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Abstract

We propose the idea of using variable-precision geometry transfor-
mations and lighting to accelerate 3D graphics rendering. Multires-
olution approaches reduce thenumberof primitives to be rendered;
our approach complements the multiresolution techniques as it re-
duces theprecisionof each graphics primitive. Our method relates
the minimum number of bits of accuracy required in the input data
to achieve a desired accuracy in the display output. We achieve
speedup by taking advantage of (a) SIMD parallelism for arith-
metic operations, now increasingly common on modern processors,
and (b) spatial-temporal coherence in frame-to-frame transforma-
tions and lighting. We show the results of our method on datasets
from several application domains including laser-scanned, proce-
dural, and mechanical CAD datasets.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Hierarchy and
geometric transformations; I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques—Graphics data structures and data types.

Additional Keywords: hierarchical rendering, levels of detail,
variable-precision rendering, view-dependent rendering.

1 Introduction

As the complexity of visualization datasets has increased beyond
the interactive rendering capabilities of the graphics hardware, re-
search in graphics acceleration has engendered several novel tech-
niques that reconcile the conflicting goals of scene realism and in-
teractivity. These techniques can be broadly classified into two lines
of research. The first line of research includes techniques such as
multiresolution rendering and visibility-based culling. Such tech-
niques operate by reducing the number of graphics primitives to be
rendered based on viewing and illumination parameters, such that
there are minimal visually discernible differences between view-
ing higher complexity and lower complexity scenes. Orthogonal to
these advances, we have been witnessing another line of research
whose goal is to reduce the precision of each graphics primitive

(a) Floating Point (b) Variable Precision
(32 bits/vertex coordinate) (Average 7.6 bits/vertex coordinate)

Figure 1: Variable Precision Rendering

being rendered. Recently, reduction in precision of the object prop-
erties such as colors [11, 33], normals [7, 34], and vertex coordi-
nates [16, 17] has been successfully attempted. The contribution of
this paper lies in merging these two lines of research for variable-
precision, view-dependent rendering.

Most transformations and lighting for graphics primitives are
currently carried out at full floating-point precision only to be
later converted to fixed-point representation during the rasteriza-
tion phase. An argument can be made that such high accuracy dur-
ing geometry transformation and lighting stage sometimes exceeds
even the display accuracy and thus causes several bits worth of un-
necessary precision computation. We are currently witnessing four
important trends in 3D graphics that have increased the need for
variable-precision rendering:

1. View-dependent Rendering:View-dependent rendering has
already introduced the concept of rendering different regions of a
scene at varying geometric, illumination, and texture detail [14, 18,
32] based on their perceptual significance. A natural extension of
this approach is to render each object at the precision appropriate
for it. Under a perspective projection, objects that are close to the
observer need more bits of precision than objects that are far.

2. Bounded Dynamic Range: Most graphics datasets have
limited dynamic range. For instance, biomolecular datasets such
as protein structures are determined using X-ray crystallography,
NMR experiments, and gel electrophoresis. All of these methods
have their accuracy limitations. Bounded input data accuracy with
limited dynamic range also occurs in volumetric, range, and image-
based datasets. Even in CAD datasets, the accuracy of the model is
often limited by numeric round-off errors during intersection com-
putations and precision limitations of acquisition methods which
are greater than one in a million [21].

3. Processor-Level Support: With rapid growth in the size
of the 3D datasets, geometry processing (transformation and light-
ing) has become a significant computational component of the 3D
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graphics pipeline. To partly alleviate such computations in graph-
ics and image processing, a variety of matrix math extensions to
the CPU instruction sets have emerged: Intel’s Pentium II with
MMX and Pentium III with SSE, AMD’s K6/Athlon with 3DNow!,
and the Motorola PowerPC G4 with AltiVec. All of these in-
struction sets take advantage of SIMD (single-instruction multiple-
data) parallel execution of instructions [12]. For instance, the Intel
MMX [22] allows variable precision integer arithmetic to be im-
plemented in SIMD parallelism where either two32-bit, four 16-
bit or eight8-bit integer values are operated on in parallel. Such
processor-level support for variable-precision arithmetic has en-
abled efficient implementation for variable-precision rendering.

4. Geometry Bandwidth Bottleneck: Increase in the geometric
complexity of the graphics datasets has far outpaced the increase in
the display complexity. This has resulted in a bottleneck in trans-
ferring 3D vertex data from the geometry processor to the graph-
ics processor. More recently, graphics architectures such as the
NVIDIA’s GeForce 2TM and S3’s Savage 2000TM , have emerged
that perform transformation, lighting, and rasterization on the same
chip. This has further shifted the bottleneck in the graphics pipeline
from processing to bandwidth to and from the graphics chip. If the
variable-precision rendering techniques discussed in this paper are
adopted in a graphics API and/or implemented on the chip itself (in
a manner similar to the MMX technology), this could significantly
reduce the bus traffic to the graphics chip and accelerate the trasfor-
mation and lighting stages on the graphics chip beyond the results
reported in this paper.

In this paper we lay down the mathematical groundwork for per-
forming variable-precision geometry transformations and lighting
for 3D graphics. In particular, we explore the relationship between
the distance of a given sample from the viewpoint, its location in
the view-frustum, to the required accuracy with which it needs to be
transformed and lighted to yield a given screen-space error bound.
The main contributions of this paper are:

1. We show how variable-precision transformations and lighting
(at arbitrary precisions, not just32 and16 bits) can speed up
general 3D transformations, parallel and perspective, and re-
sult in more efficient lighting.

2. We present a careful error analysis to relate the number of bits
of input precision required for a given display accuracy.

3. We study how variable-precision operations can be used with
spatial and temporal coherences.

2 Previous and Related Work

In computational geometry and solid modeling, research has been
done on performing robust geometric operations. Exact rational
arithmetic (i.e. in homogeneous coordinates) has been found to ad-
dress several shortcomings of the conventional floating-point arith-
metic [13]. However, successive geometric operations can result
in an unbounded growth in the precision required to accurately
compute the result. One way to limit the growth of the required
precision is to intersperse rounding between arithmetic operations.
Rounding-off vertex coordinates (or even line and plane coeffi-
cients [13, 28]) is reasonably well-understood now. However, such
rounding is much more difficult if it must preserve some com-
binatorial or topological structure amongst the primitives (in/out,
above/below, clockwise/counterclockwise orientation etc.). Several
sophisticated approaches have been proposed that perform round-
ing and preserve some of these relationships by adding some extra
points [8] or re-adjusting the rounded-off numbers to approximately
maintain the relationships [19]. In a number of cases, such results

are used only to establish topological relationships amongst primi-
tives. This can be efficiently done by using sufficiently accurate (as
opposed to exact) arithmetic [3, 9, 15].

Most of the research in graphics dealing with limiting the preci-
sion of vertex coordinates has focused on rounding-off the vertex
coordinates (perhaps with attributes) independently of the topolog-
ical structure defined by the vertices. Thus, with such approaches
it is possible that the lower-precision models suffer from artifacts
such as self-intersection and false incidences, even if the original
higher-precision models did not. In practice, such artifacts have not
been observed frequently enough yet, to convince most graphics
practitioners to adopt the more time-consuming algorithms to pre-
serve the topological structures. In this paper, we continue this line
of thinking and quantize the vertex coordinates independently of the
underlying topological constraints. Deering [7] has demonstrated
that quantizing the normals down to12 bits (i.e. only4K unique
normals) and vertex coordinates to24 bits results in only minimal
degradation in the rendered image quality. Reducing the precision
of the vertex coordinates is implicit in the work of Rossignac and
Borrel [27] and more recently, Luebke and Erikson [18]. The fo-
cus there is on reducing the geometric complexity of the high detail
models. Consequently, even though the resulting vertex coordinates
are effectively quantized on a grid and octree respectively, the re-
duced precision has not been taken advantage of during transforma-
tion and rendering.

Within the area of compression of 3D models, a lot of atten-
tion has been given to reducing the number of bits to represent
vertex coordinates. Most approaches have used multi-stage quanti-
zation with Huffman encoding of delta-differences between succes-
sive vertices [2, 4, 7, 17, 29, 30]. Recently, progressive compression
and transmission has been actively exploited [1, 6, 20, 21, 29]. Us-
ing the techniques of geometry prediction and progressive mesh en-
coding [1], combined with batch processing [6, 20] and entropy en-
coding [21], compression ratios for progressive compression have
started approaching those for single resolution compression. King
and Rossignac [16] have further balanced the reduction of the num-
ber of vertices and the reduction of bits per vertex coordinate using
a shape complexity measure. For a nice survey of 3D geometry
compression the interested reader may refer [2, 26]. Thus far, the
reduced number of bits for representing vertex coordinates have not
been used for speeding-up the rendering.

Researchers at Intel [22] have shown how to use the MMXTM

instruction-set to perform vector-matrix multiplies in short (16-bit)
precision to speed-up the parallel projection. Specifically, they
show how to perform four16-bit operations in parallel.

3 Precision and Complexity

Let us first note the difference between multi-resolution and
variable-precision rendering for 3D graphics models. Multi-
resolution hierarchies have traditionally involved modeling each
object at multiple levels of detail, where the detail is usually mea-
sured in the number of geometric primitives required for representa-
tion. Thus, a high-detail triangle-mesh object will require a higher
number of vertices, edges, and triangles for representation. This
complexity is largely independent of the precision at which each
vertex is being represented. As can be seen in Figure 2(b), a mul-
tiresolution technique can be used to identify howmanyprimitives
are necessary for a faithful representation of a given object with a
given set of viewing and lighting parameters. A variable-precision
technique provides bounds on the bits ofaccuracyper primitive
that are required for high-fidelity rendering. This can be seen in
Figure 2(c) where the points selected to represent the circle all fall
on the quantization grid. Thus, the two techniques are orthogonal
to each other and depending on the application requirements for
accuracy and speed can be used in a complementary manner.
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(a) (b) (c)

Figure 2: Varying Complexity versus Varying Precision

In the following analysis of different kinds of errors in geomet-
ric transformations, we shall assume that a minimum-sized cube
has been constructed to cover the whole object using an algorithm
similar to [10] and each axis has been normalized to the range of
[�1:0; 1:0]. Thus the operandsa andb aren-bit fixed-point rep-
resentations of floating-point quantities within[�1:0; 1:0]. Addi-
tionally, we assume that we computed then-bit fixed-point rep-
resentation from such normalized floating-point representation by
multiplying by 2n�1 and rounding to the nearest integer. Also, we
would like to point out that this paper performs a worst-case analy-
sis to guide the selection of appropriate precision. A good reference
for sources and propagation of numerical errors is [24].

3.1 Representation Error

Often input data has uncertainty. A recent standards report from
NIST outlines several types of uncertainty [31]. These include sta-
tistical (e.g., confidence intervals with mean and variance) and er-
ror (differences among estimates of the data from multiple sources
and/or multiple time instants) uncertainties. Such uncertainties of-
ten limit the data acquisition precision. Other sources of error in the
input data include approximations in the abstractions from which
data is derived, numerical errors in computing the data using lim-
ited precision arithmetic, as well as instabilities in the mathemati-
cal models (as in ill-conditioned systems). Such errors often limit
the number of bits of precision in the input dataset. For an-bit
fixed-point representation derived by rounding from a normalized
floating-point representation, the representation error is at most half
bit: "rep � 1

2

3.2 Addition Error

For adding twon-bit integers, the error arises from the propagated
error from the representation." = "

gen + "
prop = "

prop � 1
2
+

1
2

= 1: So we will lose at most one bit of accuracy due to each
addition.

3.3 Multiplication Error

We shall use2n bits to store the intermediate result of multipli-
cation of twon-bit integers. Since each normalized floating-point
operand was magnified by a factor of2n�1 during conversion to
fixed-point before multiplication, we need to take out that extra
2n�1 factor by right shifting the intermediate resultn � 1 bits.
Then-bit final result thus obtained has the largest error when both
multiplier and multiplicand are close to2n�1 and the absolute rep-

resentation error is1
2
: " �

1

2
�2n�1+ 1

2
�2n�1

2n�1
= 1. Thus, we lose

one bit of accuracy due to each multiplication.

3.4 Division Error

Per-vertex division happens during the transformation from homo-
geneous coordinate to 3D image-space coordinates. The propagated

error due to the division is:

"
prop

= " a
b

prop
=

����@(ab )@a

���� "a + ����@(ab )@b

���� "b = "a

b
+

a

b2
"b

Here,"a and"b are the representation errors ina andb and are each
at most1

2
. For vertex within the view volume, we havea � b. Also,

the generated error due to truncation is1. Thus:

" = "
gen

+ "
prop

= 1 +
1
2

b
+
a� 1

2

(b)2
� 1 +

1

b

Since in viewing transformations, the divisorb is the distance of
a scene vertex to eye in normalized view-volume representation
(where the distance of the farthest point is1:0),

" � 1 +
distance of far plane in view-volume from eye

distance of scene vertex from eye

So the loss of number of bits accuracy is�
log2(1 +

distance of far plane from eye
distance of scene vertex to eye

)

�

3.5 Putting it all together

For a 1024 � 1024 window, with pixel level accuracy, we need
10 bits in eachx and y to represent the position of a vertex on
the screen. Transformation of a vertex in homogeneous coordinates
with a4�4 matrix requires four multiplications and three additions
for each coordinate. The height of this operation tree is three (leaves
at level3 have four multiplies, level2 has two additions, and the
root at level1 has the final addition). Thus, we will lose3 bits
of accuracy in this matrix-vector multiplication. To getn bits of
accuracy after transformation and homogeneous division, we need
m bits to represent the input data:

m = n+ 3 +

�
log2(1 +

distance of far plane from eye
distance of scene vertex to eye

)

�
Thus, if the display window is1024 � 1024, n = 10 for pixel
level accuracy; and if the distance of the point being rendered is
half way across the view-volume, we shall need15 bits to represent
the vertex data:m = 10 + 3 + dlog2(1 + 2)e = 15. This can be
used to compute the requisite number of bits of precision required
for each vertex based on its distance from the eye and forms the
basis of view-dependent precision-based rendering.

For applications which require sub-pixel accuracy, we can in-
crease the window resolution in the above formula. For example,
if the application needs four bits of sub-pixel accuracy along each
dimension, then we add four more bits to the requirements, which
in the above example will result in a requirement of19 bits of ac-
curacy per input vertex coordinate for a1024 � 1024 window.

4 View-dependent Transformation

The formula from the last section gives the upper bound on the
number of bits needed to transform the vertices in order to getn bits
of accuracy. In reality, if the object projects to the screen in an area
that is small compared to the screen size, we may need less thann

bits to get window-resolution-level accuracy. For view-dependent
transformation, we have to find out the number of bits needed for
vertices at different locations.
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4.1 Octree-based Bounding Volume Hierarchy

To take advantage of the view-dependent information, we need an
efficient way to estimate the projected size of different parts of an
object. An octree bounding volume hierarchy is easy to build and
very efficient to get the bounding volume of the projected vertices.

The idea is to find the minimum and maximum number of bits re-
quired for each bounding box using equations in the following sub-
sections. If the two numbers are equal, then all vertices within this
box will need the same number of bits during the transformation.
Otherwise, vertices in this bounding box need different number of
bits, and we should recurse to the lower levels of the octree hier-
archy. In our implementation, we have used the normalized object
coordinates, i.e., allx, y, andz coordinates lie within[�1:0;+1:0].

4.2 Projected Size of the Dataset

For each view point, we calculate the projection of the eight corner
points of the root level bounding box. From these projected points,
we can find out the size of the object on the screen. The corner
points are transformed into parallel-projection canonical viewing
volume. The whole viewport will map into [�1:0;+1:0] in both x
and y direction of this viewing volume, so the relative size of the
projected object to screen is just half the range of these projected
corner points. During the calculation, we store the transformed
minimum and maximumW value (i.e., minimum and maximum
depth,Wmin andWmax) of these eight points for later usage. The
distance from the nearest visible scene vertex to view point is just
the bigger one ofWmin and near clipping plane.

4.3 Nearest Visible Vertex Accuracy

Given the width and height of the screen in number of pixels, the
number of bits for pixel-level accuracy is (if sub-pixel accuracy is
desired, just add those in):

n = screen bits = max(dlog2 widthe ; dlog2 heighte)

From last subsection, we know the ratio of the projected object size
to the screen size is the projected range divided by 2, so the bits
needed to represent the object will be

���log2( projected range
2

)
��� bits less

thanscreen bits.
Taking into account the computation error due to the multipli-

cation, addition, and division as mentioned in the last section, the
number of bits needed for the nearest visible scene vertex is:

near bits = n+ 3�
�����log2(projected range

2
)

�����+�
log2(1 +

distance of far plane from eye
distance of nearest vertex to eye

)

�

(a) Need 3 bits inx andy (b) Need 2 bits (and 1 bit of offset)

Figure 3: Object of Smaller Projected Size needs Less Precision

As shown in Figure 3, the smaller object in (b) only occupies less
than half of the screen in each dimension, so it will need one bit less
than the bigger object in (a). The extra screen offset will be added
in the final viewport transformation step.

4.4 Accuracy to Represent Each Vertex

Due to the perspective foreshortening, an object appears smaller as
its distance to the viewpoint increases. As an example, an object
at twice the distance will have half the size on the screen, and thus
needs one less bit to represent.

Generally, given thenear bits as defined before, we try to find
the number of bits for any other vertex. After the transformedW

value (i.e., depth) is known, we calculate the vertexbits as:

vertex bits = near bits��
log2(

transformedW of this vertex
distance of nearest vertex to eye

)

�
It will be expensive if we need to do this calculation for each vertex.
Fortunately, with the bounding box hierarchy, very few calculations
need to be done.

Starting from the top of the hierarchy, we calculate the minimum
and maximum transformedW value for that node. First we cal-
culate the transformedW value of the center of the node (denoted
asW 0

center), then we check the eight corner points of the node to
figure out the minimum and the maximum. As we already have
theWmin andWmax of the corner points at the root level, for the
subtree at levelk:

W
0
min = W

0
center +

Wmin

2k
and W

0
max = W

0
center +

Wmax

2k

where the denominator is due to the fact that the node size is re-
duced by a factor of two when we go down one level in the octree.

Using the above two equations, we can find out the minimum and
the maximum number of bits needed for vertices within the box:

Vmin = near bits�
�
log2(

W
0
max

distance of nearest vertex to eye
)

�

Vmax = near bits�
�
log2(

W
0
min

distance of nearest vertex to eye
)

�
If these two numbers are equal, then we know that all the vertices
within the box will need these number of bits to represent. Other-
wise, vertices in the box require different numbers of bits and we
need to recurse down one more level of the octree.

5 Spatio-Temporal Coherence

In the last two sections we have seen the relationship between the
input bits of accuracy and the bits of accuracy required for the out-
put. For the same number of bits of accuracy for the output, we can
further reduce the bits of accuracy required in the input by taking
advantage of spatial and temporal coherence. This can result in fur-
ther savings in processing time as well as in the bandwidth to the
graphics processor.

5.1 Spatial Coherence

The basic idea that we use to take advantage of the spatial coherence
is that the difference in spatially close vertices can usually be repre-
sented in far fewer bits than those required to represent each vertex
coordinate in its entirety. This idea has been used with great suc-
cess in the research on 3D compression of geometry as discussed in
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Section 2. If a vertex coordinatex0 can be represented by a delta-
difference with respect to another coordinatex asx0 = x + �x

then one can decompose the transformation for coordinatex
0 as:

Mx
0 = M(x+�x) = Mx+M�x

Since the number of bits of accuracy required to transform�x

is much smaller, one can perform several of them in parallel. To
exploit this idea, we can partition the dataset by any spatial sub-
division scheme such as an octree over the vertices of the model.
In our implementation we have used an octree that subdivides by
the volume centroid at each level. In this scheme, since each level
reduces the range by half, the vertices in each lower level require
one bit less than their parents. The accuracy of the transformation
of a vertex coordinate with a matrix is represented by the lower of
the two accuracies. Thus if the vertex coordinates can be quantized
in less bits, the transformation matrix values can also be quantized
with less number of bits.

In this approach we independently transform the delta difference
in the vertex coordinate position between the current level of the
octree and its parent. Then we can get the final transformed results
for each vertex by a top-down tree traversal as the following:
(LIMIT is the lowest level of tree below which the difference
between the transformed parent and children is negligible)

Top-Down-Tree-Traversal(x)

if x 6= NULL

if x:level � LIMIT

x:value = x:parent:value+ x:transform

for i from 1 to 8

Top-Down-Tree-Traversal(x:child(i))

else

x:value = x:parent:value

for i from 1 to 8

Top-Down-Tree-Traversal(x:child(i))

As an example, if we could operate on byte and short precision
operands and we required16 bits of accuracy, then we could trans-
form the top eight levels of the octree in short-precision and the
lower levels could be transformed in byte-precision (or even lesser,
if available). By using such hierarchical schemes, one can get a
better precision efficiency without losing accuracy. Figure 4 com-
pares the results of bunny model using floating point and variable-
precision transformation.

(a) Floating Point (b) Variable Precision
Transform Transform

(32 bits/vertex coordinate) (Average 7.9 bits/vertex coordinate)

Figure 4: Variable-Precision Transformation of Bunny Model
(Stanford model, 69K triangles; lighting for both images has been
calculated in floating point)

5.2 Temporal Coherence

Similar to the idea of spatial coherence, we can take advantage
of temporal coherence by noting that the difference in the trans-
formed vertex positions does not differ significantly from one frame
to the next. Thus if we calculate the difference in the trans-
formation matrix from one frame to the next and use the differ-
ence matrix�M to transform a vertex, we can then add it to
the previously transformed vertex position in less number of bits:
M

0
x = (M+�M)x = Mx+�Mx. Extending this idea further,

we note that one can combine the spatial and temporal coherences:
M

0
x
0 = (M+�M)(x+�x) = Mx+�Mx+M�x+�M�x

As we show in Tables 2 and 3 for the Auxiliary Machine Room
dataset, the average number of bits that are operated upon for each
vertex as well as the equivalent number of operations can both be
greatly reduced by taking advantage of both spatial and temporal
coherences.

6 Variable-Precision Lighting

Color is usually represented by8-bits of precision in red, green, and
blue components and sometimes even less (for instance in lower-
range graphics cards and Personal Digital Assistants). Also, if
depth cueing is turned on and the far objects are displayed at lower
intensities, their color can be represented using fewer bits.

Figure 5: Lighting Calculation

Before we go to the detailed treatment of the variable-precision
lighting, let us review the formula for the lighting calculation we
have used. Although there are good psychophysically-based light
reflection models [23], we decided to implement the OpenGL illu-
mination model. As in OpenGL, we assumed diffuse and Phong
illumination with Gouraud shading without per-pixel normal eval-
uation:

Color = emissionmaterial+ ambientlight model� ambientmaterial+

+

m�1X
i=0

(
1

kc + kld+ kqd
2
)i � (spotlight effect)i �

(Cambient+Cdiffuse+Cspecular)i

wherem is the number of light sources,( 1

kc+kld+kqd
2 ) gives the

attenuation factor in whichd is the distance between the vertex
and the local light source.Cambient = ambientlight�ambientmaterial;

Cdiffuse = (max f�!L � �!N; 0g)�diffuselight�diffusematerial and

Cspecular= (max f�!s ��!N; 0g)shin�specularlight�specularmaterial.
�!
L is

the unit vector that points from the vertex to the light position,
�!
N is

the unit normal vector at the vertex,�!s is the normalized half way
vector between the directions of the light source and the viewer, and
shinis the shininess, i.e., the specular exponent. Our goal here is to
find the necessary number of bits to represent the input illumination
data in order to get the required accuracy in output color.
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6.1 Sources of Error in Local Illumination

There are several additional sources of error in local illumination
computation beyond the sources of error we have already discussed
in the transformation stage (representation error, addition error,
multiplication error, and division error). In lighting computations
we have to deal with addition and multiplication errors for operands
with different bits of accuracy, the square root operation error which
results from vector normalization, and the error induced by expo-
nentiation in specular illumination. Also, the special case of dot
product of two unit vectors is worthy of separate analysis.

To reduce the error propagation, we can multiply the light co-
efficient with the object material property coefficient in floating-
point form before converting to then bits fixed-point represen-
tation. For example, instead of convertingambientlight model and
ambientmaterial to n bits of integer, we multiply them in floating-
point representation and then convert the result ton bits of integer.
This way, we can save one bit of accuracy which will be lost due to
the multiplication of twon-bit integers. We next consider the other
sources of error in the following subsections.

6.1.1 Error for Operands with Different Accuracy

Let us consider two operands with different bits of accuracy, sayn

andn0 wheren0 < n. This means that if the maximum possible
value is 1, then the representation errors are2�(n+1) and2�(n

0+1),
respectively. For addition, the error" can be computed as:

" � 2
�(n+1)

+ 2
�(n0+1)

= 2
�(n0+1)

(1 + 2
�(n�n0)

)

As an example, ifn � n
0 = 2, then: " � 2�(n

0+1)(1 + 1
4
). The

error will stay at(n0 + 1)th bit, and the result will getn0 bits of
accuracy, i.e., the same accuracy as the less accurate operand.

Similarly, for multiplication of operands withn andn0 (n0 < n)
accuracy, the maximum possible error happens when the operands
are close to the maximum possible value which we treat as1, as we
discussed in last section:

" � 2
�(n+1) � 1 + 2

�(n0+1) � 1 = 2
�(n0+1)

(1 + 2
�(n�n0)

)

Again, the result has the same accuracy as the less accurate operand.

6.1.2 Error in the Dot Product of Unit Vectors

Let us consider two unit vectors, say�!� and
�!
� , with n bits of

accuracy in each of their three components:

�!
� = (�1; �2; �3) and

�!
� = (�1; �2; �3)

Since the error in the three components"�i and"�i (i = 1; 2; 3)
is in the(n + 1)th bit, i.e.,2�(n+1), their dot product error is:

"
(�!� �

�!
� )

=

3X
i=1

(�i"�i + �i"�i) � 2
�(n+1)

(

3X
i=1

�i +

3X
i=1

�i)

For unit vector�!� , we have:�21 + �
2
2 + �

2
3 = 1 .

From the inequality:a2 + b
2 � 2ab, we get:

(�1 + �2 + �3)
2 � 3(�

2
1 + �

2
2 + �

2
3) = 3

So we have(�1 + �2 + �3) �
p
3. Similarly, we have(�1 +

�2 + �3) �
p
3. Then:

"
(�!� �

�!
� )
� 2

�(n+1)
(

3X
i=1

�i +

3X
i=1

�i) �
p
3 � 2�n

That means, we will lose one to two bits of accuracy for dot product
of two unit vectors.

6.1.3 Error in the Square Root Operation

For lighting calculations we need to normalize the vectors to unit
length before we compute the dot product. Normalization involves
division by the magnitude of the vector which requires a square
root operation. In order to perform all the operations in the fixed-
point arithmetic, we use a a table lookup to get the square root of
an unsigned integer.

For an unsigned integerX with 2n bits of accuracy we take the
most significantn bits (sayX 0) as the lookup index into the square-
root table to find the square root.

X
0
= (X >> n) << n

The maximum possible error ofX 0 relative toX is 2n (because
the information in the lowern bits is lost). We can reduce this error
by half though. If the value of thenth bit of X is one, we can add
one toX >> n, so that it becomes a kind of rounding error instead
of trunction error.

Next, we use the square-root table to find the square-root ofX
0.

Let this bea0 in integer representation:X 0 = a
02. Suppose the

square root ofX in integer representation isa : X = a
2. Let

a
0 = a+ "a ("a is the error), then:

a
02 = (a+ "a)

2 = a
2 + 2a"a + ("a)

2 = X
0

That is,2a"a + ("a)
2 = X

0 �X � 2n�1.
If X > 22n�2, thena > 2n�1, thus:

2a"a < 2a"a + ("a)
2 � 2n�1 and"a < 2n�1

2a
<

2n�1

2�2n�1
<

1
2

Which means that if we use the most significantn bits of the
unsigned integer as index into the square root table then as long as
the integer is bigger than22n�2, the result hasn bits of accuracy.

6.1.4 Error in the Evaluation of Specular Exponentiation

To calculate the specular component of illumination, we have to
compute the exponent of the dot product of half-way vector with
the normal vector. Due to the fact that the dot producta of two unit
vectors is always smaller or equal to1 and that we are only dealing
with positive values of the dot product, we use2m to represent the
largest value1. The maximum possible representation error will be
1
2
, i.e.,2�(m+1) relative to1.
If "a is the error in the valuea of the dot product, then:

(a+ "a)
n �= a

n
+ na"a (if "a << a)

The maximum absolute error happens whena = 1, "a =

2�(m+1), andn is the maximum value of 128: (as implemented
by OpenGL)

na"a < 128 � 2�(m+1)
< 2�(m�6)

So we will havem � 6 bits accuracy in the result, i.e., we will
lose 6 bits accuracy due to this exponentiation.

6.1.5 Putting it all together

From the above analysis, we can get an equation which relates the
input data accuracy with the output color accuracy. Assume the
output color needsn bits accuracy per R, G, and B, which requires
m bits of accuracy in the input data. We next relaten andm.

First, the normalization of each vector will lose 1 bit. As shown
before, the square root will have nearly the same accuracy as the
input data. To avoid the loss of accuracy due to division, instead of
storing the square root, we store the reciprocal of the square root in
the lookup table. This reciprocal is calculated in the floating-point
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representation before converting it to then bits fixed-point repre-
sentation. Thus the only error induced in the normalization will be
in the final multiplication which is a loss of one bit of accuracy.

The dot product of two unit vectors will lose one to two bits
of accuracy. Since the exponentiation will lose six bits, the term
(max f�!s � �!N; 0g)shin will lose 1 + (1 to 2) + 6 = 8 to 9 bits of
accuracy. So the above term have betweenm � 8 andm � 9 bits
of accuracy. Further, the termCspecularwill have the same accuracy
because specularlight�specularmaterial will have m bits of accuracy,

which is much higher than the accuracy of(max f�!s � �!N; 0g)shin.
Similarly, the termCdiffuse will get betweenm � 2 andm � 3

bits of accuracy. And we know the termCambientwill havem bits of
accuracy as explained in the overview.

Overall, (Cambient+ Cdiffuse + Cspecular) will have the accuracy
as the lowest accurate termCspecular, i.e.,m � 8 or m � 9 bits of
accuracy.

Since the attenuation and the spotlight terms can all be evaluated
with more thanm� 8 bits of accuracy, the required color accuracy
bits of the entire illumination equation can be expressed as:

n = m� 8 orm� 9

For example, ifn = 8 , i.e., eight bits per R, G, and B, then the
required accuracy for the input data will ben+ 8 or n+9, i.e., we
will need 16 or 17 bits to represent the input data to get the desired
accuracy of 8 bits per color component.

6.2 View-dependent Variable-Precision Lighting

Similar to the case of transformation in Section 5, we can take ad-
vantage of the spatial coherence of the adjacent vertices in lighting
calculations.The basic idea is that the viewing and lighting direc-
tions do not vary much for the spatially close vertices. Once we
find those directions for one vertex, we can calculate the directions
for the nearby vertices incrementally, i.e., calculate the difference
in far fewer number of bits. The direction difference between the
nearby vertices depend not only on the absolute spatial difference
of the vertices, but also on their distances from the viewer and light
source to the vertices. Once the viewer moves closer to the ver-
tex and below a threshold (which we will describe below) we will
switch back to the original case, i.e., treat that particular vertex in-
dependently of its adjacent vertices.

Figure 6: Incremental Lighting Calculation

In Figure 6 we show how to compute the lighting incrementally.
Let

�!
L1 be the light vector for vertex v1 for which we have already

calculated the illumination. Now we would like to find out the light
vector

�!
L2 for its adjacent vertex v2. The displacement vector

�!
V

between v1 and v2 is normalized by the distance between the v1

and the light source, i.e., its length is equal to the real distance be-
tween v1 and v2 divided by the distance between the v1 and the
light source.1 Both

�!
L1 and

�!
L2 are unit vectors.

One way to accurately compute
�!
L2 is to normalize the sum of

�!
L1

and the vector between v1 and v2. This approach requires roughly

1Note that this assumption is not shown in Figure 6, where
�!

V is shown
to have its length as the distance between v1 and v2.

the same amount of computation as to compute the
�!
L2 directly from

the vector between v2 and the light source. To reduce the computa-
tion, we instead use

�!
L’2 (equal to (

�!
L1 +

�!
V?)) as the approximation

of
�!
L2 if it satisfies our accuracy requirements.

�!
V? is the compo-

nent vector of
�!
V on the perpendicular direction of

�!
L1, which can

be easily computed:
�!
V? =

�!
V ��!L1(

�!
V � �!L1). Using this approach,

the induced error"�!
L2

is equal to
�!
L’2 �

�!
L2.

If the length of
�!
V ,




�!V 


, is much smaller than 1 (the length of
�!
L1 and

�!
L2), then we have:


�!L’ 2




 =

r


�!L1




2 + 


�!V?


2 =

r
1 +




�!V?


2
� 1 +




�!V?


2
2

� 1 +




�!V 


2
2

Let the angle between
�!
L1 and

�!
L2 be�, between

�!
L2 and

�!
L’2 be��,

and
�!
Vk be the component vector of

�!
V along the direction of

�!
L1:

� = arctan(




�!V?





�!L1




+



�!Vk


) = arctan(




�!V?



1 +




�!Vk


 )

(�+��) = arctan(




�!V?





�!L1




 ) = arctan(



�!V?


)

So �� = arctan(



�!V?


)� arctan(




�!V?



1 +




�!Vk


 )
�




�!V?


 (1� 1

1 +



�!Vk
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�!V?


 


�!Vk



1 +




�!Vk



<




�!V?





�!Vk


 � 1

2




�!V 


2
The last inequality is because




�!V?


 =



�!V 


 sin � and




�!Vk


 =


�!V 


 cos �, andsin � cos � = 1
2
sin(2�) � 1

2
. Thus if the distance

between v1 and v2 is much less than the distance between v1 and
the light source, then




�!L’2



 � 1 =




�!L2




 and�� << 1, therefore


"�!
L2




 � 2



�!L2




 tan(��

2
) � �� � 1

2




�!V 


2
This means, the error of using

�!
L’ 2 as an approximation of

�!
L2 is

less than1
2




�!V 


2. If we want 15 bits of accuracy in
�!
L2; we only

need



�!V 


 � 2�7, i.e., the distance between v1 to the light source

should be27 = 128 times larger than the distance between v1 and
its addjacent vertex v2. This way we only use the local spatial dif-
ferences in calculating the new direction and avoid an expensive
vector normalization operation.

7 Some Implementation Details

In addition to what we have already described in the previous sec-
tions, there are some other implementation details which are worth
mentioning.
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Model Bunny DHFR Dragon Venus AMR Buddha
Size (triangles) 69K 145K 202K 268K 376K 1087K

Transform 61 130 185 230 330 968
Floating Lighting 469 1042 1374 1830 2503 7481

Point Other 56 108 167 218 298 902
Total 586 1280 1726 2278 3131 9351

Transform 17 33 46 59 83 235
Variable Lighting 79 155 212 280 337 882
Precision Other 42 87 127 160 212 616

Total 138 275 385 499 632 1733
Speedup 4.25 4.65 4.48 4.57 4.96 5.40

erms (object space) 1.3e-4 1.3e-4 1.2e-4 1.2e-4 1.1e-4 1.2e-4
Max error (obj. space) 3.0e-4 3.1e-4 3.0e-4 2.9e-4 2.6e-4 3.1e-4
erms (image space) 8.5e-3 8.8e-3 8.7e-3 6.0e-3 8.4e-3 7.0e-3

Table 1: Results from Rendering at Varying Precisions

7.1 Batched Transformation and Lighting

Most graphics APIs (OpenGL, Direct3D, Glide) allow the user to
transform and light the triangles one at a time and send the trans-
formed and lighted triangles in floating-point screen coordinates to
the rasterizer. Since these APIs do not accept screen-space triangles
in the fixed-point representation, we had to convert our fixed-point
results to floating-point representation before asking the graphics
API to rasterize the triangles. In MMX technology, this means that
we need to reset the register flag back and forth when we switch
from the integer operation to floating point because these two share
the same registers. The frequent resetting costs time, so the intuitive
solution is to minimize the number of resets, e.g., transform and
light the whole dataset first in object space, then do the viewport
transform and then send to the rasterizer. There are two problems
with this approach. First we lose some opportunities of pipelining
which the hardware is very smart at. Second, there are lots of extra
memory accesses due to the write-back, so this does not work well.

To solve this problem, we make a tradeoff. Instead of transform-
ing and lighting the triangle one by one or all at the same time, we
do them batch by batch. The resetting of the flag only happens be-
tween batches and we avoid the extra memory accesses. In practice,
we find batch size of several hundred triangles works gracefully. If
the graphics APIs accepted screen-space fixed-point representation
triangles, we would not have to deal with this and our results would
have been better than reported here since switching from fixed-point
to floating-point is expensive even when we do them in batches.

7.2 Full-precision Matrix Calculation

At each view point we first calculate the transformation matrix and
then apply it to all the vertices in the dataset. The initial matrix
calculation is a negligible fraction of the overall computation which
includes transformation of hundreds of thousands of vertices. So
we compute it in full precision floating point before converting it
into the fixed-point representation. This way, we save the precision
of the matrix elements, and avoid the possibility of error build up
when we take advantage of the temporal coherence of the frames
in transformation because the matrix is computed in full precision
separately for each frame.

8 Results

We have tested our approach on polygonal datasets from several ap-
plication domains including laser-scanned, mechanical CAD, and
procedurally generated datasets. The results of our approach are
summarized in Tables 1, 2, 3 and appear in Figures 1, 4, 7–14.

We obtained the results shown in the paper and the video on a
Pentium II 400MHz PC with 128MB RAM and a Voodoo3 3500

(a) Floating Point (b) Variable-Precision
Lighting Lighting (Speedup: 2.99)

Figure 7: Variable-Precision Lighting of Bunny Model
(Transformations have been calculated in floating-point)

graphics card. Table 1 compares the results using variable preci-
sion with the one using traditional single-precision floating point
and times are reported in milliseconds. The variable precision ren-
dering showing here is under the requirements of guaranteed pixel-
level position accuracy and eight bits per R, G, and B color. The
object space root-mean-square error and maximum error are mea-
sured in transformed object space as the distance between the single
precision floating point transformed vertices and variable precision
transformed ones, while the image space root-mean-square error is
measured in the final image space as the difference between the R,
G, B color components. The formula for image space root-mean-
square error is the following:

erms =

"
1

MN

M�1X
x=0

N�1X
y=0

h bf(x; y)� f(x; y)
i2#1=2

Wheref(x; y) represents the original image,bf(x; y) denotes an
estimate of the image, andM �N is the image size.

From Table 1, we can see that under the pixel-level accuracy, the
maximum transformed distance between the two methods is less
than 0.00033 for all the six datasets tested . We know the normal-
ized transformed object space is in the range [-1.0, +1.0], so the
difference is less than six-thousandth of the total range. This shows
robustness of our method. Further, instead of getting pixel-level
accuracy, our method actually gave us 2 to 3 sub-pixel bits of accu-
racy. This is because our error analysis gives the upper bounds of
the error; the real error is usually much less. To roughly compare
how variable precision rendering stacks up against multiresolution
rendering, we compared the object space Hausdorff error in a 16K
triangle model of the Bunny using Metro [5] against a 69K triangle
model of the Bunny using 7.9 bits/vertex coordinate. Although both
give a factor of 4 speedup, the variable precision method has an or-
der of magnitude smaller object space Hausdorff error (0.012% of
the bounding box diagonal) compared with 16K triangle full preci-
sion model (0.12% of the bounding box diagonal).

We can see more than a factor of four speedup in all the datasets
tested. One aspect of our algorithm is that it scales well. The
speedup factor goes up with the increase of scene complexity
(which means more data will be rendered in less precision) and the

Output Conventional Spatial Spatio-Temporal
bits Add Mult Add Mult Add Mult

32 bits 32 32 42.21 31.55 54.08 29.23
16 bits 16 16 12.95 7.77 13.77 4.02
8 bits 8 8 1.35 0.66 0.77 0.08
4 bits 4 4 0.03 0.02 0.01 0.001

Table 2: Average Number of Bits per Vertex Coordinate Oper-
ated upon for Appropriate Output Precision
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Output Conventional Spatial Spatio-Temporal
bits Add Mult Add Mult Add Mult

32 bits 6 8 7.92 7.89 10.14 7.31
16 bits 3 4 2.43 1.94 2.58 1.01
8 bits 1.5 2 0.25 0.17 0.14 0.02
4 bits 0.75 1 0.01 0.004 0.002 0.0002

Table 3: Average number of equivalent 32-bit operations per
vertex coordinate for appropriate output precision

number of light sources. See Figure 8 and Table 1.
Figure 9 shows the histogram of percentage of vertices trans-

formed in different number of bits for AMR dataset, which has a
very low average 4.18 bits/vertex coordinate for variable-precision
transformation, instead of 32 bits/vertex coordinate as in the single-
precision floating point case. Figures 1, 10–14 show the images
rendered by variable precision rendering and compare them with
the single-precision floating point rendering. Even from the closeup
there is hardly any visual distinguishable difference.

Table 2 shows the average number of bits that have to be manipu-
lated per vertex during the transformations while exploiting spatial
and temporal coherences. Since the vertices that are at the lower
levels of the octree require less number of bits for transformation,
the overall average number of bits turns out to be much less. The
leftmost column indicates the number of bits that are required in the
output display.

Table 3 shows the average number of equivalent 32-bit opera-
tions per vertex during the transformations while exploiting spatial
and temporal coherences. Central to this idea is that one 32-bit
operation is equivalent to two 16-bit, four 8-bit, and eight 4-bit op-
erations. Even though SIMD parallelism at the level of 4-bits is not
yet available in the current generation of processors, the table shows
the effectiveness of our scheme if such parallelisms were to become
available in future. As in table 2, the leftmost column indicates the
number of bits that are required in the output display.

9 Conclusions

We have presented a novel approach to take advantage of SIMD
parallelism in modern processors to speedup the transformation and
lighting stages of the graphics pipeline. Our approach can success-
fully trade-off the precision for speed without significantly affecting
the visual quality of the rendered images. In addition, Our approach
is complementary to the conventional multiresolution approaches
that rely on speeding up the rendering by reducing the number of
graphics primitives for display.

In this paper we have mostly dealt with reducing the precision
of all the three coordinatesx, y, andz of the displayed primitives.

Figure 8: Speedup Factor as Function of Number of Light
Sources (Venus Model)

However, a case can be made for not reducing the precision for
the eye-spacez in applications that have a high depth complexity
since it can interfere with the proper execution of the visible-surface
determination stage of the graphics pipeline (e.g., see [25]). This
suggests potential for further work in relating precision in x, y, z
with accurate scan-conversion, extending the precision work in [25]
and in this paper.

Here we have focused on using variable precision for transforma-
tions and lighting. In future, one can carry out a similar analysis to
extend it to texture coordinate computation as well. Also interesting
will be applications of this method to compute the delta-differences
on-the-fly for hardware-supported graphics primitives such as tri-
angle strips that currently only exploit connectivity coherence, but
using ideas in this paper could also benefit from spatial coherence.
We plan to explore these ideas in the future.
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(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (4.2 bits/vertex coordinate) Closeup Closeup

Figure 12: Auxiliary Machine Room (376K triangles) Rendered in Variable Precision

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (7.1 bits/vertex coordinate) Closeup Closeup

Figure 13: Cyberware Venus (268K triangles) Rendered in Variable Precision

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (5.6 bits/vertex coordinate) Closeup Closeup

Figure 14: Buddha Model(1087K triangles) Rendered in Variable Precision


