from equation (6), it is fast to compute the length
of the curve and the metric derived from it.

i 8.2. Active Nodes
8. Real-Time Traversal

] o o The list of active vertices is a subset of the nodes of the view-
The view-dependencetree which is constructed off-line is used dependence tree and is determined by:

at run-time to construct an adaptive level-of-detail mesh rep-
resentation. In fact, the view-dependence tree is a forest (set® Eye parameters, such as eye position aottiat direction.

of trees) since some nodes can not merge together to form one® Light Parameters, such as position and direction.

tree. The view-dependence tree is able to adapt to various lev-® Distance metric function which determines the level of de-
els of detail. Coarse details are associated with nodes that are tail at each vertex.
close to the top of the tree and high details are associated with

the nodes that are close to the bottom of the tree as shown in

Figure 13. The reconstruction of a real-time adaptive mesh re-

quires the determination of the list of vertices of this adaptive Active Nodes
mesh and the list of triangles that connect these vertices. We
shall refer to these lists as the listactive nodesind the list

of active triangles

Low Detail

High Detail

8.1. Refinement Metric ) ) ] )
_ ] _ ] Figure 13: Active vertices list
The light and view parameters determine the level of detail at

each region of the scene. We use the spline metric we have in-

troduced in section 7 to construct the view-dependence tree as At each frame the set of active nodes is traversed and for
well asto use it for real-time generation of these levels of detail each node we use the distance metric to compute a metric
at run time. Previous approaches have used different distancevalue. This metric value represents the distance to the viewer,
metrics for the off-line processing and for run-time refinement the light source, and the local geometry. We then compare the
and simplification. We next discuss how the same spline metric metric value at a node with the switch value stored at that node
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to determine the next operation to execute. We have discussecdhon-optimized implementation. The times for our preprocess-

how to compute the switch value at a node in section 5. If the

ing appear in Table 1. As can be seen our method to compute

metric value is less than the switch value and this node satisfiesthe virtual edges limits them to be linear with respect to the

the implicit dependency conditions for split, we split thisde

into its two children. If the computed metric value is larger
than the switch value stored at the parent of this node and its
sibling can collapse, we collapse this node and its sibling. Oth-
erwise, this node stays in the active nodes list.

When a nod@& can not split as result of the implicit depen-
dency condition, two approaches are possible. In the first ap-
proach, we recursively split the nodes which prevent the split
of noden (if possible) and then carry out the split ofin the
second approach, we leave natdfer the later frames (until the
nodes that prevemts split have split). We haveofind that the

number of real edges of the model. For these results we have
used the normal difference angle for generation of the super-
faces to be less than 75

The model tricycle in Figure 14 consists of multiple uncon-
nected components. Figure 14 shows the different levels of de-
tail of the tricycle as the unconnected components merge and
the number of triangles is reduced. Figure 15 shows the result
of simplifying a hole on the back-facing region of the sphere.
Figure 15(a) showsthe original high-detail model of the sphere
showing a hole. Figures 15(b) and (c) show one view and its
opposite toillustrate the simplifying away of the hole in the

second approach can deliver better frame rates, since the firstregion facing away from the viewer. Figure 15(d) shows the

approach takes longer to update the list of active nodes and tri-

angles. Similar observations have been reported by H&ppe
for slowly changing view-parameters.

The split operation involves removing the node from the ac-
tive nodes list and inserting its two children into this list. The
active nodes list is updated after a collapse by replacing the
parent of the two nodes with one of them and removing the
pointer to the other node.

8.3. Active Triangles

We maintain a global list of all the triangles of the dataset.
Each triangle is represented by three pointers to its vertices
and its normal. The active triangle list is a list of pointers to
the entries in the global triangle list. The adjacent triangle lists
(CAT and PAT) in the tree nodes are also represented by a list
of pointers to the global triangle list.

As we mentioned earlier, our algorithm relies on the coher-
ence between frames. We assume that the list of active trian-
gles at framd is given. To determine the list of triangles at
framei + 1 we either add, remove, or update triangles depend-
ing on the split or collapse operation to move from frainte
framei+ 1. The update of the triangle lists during a vertex-pair
collapse is done in two steps. First, we subtract the PAT list at
each vertex from the CAT list. Second, we append theltiagu
CAT list at the right child to the resulting CAT list at the left
child to form the CAT list of the parent node. During the ap-
pend of the two list we assign tisglit indexat the parent node
to point to the first element of the right child CAT list. The
vertex split operation is also carried out in two steps. First, we
split the parent’s CAT list at theplit indexposition into two
lists, left list and right list. Second, we merge the left node’s
PAT list with the left list to form the left node’s CAT list. Sim-
ilarly we merge the right node’s PAT list with the right list to
form the right node’s CAT list. Note that we use the offset of
the triangle in the PAT list to perform the correct merge.

9. Results and Discussion

We have implemented our algorithm in C++ on an SGI Onyx2
with Infinite Reality graphics. We have tested our algorithm on

side-view of the mesh in wire-frame to illustrate the different
levels of detail and the simplifying away of the hole. Using our
spline metric we were able to achieve high detail at regions
that are close to the viewer and front-facing and low detail at
regions that are far from the viewer or back-facing. Figure 16
shows the results of view-frustum-based simplification. The
objects outside of the view-frustum are simplified to zero tri-
angles. We test very few nodes of the view-dependence tree to
reduce the objects lying outside the view-frustum to low de-
tails. Figure 17(a) shows the Auxiliary Machine Room(AMR)
of a notional submarine dataset from the Electric Boat Corpo-
ration. Figure 17(a) shows the viewer position for Figure 17(b)
by the locatiorA and for Figure 17(c) by the locatian For

a given error threshold that produces almost visually indistin-
guishable images we have found that our generalized view-
dependent method produces more aggressive simplification
than topology-preserving view-dependent algorithm. For in-
stance, AMR model we were able to achieve 76K triangles us-
ing the geometry and topology simplification compared with
91K triangles for the geometry simplification, for the same er-
ror bound and viewer p@gon.

Table 2 presents the space requirements for the View-
dependence tree that we propose in this paper and the Merge
tree. Theadjacencycolumn indicates the space required to
store the adjacency information for all the nodes including
the space for the explicit or the implicit dependencies. The
total column indicates the total space requirements for the en-
tire vertex hierarchy. As can be seen the nodes of the view-
dependence tree require approximately half as much space as
that for the merge tree. We would like to point out here that for
the purposes of comparison the view-dependence tree’s space
requirements do not represent the space for virtual edge col-
lapses since nothing equivalent exists for the merge tree. We
have compared the total amount of memory required for the
merge tree$* and the view-dependence trees as proposed in
this paper. For the example of the Buddha dataset, we have
found that the merge tree requires BB of memory while
the view-dependence tree requires3A\2B. In this compari-
son we had disabled the presence of virtual edges in the view-
dependencetree since none exist in the merge tree.

Table 3 demonstrates the range of pointer accesses with ex-

several datasets and have received encouraging results for ouplicit dependencies including the average distance of access
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Dataset Vertices Triangles Real Edges \Vertices after Virtual Edges Preprocessing Time(sec)

Superfaces View-Dep. Tree  Superfaces Qhull
Tricycle 7K 14K 21K 2K 9K 2.1 0.7 2.2
Buddha 145K 293K 435K 29K 126K 51.0 24.9 26.3
Tricycle Lot 178K 340K 517K 55K 217K 84.6 26.9 63.4
AMR 195K 381K 572K 31K 152K 87.0 28.1 83.8
Torpedo Room 465K 737K 1,288K 91K 291K 222.8 42.7 96.2
Dragon 437K 871K 1,309K 82K 336K 273.7 46.4 79.7

Table 1: Preprocessing times for different datasets

Dataset Number View-Dependence Tree(KB) Merge Tree(KB) Savings Factor
of Nodes Adjacency Total Adjacency Total Adjacency Total
Tricycle 14,086 109 616 626 1,133 574 1.83
Buddha 289,265 2,345 12,758 14,788 25,201 6.30 1.97
Tricycle Lot 352,098 2,733 15,408 15,692 28,367 574 184
AMR 337,791 2,728 14,888 15,373 27,533 563 184
Torpedo Room 823,761 6,653 36,308 37,489 67,144 5,63 184
Dragon 874,927 6,972 38,469 46,906 78,403 6.72 2.03

Table 2: View-Dependence Tree size vs Merge Tree size

as well as the standard deviation. This has serious implica- Our algorithm accepts arbitrary polygonal datasets. In ad-
tions for external memory algorithms as well as for performing dition, it is able to achieve better simplification than topol-
view-dependentsimplifications over networks. If we assume a ogy preserving algorithms for models with non-manifold cases
normal bell-shaped distribution, to get over 95% of the hits in such as cracks and T-junctions. However, our algorithm does
a block we will need a block size to lpet 20 to just cover the simplify all the T-junctions, since that requires a connectivity
accesses required to decide on thét/spllapse for asingle between vertices and edges.

node. For a dataset such as the Dragon, this implies that we
might need a block of size RB. This is particularly large if

we note that the entire tree for the Dragon datasetis abobit 38

Average  Standard
Number Distance Deviation

MB. The implicit dependencies on the other hand, since they Dataset of Nodes (MB)  (c)(MB)
require only local accesses within the node at run time, do not
suffer from this drawback. Tricycle 14,086 0.16 0.11
. . Buddha 289,265 4.32 2.12
We have observed several advantages in using our gen- Tricycle Lot 352,098 3.05 315
eralized view-dependent simplification algorithm in terms of AMR 337.791 3.70 3.20
memory savings, localized access, and better simplification. Torpedo Room 823,761 13.74 6.93
Dragon 874,927 14.26 7.10

¢ Memory Savingstmplicit dependencies require only two
integers to store instead of a list of adjacenttriangle pointers
in explicit dependencies. In addition our view-dependence  Table 3: Non-Local Access with Explicit Dependencies
tree does not duplicate triangle pointers.

e Localized AccessExplicit dependencies in previous work
24,16 need to visit every neighbor of an active node to test 10. Conclusions and Future Work
whether it can split or collapse. This may result in non-local
accesses causing unnecessary paging (when the dataset i
larger that the local memory).

¢ Better SimplificationOur algorithm is able to simplify ge-
ometry and topology in a view-dependent manner. It can
achieve aggressive simplification for objects that are far
from the viewer, are backfacing, or are out of the view frus-
tum. In addition, our algorithm can deal with non-manifold
representations. Our spline-based distance metric works in a
natural and intuitive manner, especially for smooth surfaces. We see the scope for future work in designing external

¥\/e have presented the concept of view-dependence trees as
a tool to perform geometry and topology simplification for
large polygonal datasets. These trees use implicit dependen-
cies and efficient node representation that make them more
compact, faster to navigate, and allow them to accept gen-
eral non-manifold datasets. Further, we have also introduced
a spline-based distance metric that can incorporate both the
vertex normals and positions in a reasonably intuitive way.
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memory algorithms for visualization of datasets whose sizes 11.

exceed that of the main memory and collaborative visualiza-
tion of large dataset that reside in a local or remote server,
by taking advantage of the localized and compact structure of
view-dependence trees.
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Figure 14: Different levels of detail for a tricycle model

(a)Original (b) Front-Facing (c) Back-Facing (c) Side View

Figure 15: Hole Simplification on the back-facing region
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(a) The complete model (b) Selected View (c) After Culling

Figure 16: View Frustum Culling Using View-Dependent Simplification

(a) Original model (b) Viewer at A (b) Viewer at z

Figure 17: Close and Far View of the Auxiliary Machine Room Dataset

13



