
Computers & Graphics 31 (2007) 157–174

A fast all nearest neighbor algorithm for applications

involving large point-clouds

Jagan Sankaranarayanan�, Hanan Samet, Amitabh Varshney

Department of Computer Science, Center for Automation Research, Institute for Advanced Computer Studies,

University of Maryland, College Park, MD - 20742, USA

Abstract

Algorithms that use point-cloud models make heavy use of the neighborhoods of the points. These neighborhoods are used to compute

the surface normals for each point, mollification, and noise removal. All of these primitive operations require the seemingly repetitive

process of finding the k nearest neighbors (kNNs) of each point. These algorithms are primarily designed to run in main memory. However,

rapid advances in scanning technologies have made available point-cloud models that are too large to fit in the main memory of a

computer. This calls for more efficient methods of computing the kNNs of a large collection of points many of which are already in close

proximity. A fast kNN algorithm is presented that makes use of the locality of successive points whose k nearest neighbors are sought to

reduce significantly the time needed to compute the neighborhood needed for the primitive operation as well as enable it to operate in an

environment where the data is on disk. Results of experiments demonstrate an order of magnitude improvement in the time to perform the

algorithm and several orders of magnitude improvement in work efficiency when compared with several prominent existing methods.

r 2006 Elsevier Ltd. All rights reserved.

MSC: 68U05

Keywords: Neighbor finding; k Nearest neighbors; kNN Algorithm; All nearest neighbor algorithm; Incremental neighbor finding algorithm; Locality;

Neighborhood; Disk-based data structures; Point-cloud operations; Point-cloud graphics

1. Introduction

In recent years there has been a marked shift from the

use of triangles to the use of points as object modeling

primitives in computer graphics applications (e.g., [1–5]). A

point model (often referred to as a point-cloud) usually

contains millions of points. Improved scanning technolo-

gies [4] have resulted in enabling even larger objects to be

scanned into point-clouds. Note that a point-cloud is

nothing more than a collection of scanned points and may

not even contain any topological information. However,

most of the topological information can be deduced by

applying suitable algorithms on the point-clouds. Some of

the fundamental operations performed on a freshly scanned

point-cloud include the computation of surface normals in

order to be able to illuminate the scanned object, applica-

tions of noise-filters to remove any residual noise from the

scanning process, and tools that change the sampling rate of

the point model to the desired level. What is common to all

three of these operations is that they work by computing the

k nearest neighbors for each point in the point-cloud. There

are two important distinctions from other applications

where the computation of neighbors is required. First of all,

neighbors need to be computed for all points in the data set,

potentially this task can be optimized. Second, no assump-

tion can be made about the size of the data set. In this paper,

we focus on a solution to the k-nearest-neighbor (kNN)

problem, also known as the all-points kNN problem, which

takes a point-cloud data set R as an input and computes the

kNN for each point in R.

ARTICLE IN PRESS

www.elsevier.com/locate/cag

0097-8493/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2006.11.011

�Corresponding author. Tel.: +1301 405 1769; fax: +1 301 314 9115.

E-mail addresses: jagan@cs.umd.edu (J. Sankaranarayanan),

hjs@cs.umd.edu (H. Samet), varshney@cs.umd.edu (A. Varshney).

URLs: http://www.cs.umd.edu/�jagan, http://www.cs.umd.edu/�hjs,

http://www.cs.umd.edu/�varshney.

Best Journal Paper of 2007 Award

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.11.011
mailto:jagan@cs.umd.edu
mailto:varshney@cs.umd.edu
http://www.cs.umd.edu/∼jagan
http://www.cs.umd.edu/∼hjs
http://www.cs.umd.edu/∼hjs
http://www.cs.umd.edu/∼varshney
http://www.cs.umd.edu/∼varshney

We start by comparing and contrasting our work with

the related work of Clarkson [6] and Vaidya [7]. Clarkson

proposed an Oðn log dÞ algorithm for computing the nearest

neighbor to each of n points in a data set S, where d is the

ratio of the diameter of S and the distance between the

closest pair of points in S. Clarkson uses a PR quadtree

(e.g., see [8]) Q on the points in S. The running time of his

algorithm depends on the depth d ¼ d of Q. This

dependence on the depth is removed by Vaidya who

proposed using a hierarchy of boxes, termed a Box tree, to

compute the kNNs to each of the n points in S in

Oðkn log nÞ time. There are two key differences between our

algorithm and those of Clarkson and Vaidya. First of all,

our algorithm can work on most disk-based (out of core)

data structures regardless of whether they are based on a

regular decomposition of the underlying space such as a

quadtree [8] or on object hierarchies such as an R-tree [9].

In contrast to our algorithm, the methods of Clarkson and

Vaidya have only been applied to memory-based (i.e.,

incore) data structures such as the PR quadtree and Box

tree, respectively. Consequently, their approaches are

limited by the amount of physical memory present in the

computer on which they are executed. The second

difference is that it is easy to modify our algorithm to

produce nearest neighbors incrementally, i.e., we are able

to provide a variable number of nearest neighbors to each

point in S depending on a condition, which is specified at

run-time. The incremental behavior has important applica-

tions in computer graphics. For example, the number of

neighbors used in computing the normal to a point in

a point-cloud can be made to depend on the curvature

of a point.

The development of efficient algorithms for finding the

nearest neighbors for a single point or a small collection of

points has been an active area of research [10,11]. The most

prominent neighbor finding algorithms are variants of

depth-first search (DFS) [11] or best-first search (BFS) [10]

methods to compute neighbors. Both algorithms make use

of a search hierarchy which is a spatial data-structure such

as an R-tree [9] or a variant of a quadtree or octree (e.g.,

[8]). The DFS algorithm, also known as branch-and-

bound, traverses the elements of the search hierarchy in a

predefined order and keeps track of the closest objects to

the query point that have been encountered. On the other

hand, the BFS algorithm traverses the elements of the

search hierarchy in an order defined by their distance from

the query point. The BFS algorithm that we use [10], stores

both points and blocks in a priority queue. It retrieves

points in an increasing order of their distance from the

query point. This algorithm is incremental as the number of

nearest neighbors k need not be known in advance.

Successive neighbors are obtained as points are removed

from the priority queue. A brute force method to perform

the kNN algorithm would be to compute the distance

between every pair of points in the data set and then to

choose the top k results for each point. Alternatively, we

also observe that repeated application of a neighbor finding

technique [12] on each point in the data set also amounts to

performing a kNN algorithm. However, like the brute-

force method, such an algorithm performs wasteful

repeated work as points in proximity share neighbors and

ideally it is desirable to avoid recomputing these neighbors.

Some of the work entailed in computing the kNNs can be

reduced by making use of the approximate nearest

neighbors (ANNs) [12]. In this case, the approximation is

achieved by making use of an error-bound � which restricts

the ratio of the distance from the query point q to an

approximate neighbor and the distance to the actual

neighbor to be within 1þ �. When used in the context of

a point-cloud algorithm, this method may lead to

inaccuracies in the final result. In particular, point-cloud

algorithms that determine local surface properties by

analyzing the points in the neighborhood may be sensitive

to such inaccuracies. For example, such problems can arise

in algorithms for computing normals, estimating local

curvature, as well as sampling rate and local point-cloud

operators such as noise-filtering [3,13], mollification and

removal of outliers [14]. In general, the correct computa-

tion of neighbors is important in two main classes of point-

cloud algorithms: algorithms that identify or compute

properties that are common to all of the points in the

neighborhood, and algorithms that study variations of

some of these properties.

An important consideration when dealing with point

models that is often ignored is the size of the point-cloud

data sets. The models are scanned at a high fidelity in order

to create an illusion of a smooth surface. The resultant

point models can be on the order of several millions of

points in size. Existing algorithms such as normal

computation [15] which make use of the suite of algorithms

and data structures in the ANN library [12] are limited by

the amount of physical memory present in the computer on

which they are executed. This is because the ANN library

makes use of in-core data structures such as the k-d tree

[16] and the BBD-tree [17]. As larger objects are being

converted to point models, there is a need to examine

neighborhood finding techniques that work with data that

is out of core and thus out-of-core data structures should

be used. Of course, although the drawback of out-of-core

methods is the incurrence of I=O costs, thereby reducing

their attractiveness for real-time processing, the fact that

most of the techniques that involve point-clouds are

performed offline mitigates this drawback.

There has been a considerable amount of work on

efficient disk-based nearest neighbor finding methods

[10,11,18]. Recently, there has also been some work on

the kNN algorithm [18,19]. In particular, the algorithm by

Böhm [19], termed MuX uses the DFS algorithm to

compute the neighborhoods of one block, say b, at a time

(i.e., it computes the kNNs of all points in b before

proceeding to compute the kNNs in other blocks) by

maintaining and updating a best set of neighbors for each

point in the block as the algorithm progresses. The

rationale is that this will minimize disk I=O as the KNNs

ARTICLE IN PRESS

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174158

Best Journal Paper of 2007 Award

of points in the same block are likely to be in the same set

of blocks. The GORDER method [18] takes a slightly different

approach in that although it was originally designed for

high-dimensional data-points (e.g., similarity retrieval in

image processing applications), it can also be applied to

low-dimensional data sets. In particular, this algorithm first

performs a principal component analysis (PCA) to

determine the first few dominant directions in the data

space and then all of the objects are projected to this

dimensionally reduced space, thereby resulting in drastic

reduction in the dimensionality of the point data set. The

resulting blocks are organized using a regular grid, and, at

this point, a kNN algorithm is performed which is really a

sequential search of the blocks.

Even though both the GORDER [18] and the MuX [19]

methods compute the neighborhood of all points in a block

before proceeding to process points in another block, each

point in the block keeps track of its kNNs encountered thus

far. Thus this work is performed independently and in

isolation by each point with no reuse of neighbors of one

point as neighbors of a point in spatial proximity. Instead,

in our approach we identify a region in space that contains

all of the kNNs of a collection of points (the space is termed

locality). Once the best possible locality is built, each point

searches only the locality for the correct set of k nearest

neighbors. This results in large savings. Also, our method

makes no assumption about the size of the data set or the

sampling-rate of the data. Experiments (Section 6) show

that our algorithm is faster than both the GORDER and the

MuX methods and performs substantially fewer distance

computations.

The rest of the paper is organized as follows. Section 2

defines the concepts that we use and provides a high level

description of our algorithm. Section 3 describes the

locality building process for blocks. Section 4 describes an

incremental variant of our kNN algorithm, while Section 5

describes a non-incremental variant of our kNN algorithm.

Section 6 presents the results of our experiments, while

Section 7 discusses related applications that can benefit

from the use of our algorithm. Finally, concluding remarks

are drawn in Section 8.

2. Preliminaries

In this paper we assume that the data consists of points

in a multi-dimensional space and that they are represented

by a hierarchical spatial data structure. Our algorithm

makes use of a disk-based quadtree variant that recursively

decomposes the underlying space into blocks until the

number of points in a block is less than some bucket

capacity B [8]. In fact, any other hierarchical spatial data

structure could be used including some that are based on

object hierarchies such as the R-tree [9]. The blocks are

represented as nodes in a tree access structure which

enables point query searching in time proportional to the

logarithm of the width of the underlying space. The tree

contains two types of nodes: leaf and non-leaf. Each non-

leaf node has at most 2d non-empty children, where d

corresponds to the dimension of the underlying space. A

child node occupies a region in space that is fully contained

in its parent node. Each leaf node contains a pointer to a

bucket that stores at most B points. The root of the tree is a

special block that corresponds to the entire underlying

space which contains the data set. While the blocks of the

access structure are stored in main-memory, the buckets

that contain the points are stored on disk. In our

implementation, a count is maintained of the number of

points that are contained within the subtree of which the

corresponding block b is the root and a minimum bounding

box of the space occupied by the points that b contains.

We use the Euclidean metric (L2) for computing

distances. It is easy to modify our kNN algorithm to

accommodate other distance metrics. Our implementation

makes extensive use of the two distance estimates MinDist

and MaxDist (Fig. 1). Given two blocks q and s, the

procedure MinDistðq; sÞ computes the minimum possible

distance between a point in q to a point in s. When a list of

blocks is ordered by their MinDist value with respect to a

reference block or a point, the ordering is called a MinDist

ordering. Given two blocks q and s, the procedure

MaxDistðq; sÞ computes the maximum possible distance

between a point in q to a point in s. When a list of blocks is

ordered by their An ordering based on MaxDist is called a

MaxDist ordering. The kNN algorithm identifies the k

nearest neighbors for each point in the data set. We refer to

the set of kNNs of a point p as the neighborhood of p. While

the neighborhood is used in the context of points, locality

defines a neighborhood of blocks. Intuitively, the locality

of a block b is the region in space that contains all the

kNNs of all points in b. We make one other distinction

between the concepts of neighborhood and locality. In

particular, while neighborhoods contain no other points

other than the kNNs locality is more of an approximation

and thus the locality of a block b may contain points that

do not belong to the neighborhood of any of the points

contained within b.

Our algorithm has the following high-level structure. It

first builds the locality for a block and later searches the

locality to construct a neighborhood for each point

contained within the block. The pseudo-code presented in

Algorithm 1 explains the high level workings of the

kNN algorithm. Lines 1–2 compute the locality of the

blocks in the search hierarchy Q on the input point-cloud.

ARTICLE IN PRESS

MINDISTMAXDIST

q

s

Fig. 1. Example illustrating the values of the MinDist and MaxDist

distance estimates for blocks q and b.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 159

Best Journal Paper of 2007 Award

Lines 3–4 build a neighborhood for each point in b using

the locality of b.

Algorithm 1

Procedure kNN½Q; k�
Input: Q is the search hierarchy on the input point-cloud

(� high-level description of kNN algorithm �)

1. for each block b in Q do

2. Build locality S for b in Q

3. for each point p in b do

4. Build neighborhood of p using S and k

5. end-for

6. end-for

7. return

3. Building the locality of a block

As the locality defines a region in space, we need a

measure that defines the extent of the locality. Given

a query block, such a measure would implicitly determine if

a point or a block belongs to the locality. We specify the

extent of a locality by a distance-based measure that we call

PruneDist. All points and blocks whose distance from the

query block is less than PruneDist belong to the locality.

The challenge in building localities is to find a good

estimate for PruneDist. Finding the smallest possible

value of PruneDist requires that we examine every point

which defeats the purpose of our algorithm which is why

we resort to estimating it.

We proceed as follows. Assume that the query block q is

in the vicinity of other blocks of various sizes. We want to

find a set of blocks so that the total number of points that

they contain is at least k, while keeping PruneDist as small

as possible. We do this by processing the blocks in

increasing order of their MaxDist order from q and

adding them to the locality. In particular, we sum the

counts of the number of points in the blocks until the total

number of points in the blocks that have been encountered

exceeds k and record the current value of MaxDist as

the value of PruneDist. At this point, we process the

remaining blocks according to their MinDist order from

q and add them to the locality until encountering a

block b whose MinDist value exceeds PruneDist. All

remaining blocks need not be examined further and are

inserted into list PrunedList. Note that an alternative

approach would be to initially process the blocks in

MinDist order, adding them to the locality, and set

PruneDist be the maximum MaxDist value encountered

so far and halting once the sum of the counts is greater

than k to prune every block whose MinDist value is

greater than PruneDist. This approach does not yield as

tight an estimate for PruneDist as can be seen in the

example in Fig. 2.

The pseudo-code for obtaining the locality of a block is

given in Algorithm 2. The inputs to the BUILDLOCALITY

algorithm are the query block q, a set of blocks Q

corresponding to the partition of the underlying space

into a set of blocks, and the value of k . Using these inputs,

the algorithm computes the locality S of q. The while-

loop in lines 1–7 visits blocks in Q in an increasing

MaxDist ordering from q and adds them to S. The

loop terminates when k or more points have been added

to S, at which point the value of PruneDist is known.

Lines 8–14 of the algorithm now add blocks in Q to S,

whose MinDist to q is lesser than the PruneDist value.

Line 17 returns the locality S of q, a set PrunedList of

blocks in Q that does not belong to S, and the value of

PruneDist.

The mechanics of the algorithm are illustrated in Fig. 3.

The figure shows q in the vicinity of several other blocks.

Each block is labeled with a letter and the number of points

that it contains. For example, suppose that k ¼ 3, and let

Q ¼ {a, b, c, d, e, f, i, j, k, l, m, o, p, q, x, y} be a

decomposition of the underlying space into a set of blocks.

The algorithm first visits blocks in a MaxDist ordering

from q, until 3 points are found. That is, the algorithm

adds blocks x and y to S and PruneDist is set to

MaxDist(q, y). We now choose all blocks whose MinDist

from q is less than PruneDist resulting in blocks

b, e, f, i, d, p, q, k, m, and o being added to S.

ARTICLE IN PRESS

b,20

MINDIST(q,b)

MAXDIST(q,a)

MAXDIST(q,b)

MINDIST(q,a)
q

a,10

Fig. 2. Query block q in the vicinity of two other blocks a and b

containing 10 and 20 points, respectively. When k is 10, choosing a with a

smaller MinDist value does not provide the lowest possible PruneDist

bound.

Fig. 3. Illustration of the workings of the BUILDLOCALITY algorithm. The

labeling scheme assigns each block a label concatenated with the number

of points that it contains. q is the query block. Blocks x and y are selected

based on the value of MaxDist, while blocks b, e, f, i, d, p, q, k, m, and

o are also selected as their MinDist value from q pPruneDist.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174160

Best Journal Paper of 2007 Award

Algorithm 2

Procedure BUILDLOCALITY½q;Q; k�
Input: q is the query block

Input: Q is a set of blocks; decomposition of underlying

space

Output: S set of blocks, initially empty; locality

of q

Output: PrunedList set of blocks, initially empty;

8b 2 Q s.t., beS

Output: PruneDist size of the locality; initially 0

(� COUNT(b) is the number of points contained in

the block b �)

(� integer total k �)

(� block b NULL �)

1. while (total X 0) do

2. b NEXTINMAXDISTORDER(Q, q)

3. (� Remove b from Q �)

4. PruneDist MaxDist(q, b)

5. total total � COUNT(b)

6. INSERT(S, b)

7. end-while

8. while not (ISEMPTY(Q)) do

9. b NEXTINMINDISTORDER(Q, q)

10. (� Remove b from Q �)

11. if (MinDist(q,b) pPruneDist) then

12. INSERT(S, b)

13. else

14. INSERT(PrunedList, b)

15. end-if

16. end-while

17. return (S, PrunedList, PruneDist)

3.1. Optimality of the BUILDLOCALITY algorithm

In this section, we present few interesting properties of

the BUILDLOCALITY algorithm. The discussion below is

based on [20].

Definition 1 (locality). Let Q be a decomposition of the

underlying space into a set of blocks. The locality S of a

point q is defined to be a subset of Q, such that all of the k

nearest neighbors of q are contained in S. The locality S of

a block b is defined to be a subset of Q, such that all the

kNNs of all the points in b are contained in S.

Definition 2. Given a point q, let n
q
i be the ith nearest

neighbor of q at a distance of d
q
i . Let b

q
i be a block in Q

containing n
q
i .

Definition 3 (kNN-hyper-sphere). Given a point q, the

kNN-hyper-sphere HðqÞ of q is a hyper-sphere of radius rq

centered at q, such that HðqÞ completely contains all the

blocks in the set L ¼ fb
q
i ji ¼ 1; . . . ; kg.

Corollary 4. The number of points contained in the kNN-

hyper-sphere HðqÞ of a point q is Xk.

Definition 5 (Optimality). The locality S of a point q is said

to be optimal, if S contains only those blocks that intersect

with HðqÞ.

The rationale behind the definition of optimality is

explained below. Let us assume that an optimal algorithm

to compute the locality of q consults an oracle, which

reveals the identify of the set of blocks L ¼ fb
q
1; b

q
2 . . . bk

qg in

Q containing the k nearest neighbors of a point q (as shown

in Fig. 4). Given such a set L by the oracle, the optimal

algorithm would still need to examine the blocks in the

hyper-region HðqÞ in order to verify that the points in L are

indeed the k closest neighbors of q. We now show that our

algorithm is optimal—that is, in spite of not using an

oracle, the locality of q computed by our algorithm is

always optimal.

Lemma 6. Given a space decomposition Q into set of blocks,

the locality of a point q produced by Algorithm 2 is optimal.

Proof. Algorithm 2 computes the locality S of a point q by

adding blocks from it Q to S in an increasing MaxDist

ordering from q, until S contains at least k points. At this

point, let PruneDist be the maximum value of MaxDist

encountered so far (i.e., to the last block in the MaxDist

ordering that was added to S). Next, the algorithm adds all

blocks whose MinDist value is less than the PruneDist.

We now demonstrate that the locality S is optimal by

showing that a block that does not intersect with the kNN-

hyper-sphere HðqÞ of q cannot belong in S. Suppose that

b 2 S is a block that does not intersect HðqÞ of radius rq,—

that is, by definition

rqo MinDistðq; bÞ p PruneDist. (1)

From Corollary 4, we know that HðqÞ contains at least k

points.

Hence,

PruneDist p rq. (2)

Combining Eqs. (1) and (2), we have

PruneDist p rq o MinDistðq; bÞ p PruneDist,

which is a contradiction.

ARTICLE IN PRESS

Fig. 4. Figure shows the kNN-hyper-sphere HðqÞ of a point q when k ¼ 3.

Note that HðqÞ completely contains the blocks b
q
1, b

q
2 and b

q
3.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 161

Best Journal Paper of 2007 Award

Note however that not all the blocks that intersect with

HðqÞ must be in S, as shown in Fig. 5, where D and E

intersect HðqÞ while not being in S.

We now show that the locality of a block b that is

computed by Algorithm 2 is also optimal.

Definition 7 (kNN-hyper-region). Given a block b, let L

be the subset of blocks in Q such that any block in L con-

tains at least one of the k nearest neighbors of a point in b.

The kNN-hyper-region HðbÞ of b is a hyper-region R,

such that any point contained in R is closer to b than

the block r containing the farthest possible point from b

in L—that is, r is the farthest block in L, if 8bi 2 L,

MaxDistðr; bÞXMaxDistðbi; bÞ. Now, HðbÞ is a hyper-

region R, such that the minimum distance of a point in R to

b is less than or equal to MaxDistðr; bÞ.

Definition 8 (Optimality). The locality S of a block b is

said to be optimal, if S contains only those blocks that

intersect with the kNN-hyper-region of b.

The rationale behind the definition of the optimality of a

block is the same as that for a point. Even if our algorithm

is provided with an oracle, which identifies the subset of

blocks in Q containing at least one of the kNNs of a point

in b, the blocks that intersect with HðbÞ must be examined

in order to prove correctness of the result.

Corollary 9. The number of objects contained in the kNN-

hyper-sphere HðbÞ of a block b is Xk.

Lemma 10. Given a space decomposition Q into set of

blocks, the locality of a block b produced by Algorithm 2 is

optimal.

Proof. Follows from Lemma 6.

Note however, that the algorithm is optimal with respect

to the given space decomposition Q. That is, the

BUILDLOCALITY algorithm will never add a block b to the

locality that cannot contain a nearest neighbor to any point

contained in b, although, depending on the nature of the

decomposition, the size of the locality may be large.

4. Incremental kNN algorithm

We briefly describe the working of a incremental variant

of our kNN algorithm. This algorithm is useful when

variable number of neighbors are required for each point in

the data set. For example, when dealing with certain point-

cloud operations, where the number of neighbors required

for a point p is a function of its local characteristics (e.g.,

curvature), the value of k cannot be pre-determined for all

the points in the data set, i.e., a few points may require

more than k neighbors. The incremental kNN algorithm

given in Algorithm 3 can produce as many neighbors as

required by the point-cloud operation. This is contrast to

the standard implementation of the ANN algorithm [12],

where retrieving the k þ 1th neighbor of p entails

recomputing all of the first k þ 1 neighbors to p.

Algorithm INCkNN computes the nearest neighbors of a

point p incrementally. The inputs to the algorithm are the

point p whose nearest neighbors are being computed, the

leaf block b containing p and the locality S of b. A priority

queue Q in line 1 retrieves elements in increasing MinDist

ordering from p. Initially, the locality S of b is enqueued in

Q in line 2. At each step of the algorithm the top element e

in Q is retrieved. If e is a BLOCK, then e is replaced with its

children blocks (lines 15–16). If e is a point, it is reported

(line 18) and the control of the program returns back to the

user. Additional neighbors of p are retrieved by making

subsequent invocations to the algorithm. Note that S is

guaranteed to only contain the first kNNs of p, after which

the PrunedList of the parent block of b (subsequently, an

ancestor) in the search hierarchy is enqueued into Q, as

shown in lines 6–12.

Algorithm 3

Procedure InckNN[p, b, S]

Input: b is a leaf block

Input: p is a point in b

Input: S is a set of blocks; locality of b

(� FINDPRUNEDIST(b) returns the PruneDist of

the block b �)

(� FINDPRUNEDLIST(b) returns the PrunedList

of the block b �)

(� PARENT(b) returns the parent block of b in the

search hierarchy �)

(� element e �)

(� priority_queue Q empty; priority queue of

elements �)

(� float d FINDPRUNEDIST(b) �)

1. INIT: INITQUEUE(Q)

(� MinDist ordering of elements in Q from p �)

ARTICLE IN PRESS

A

CD

B

Fig. 5. The locality S of a point q computed by Algorithm 2 (k ¼ 3)

initially adds A, B, C to the locality of q, thus satisfying the initial

condition that the number of points in S be equal to 3. Now PruneDist is

set to MaxDistðq;CÞ. Next, we add blocks whose MinDist to q is less than

the PruneDist, thus adding the blocks b
q
1; b

q
2; and b

q
3 to S. Note that the

locality of q computed by Algorithm 2 may not contain all the blocks that

intersect with HðqÞ i.e., blocks D and E intersect with HðqÞ, but are not

in S.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174162

Best Journal Paper of 2007 Award

2. ENQUEUEðQ;SÞ
3. END-IINIT

4. while not (ISEMPTY(Q)) do

5. e DEQUEUE(Q)

6. if (MinDistðe; bÞX d) then

7. if ðb ¼ rootÞ then

8. d 1

9. else

10. b Parent(b)

11. ENQUEUE(Q, FINDPRUNEDLIST(b)

12. d FINDPRUNEDIST(b)

13. end-if

14. end-if

15. if (e is a BLOCK) then

16. ENQUEUE(Q, CHILDREN(e))

17. else (� e is a POINT �)

18. report e as the next neighbor (and return)

19. end-if

20. end-while

5. Non-incremental kNN algorithm

In this section, we describe our kNN algorithm that

computes the kNNs of each point in the data set. A point x

whose k neighbors are being computed is termed the query

point. An ordered set containing the k nearest neighbors of

x is termed the neighborhood nðxÞ of x. Although the

examples in this section assume a two-dimensional space,

the concepts hold true for arbitrary dimensions. Let

nðxÞ ¼ fqx
1 ; q

x
2 ; q

x
3 ; . . . ; q

x
kg be the neighborhood of point

x, such that qx
i is the ith nearest neighbor of x, 1pipk with

qx
1 being the closest point in nðxÞ. We represent the L2

distance of a point qx
i 2 nðxÞ to x as Lx

2ðqiÞ ¼ kqi � xk or

dx
i . Note that all points in the neighborhood of x are drawn

from the locality of the leaf block containing x. The L1
distance between any two points u and v is denoted by

Lu
1ðvÞ.

The neighborhood of a succession of query points is

obtained as follows. Suppose that the neighborhood nðxÞ of

the query point x has been determined by a search process.

Let qx
k be the farthest point in nðxÞ, such that the k nearest

neighbors of x are contained in a circle (a hyper-sphere in

higher dimensions) of radius dx
k centered at x. Let y be the

next query point under consideration. As mentioned

earlier, the algorithm benefits from choosing y to be close

to x. Without loss of generality, assume that y is to the east

and north of x as shown in Fig. 6a. As both x and y are

spatially close to each other, they may share many common

neighbors and thus we let y use the neighborhood of x as

an initial estimate of y’s neighborhood, termed the

approximate neighborhood of y and denoted by n0ðyÞ, and

then try to improve upon it. At this point, let d
y
k record the

distance from y to the farthest point in the approximate

neighborhood n0ðyÞ of y.

Of course, some of the points in n0ðyÞ may not be in nðyÞ.

The fact that we use the L2 distance metric means that the

region spanned by nðxÞ is of a circular shape. Therefore, as

shown in Fig. 6a, we see that some of the kNNs of y may lie

in the shaded crescent-shaped region formed by taking the

set difference of the points contained in the circle of radius

d
y
k centered at y and the points contained in the circle of

radius dx
k centered at x. Thus, in order to ensure that we

obtain the kNNs of y, we must also search this crescent-

shaped region whose points may displace some of the

points in n0ðyÞ. However, it is not easy to search such a

region due to its shape, and thus the kNN algorithm would

benefit if the shape of the region containing the neighbor-

hood could be altered to enable efficient search, while still

ensuring that it contains the kNNs of y; although it could

contain a limited number of additional points.

Let BðxÞ be the bounding box of nðxÞ, such that any point

p contained in BðxÞ satisfies the condition Lx
1ðpÞpdx

k, i.e.,

BðxÞ is a square region centered at x of width 2 � dx
k, such

that it contains all the points in nðxÞ. Note that BðxÞ

contains all the k nearest neighbors of x and additional

points in the region that does not overlap nðxÞ. While

estimating a bound on number of points in BðxÞ is difficult,

at least in two-dimensional space we know that the ratio of

the non-overlap space occupied by BðxÞ to nðxÞ is

ð4� pÞ=p. Consequently, the expected number of points

in BðxÞ is proportionately larger than nðxÞ.

Once we have BðxÞ of a point x, we obtain a rectangular

region B0ðyÞ, termed approximate bounding box of nðyÞ,

such that B0ðyÞ is guaranteed to contain all the points in

nðyÞ. This is achieved by adding four simple rectangular

regions to BðxÞ as shown in Fig. 6b. In general for a

d-dimensional space, 2d such regions are formed.

Although, this process is simple, it may have the

unfortunate consequence that its successive application to

query points will result in larger and larger bounding

boxes—that is, B0ðyÞ computed using such a method is

larger than BðyÞ. We avoid this repeated growth by

following the determination of d
y
k using B0ðyÞ with a

computation of a smaller BðyÞ with a width of 2 � d
y
k.

Algorithm 4 takes a leaf block b and the locality S of b as

input and computes the neighborhood for all points in b.

First of all, the points in b are visited in some pre-

determined sequence (line 1), usually the ordering of

points is established using a space-filling curve [8].

ARTICLE IN PRESS

k=6

q=y

x

q
x
k

d
x
k

y

Non-overlap

region

d
y
k

x

d
x
k

q
x
k

y

region

d1

d2

dxy

dxy+d1

dxy+d2

dxy-d2

dxy-d1

B(x)

12

3

4
B'(y)

Fig. 6. (a) Searching the shaded region for points closer to y than q
y
k is

sufficient; (b) to compute BðyÞ from BðxÞ requires four simple region

searches. Compared to searching the crescent shaped region, these region

searches are easy to perform.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 163

Best Journal Paper of 2007 Award

The neighborhood nðuÞ of the first point u in b (lines 5–8) is

computed by choosing the k closest points to u in S. This is

done by making use of an incremental nearest neighbor

finding algorithm such as BFS [10]. Note that at this stage,

we could also make use of an approximate version of BFS

as pointed out in Section 1. Once the k closest points have

been identified, the value of du
k is known (line 9). At this

point we add the remaining points in BðuÞ as they are

needed for the computation of the neighborhood of the

next query point in b. In particular, BðuÞ is constructed by

adding points o 2 S to nðuÞ such that they satisfy the

condition Lu
1ðoÞpdu

k (lines 10–15). Subsequent points in b

are handled in lines 16–21. The points in the bounding box

B0ðuÞ of u is computed by using the points in the bounding

box BðuÞ of the previous point p and then making 2d region

searches on S as shown in Fig. 6b (line 18). Finally, BðuÞ is

computed by making an additional region search on B0ðuÞ

as shown in line 21.

Algorithm 4

Procedure BUILDNEIGHBORHOOD[b, S]

Input: b a leaf block

Input: S set of blocks; locality of b

(� point p; u empty �)

(� ordered_set Bp;Bu;B
0
u empty �)

(� If B is an ordered set, B½i� is the ithelement in B �)

(� integer count 0 �)

1. for each point u 2 b do

2. if (p ¼ empty) then

3. (� compute the neighborhood of the first

point in b �)

4. count 0

5. while (count oK) do

6. INSERT(Bu, NEXTNN(S))

7. count countþ 1

8. end-while

9. du
k Lu

2ðBu½k�Þ

10. o NEXTNN(S)

11. (� add all points that satisfy the L1 criterion �)

12. while ðLu
1ðoÞpdu

kÞ do

13. INSERTðBu; oÞ
14. o NEXTNN(S)

15. end-while

16. else (� pa empty �)

17. (� 2d region searches as shown in

Fig. 6b for a two dimensional case�)

18. B0u Bp

S

REGIONSEARCHðS;Lp
2ðuÞ; d

p
kÞ

19. du
k Lu

2ðB
0
u½k�Þ

20. (� Search a box of width du
k around u �)

21. Bu REGIONSEARCHðB0u; d
u
kÞ

22. end-if

23. du
k Lu

2ðB
0
u½k�Þ

24. p u

25. Bp Bu

26. end-for

27. return

6. Experimental comparison with other algorithms

A number of experiments were conducted to evaluate the

performance of the kNN algorithm. The experiments were

performed on a Quad Intel Xeon server running

Linux(2.4.2) operating system with one gigabyte of RAM

and SCSI hard disks. The data sets used in the evaluation

consists of 3D scanned models that are frequently used in

computer graphics applications. The three-dimensional

point models range from 2k to 50 million points, including

two synthetic point models of size 37.5 million and 50

million, respectively. We developed a toolkit in Cþþ

using STL that implements the kNN algorithm. The

performance of our algorithm was evaluated by varying a

number of parameters that are known to influence its

performance. We collected a number of statistics such as

the time taken to perform the algorithm, the number of

distance computations, the average locality size, page size,

cache size, and the resultant number of page faults. The

average size of the locality is the average number of blocks

in the locality of all points in the data set.

A good benchmark for evaluating our algorithm is to

compare it with a sorting algorithm. We make this

unintuitive analogy with a sorting algorithm by observing

that the work performed by the kNN algorithm in a one-

dimensional space is similar to sorting a set of real

numbers. Consider a data set S containing n points in a

one-dimensional space as an input to a kNN algorithm. An

efficient kNN algorithm would first sort the points in S

with respect to their distance to some origin, thereby

incurring Oðn log nÞ distance computations. It would then

choose the k closest neighbors to each point in the sorted

list, thus, incurring an additional OðknÞ distance computa-

tions. We point out that it is difficult for any kNN algo-

rithm in a higher dimensional space to asymptotically do

better than Oðn log nÞ as the construction of any spatial

data structure is, in fact, an implicit sort in a high-

dimensional space. We use the distance sensitivity [18],

defined below,

distance sensitivity

¼
Total number of distance calculations

n log n

to evaluate the performance of our algorithm. Notice that

the denominator of the above equation corresponds to the

cost of a sorting algorithm in a one-dimensional space. A

reasonable algorithm should have a low, and more

importantly, a constant distance sensitivity value.

We evaluated our algorithm by comparing the execution

time and the distance sensitivity of our algorithm with that

of the GORDER method [18] and the MuX method [21]. We

also compared our algorithm with traditional methods like

the nested join [22] and a variant of the BFS algorithm [10].

We use both a bucket PR quadtree [8] and an R-tree [9]

variant of the kNN algorithm in our study. Our evaluation

was in terms of three-dimensional point models as we are

primarily interested in databases for computer graphics

ARTICLE IN PRESS

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174164

Best Journal Paper of 2007 Award

applications. The applicability of our algorithm to data of

even higher dimensionality is a subject for future research.

We first discuss the effect of each of the following three

variables on the performance of the algorithms.

(i) The size of the disk pages which is related to the value

of the bucket capacity in the construction of the bucket

PR quadtree (Section 6.1).

(ii) The memory cache size (Section 6.2).

(iii) The effect of the size of the data set (Section 6.3).

Once we have determined the effect of these variables on

the algorithm, we choose appropriate values to compare

our algorithm with the other methods in Section 6.4.

6.1. Effect of bucket capacity (B)

In this section, we study the effect of the bucket capacity

B on the performance of our kNN algorithm. The bucket

capacity B also corresponds to the size of the disk page. For

a given value of k between 8 and 1024, the value of B was

varied between 1 and 1024. The performance of our

algorithm using a bucket PR quadtree was evaluated by

measuring the execution time of the algorithm, the average

number of blocks in the locality of the leaf blocks, and the

resulting distance sensitivity of the algorithm. In this set of

experiments, we made use of the Stanford Bunny model

containing 35,947 points.

Fig. 7a shows the effect of B on the execution time of the

kNN algorithm. Note that for smaller values of B ðp16Þ,

the kNN algorithm has a large execution time. However,

it quickly decreases for slightly larger values of B . For

values of B between 32 and 128, our kNN algorithm

has some of the lowest execution times. Fig. 7b shows

the average number of blocks in the locality of the

leaf blocks of the bucket PR quadtree. When B is small,

the size of the locality is large. As a result, for small values

of B the algorithm has a higher execution time. How-

ever, as the value of B increases the size of the locality

quickly reduces to a small constant value. For larger

values of B , the increase in execution time can be

attributed to a larger number of points stored in the

blocks in the locality, even though the number of blocks in

the locality remains almost the same. The sensitivity

analysis shown in Fig. 7c is similar to Fig. 7a. To

summarize, the kNN algorithm performs well for moder-

ately small values of B , and in particular for the range of B

between 32 and 128.

6.2. Effect of cache size

The next set of experiments examines the effect of the

cache size on the performance of our kNN algorithm. The

cache size is defined in terms of the number of leaf blocks

that can be stored in the main memory. We use a least

recently used (LRU) replacement policy on the disk pages

stored in the cache. The size of each memory page is

determined by the value of B . We record the effect of the

size of the cache on the resulting number of page faults,

and the time spent on I=O operations. Figs. 8a–b shows the

result of the experiments for B ¼ 32 and for varying values

of k ranging between 8 and 1024. We observed high values

for the I=O time and the number of page-faults for small

(p32) cache sizes, but these values quickly decreased when

the cache size was increased beyond a certain value. This

ARTICLE IN PRESS

50

100

150

200

250

1 10 100 1000

S
iz

e
 i
n

 B
lo

c
k
s

Bucket Size B (log scale)

Average Locality Size

k

1024

512

256

128

64

32

8

8

16

32

64

128

256

1 4 16 64 256 1024

D
is

ta
n

c
e

 S
e

n
s
it
iv

it
y

Bucket Size B (log scale)

Distance Sensitivity

k

1024

512

256

128

64

32

8

4

8

16

32

 64

128

256

1 4 16 64 256 1024

S
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Bucket Size B (log scale)

Execution Time

k

1024

512

256

128

64

32

8

Fig. 7. Effect of Bucket capacity B on the: (a) execution time; (b) average

size of the locality in blocks, and (c) distance sensitivity for different values

of k for our kNN algorithm.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 165

Best Journal Paper of 2007 Award

value, incidentally, corresponds to the average size of the

locality, as seen in Fig. 8c. Moreover, this also explains the

occurrence of large number of page faults when the size of

the cache is smaller than the size of the locality. The rule of

thumb is that the cache size should be at least as large as

the average size of the locality.

6.3. Effect of data set size

Experiments were also conducted to evaluate the

scalability of the algorithm as the size of the input data

set is increased. We experimented with several three-

dimensional point models ranging in size from 2k to 50

million points as shown in Fig. 9. The bucket size B and the

cache-size were set to 32 points and 500 blocks, respec-

tively. The results of the experiments are given in

Figs. 10–11. Fig. 10a shows the effect of size on the time

taken to perform the kNN algorithm. Fig. 10b records the

distance sensitivity of the algorithm. As the distance

sensitivity of our approach is almost linear, our algorithm

exhibits Oðn log nÞ behavior. Fig. 10c records the average

size of the locality. We also note that the average locality

size is almost constant for data sets of all sizes used in the

evaluation. Also, the size of the locality showed only a

slight increase even as the value of k is increased from 8 to

16. The I=O time and the resultant number of page faults

are given in Fig. 11. Fig. 11a shows the effect of the size of

the data set on the time spent by the algorithm on I=O

operations. Fig. 11b shows the number of page faults

normalized by size for data sets of various sizes. Both the

time spent on I=O and the number of page faults exhibit

linear dependence on the size of the data set.

6.4. Comparison

We evaluated our algorithm by comparing its execution

time and distance sensitivity with that of the GORDER

method [18] and the MuX method of Böhm et al. [19]. Our

comparison also includes traditional methods like the

nested join [22] and a variant of the BFS algorithm that

invoked a BFS algorithm for each point in the data set. We

used both a bucket PR quadtree and an R-tree variant of

the algorithm in the comparative study. The R-tree

implementation of our algorithm used a packed R-tree

[23] with a bucket-capacity of 32 and a branching factor of

8. Note however, that the values of B and k are chosen

independent of each other. We retained 10% of the disk

pages in the main memory using a LRU based page

replacement policy. For the GORDER algorithm, we used the

parameter values that led to its best performance, accord-

ing to its developers [18]. In particular, the size of a sub-

segment was chosen to be 1000, the number of grids were

set to 100, and the size of the data set buffers was chosen to

be more than 10% of the data set size. For the MuX-based

method, a page capacity of 100 buckets and a bucket

capacity of 1024 points was adopted. There are a few

differences between the MuX method as described in [19]

and our implementation. In particular, we adapted our

implementation into a three level structure with a set of

hosting pages where each page contains several buckets

with pointers to a disk-based store. Also, we did not use a

fractionated priority-queue as described in [19] but replaced

it with a heap-based priority queue. However, we did not

take into the account the time taken to manipulate the

ARTICLE IN PRESS

0

0.5

1

1.5

2

8 16 32 64 128 256 512 1024

S
e
c
o
n
d
s

Cache Size (log scale)

I/O Time

k

1024

512

256

128

64

32

16

0

50

100

150

200

250

300

350

400

450

500

16 32 64 128 256 512

P
a
g
e
 F

a
u
lt
s
 (

th
o
u
s
a
n
d
s
)

Cache Size (log scale)

Average Page Faults

k

1024

512

256

128

64

32

16

0

0.1

0.2

0.3

0.4

0.5

0.6

16 32 64 128 256 512

I/
O

 T
im

e

Cache Size (log scale)

Cache Size and Locality

Average locality size

k=16

Fig. 8. Effect of cache size on: (a) the time spent on I=O; (b) the number

of page faults; for varying values of k and B ¼ 32; (c) a comparison

between the cache size and the average size of the locality for k ¼ 16.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174166

Best Journal Paper of 2007 Award

heap structure, thereby ensuring that these differences in

the implementation do not affect the comparison results.

Also, we only count the point–point distance computations

in determining distance-sensitivity and disregard all other

distance computations even though they form a substantial

fraction of the execution time. We used a bucket capacity

of 1024 for the BFS and nested join [22] methods. The

results of our experiments were as follows.

(i) Our algorithm clearly out-performs all the other

methods for all values of k on the Stanford Bunny

model as shown in Fig. 12a–b. Our algorithm leads to

at least an order of magnitude improvement in the

distance sensitivity over the MuX, the GORDER , the

BFS and the nested join techniques for smaller values

of k (p32) and at least 50% improvement for larger k

(o256) as seen in Fig. 12b. We observed an improve-

ment of at least 50% in the execution time (Fig. 12a)

over the competing methods.

(ii) However, as size of the input data set is increased the

performance of the MuX algorithm was comparable to

the nested, BFS and the GORDER based methods (Fig.

13a). Moreover, our method has an almost constant

distance sensitivity even for large data sets. The

distance sensitivity of the comparative algorithms are

at least an order of magnitude higher for smaller data

sets and up to several orders of magnitude higher for

the larger datasets in comparison to our method (Fig.

13b). We observed similar execution time speedups as

seen in Fig. 13a.

(iii) Fig. 13 shows similar performance for the R-tree and

the quadtree variants of our algorithm.

7. Applications

Having established that our algorithm performed better

than the GORDER and MuX methods, we next evaluated the

use of our algorithm in a number of applications for

different data sets that included both publicly available and

synthetically generated point-cloud models. The size of the

models ranged from 35,947 points (Stanford Bunny model)

to 50 million points (Syn-50 model). These applications

include computing the surface normals to each point in the

point-cloud using a variant of the algorithm by Hoppe

et al. [2] and removing noise from the point surface using a

variant of the bilateral filtering method [3,13]. Fig. 14

shows the time needed for these applications when

incorporating an algorithm with a neighborhood of size

k ¼ 8 for each point in the point-cloud model. Fig. 14b

shows that our algorithm results in scalable performance

even as the size of the data set is increased so that it exceeds

the amount of available physical memory in the computer

by several orders of magnitude. The scalable nature of our

approach is readily apparent from the almost uniform rate

of finding the neighborhoods, i.e., 5900 neighborhoods/s

for the Stanford Bunny model and 7779 neighborhoods/s

for the Syn-50 point-cloud models.

In the rest of this section, we describe in greater detail

how our algorithm can be used in these computer graphics

applications, and give a qualitative evaluation of its use. In

particular, we discuss its use in computing surface normals

(Section 7.1), noise removal through mollification of

surface normals and bilateral mesh filtering (Section 7.2),

as well as briefly mentioning additional related applications

(Section 7.3).

7.1. Computing surface normals

Point-cloud models are distinguished from other models

by not containing any topological information. Thus, one

of the initial preprocessing steps required before the point-

cloud model can be successfully used is to compute the

surface normal for each point in the model. Computing the

surface normal is important for the proper display and

rendering of point-cloud data. Using the surface normal

information, other topological features of a point surface

can be estimated. For example, we can estimate the

presence of sharp corners on the point-cloud models with

reasonable certainty. A sudden large deviation in the

orientation of the surface normals within a small spatial

distance may indicate the presence of a sharp corner. Many

such local surface properties can be estimated by examin-

ing the surface normals and the neighborhood information.

One of the most prominent methods for computing

surface normals for unorganized points is due to Hoppe

et al. [2]. This method relies on computing the kNNs to

ARTICLE IN PRESS

Model Size Model Size
Name (millions) Name (millions)

Bunny (B) 0.037 Femme (F) 0.04

Igea (I) 0.13 Dog (Do) 0.195

Dragon (Dr) 0.43 Buddha (Bu) 0.54

Blade (Bl) 0.88 Dragon (Ld) 3.9

Thai 1 (T) 5.0 Lucy (L) 14.0

Syn-38 (S) 37.5 Syn-50 (M) 50.0

Fig. 9. Pseudo names of the point models and the corresponding number of points (in millions) used in the evaluation.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 167

Best Journal Paper of 2007 Award

each point in the data set. The neighborhood is fit with a

hypothetical surface which minimizes the sum of the

squared distances from each point in the neighborhood

to the hypothetical surface. A covariance analysis of the

resulting neighborhood leads to the estimation of the

normals to the surface and the query-point.

A more recent contribution is by Mitra et al. [15] which

deals with the computation of the surface normals to a

point-cloud in the presence of noise. This algorithm

computes the neighborhood of points in the data set after

taking into consideration the sampling density and the

curvature of the neighborhood. There is also the alternative

approach of Floater and Reimers [24] that triangulates the

neighborhood and computes the surface normals from the

resulting mesh surface.

The neighborhood finding algorithms used in these

methods are as diverse as the methods themselves. The

algorithm by Hoppe [2] assumes a uniform sampling of

points in the point-cloud. This makes the computation of

neighborhood almost trivial, although not realistic. Also,

many algorithms use either an approximate brute-force

method or compute the neighborhood by repeated

computation of the neighborhood for one point at a time

(e.g., see [15]).

We computed the surface normal information of several

data sets using a method similar to that of Hoppe et al. [2].

We tabulated the time taken for data sets of different sizes

and also recorded the effect of varying the size of the

neighborhood on the resulting neighborhood calculation.

The effect of varying the size of the data set when

computing the surface normals is given by the appro-

priately labeled column in Fig. 14a. The main results of

using our algorithm to compute surface normals are as

follows:

(i) The quality of the surface normals depends on the size

of the neighborhood as can be seen in Fig. 15. Using

ARTICLE IN PRESS

1

10

100

1000

10000

10000 100000 1e+06 1e+07 1e+08

S
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Number of Points (log scale)

Execution Time

B

F

V

A

Do

Dr

Bu

Bl

Ld

T

L

M
k=16

k=8

1

10

100

10000 100000 1e+06 1e+07 1e+08

D
is

ta
n
c
e
 S

e
n
s
it
iv

it
y
 (

lo
g
 s

c
a
le

)

Number of Points (log scale)

Distance Sensitivity

B

F

V

A

Do

Dr

Bu

Bl

Ld

L

M

k=8

k=16

100

10000 100000 1e+06 1e+07 1e+08

S
iz

e
 i
n
 B

lo
c
k
s
 (

lo
g
 s

c
a
le

)

Number of Points (log scale)

Average Locality Size

B

F

V

A

Do

Dr

Bu

Bl

Ld

L
M

k=8

k=16

c

Fig. 10. Effect of the size of the data set on: (a) execution time; (b)

distance sensitivity, and (c) average locality size for various point models

with B ¼ 32 and 500 blocks in the memory cache.

0

0.5

1

1.5

2

2.5

3

3.5

4

10000 100000 1e+06 1e+07 1e+08

N
o
rm

a
liz

e
d
 P

a
g
e
 F

a
u
lt
s

Number of Points (log scale)

Page Faults

F

V

A

Do

Dr

Bu

Bl

Ld
L

M

k=8

k=16

B

0.01

0.1

1

10

100

10000 100000 1e+06 1e+07 1e+08

S
e
c
o
n
d
s

Number of Points (log scale)

I/O Time

B

F

V

A

Do

Dr

Bu

Bl

Ld
L

M

k=8

k=16

Fig. 11. Effect of size of the data set on: (a) time spent on I=O; (b) the

number of page faults normalized by size for datasets of various sizes.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174168

Best Journal Paper of 2007 Award

the surface normals for 8pkp64 retains the finer

details on the surface (Figs. 15a–b). Using a larger

neighborhood such as kX64 leads to a loss of many

of the finer surface details (Fig. 15c). This effect can

be attributed to the averaging property of the neighbor-

hood.

(ii) When dealing with noisy meshes, the surface normals

computed using the topological information of the

mesh are often erroneous as can be seen in the dragon

model in Fig. 16a. In such cases, we can use our

kNN algorithm to compute the surface normals by just

using the neighborhood of the points and the result is

relatively error-free as seen in Fig. 16b when using 8

neighbors. This leads us to observe that correct surface

normals are important for the proper display of the

point model, and that the normals computed by

analyzing the neighborhood are resilient to noise, but

result in a loss in surface details if an unsuitable value

of k is used as seen in Fig. 15c.

7.2. Noise removal

With advances in scanning technologies, many objects

are being scan converted into point-clouds. The objects are

scanned at a high resolution in order to capture the surface

details and to provide an illusion of a smooth compact

surface by the close placement of the points comprising the

point-cloud model. However, in reality, points in a freshly

scanned point-cloud model are noisy due to environmental

interference, material properties of the scanned object, and

calibration issues with the scanning device. Often, an

additional corrective procedure needs to be performed in

order to account for the residual noise before the model

can be successfully employed. In fact, such an unprocessed

point-cloud model would have a scarred appearance as

illustrated in Fig. 16a which has been obtained by adding a

noise element to each of the points in the original model.

Noise is removed by applying a filtering algorithm to the

points in the point-cloud model. Bilateral mesh filtering

ARTICLE IN PRESS

1

10

100

1 2 4 8 16 32 64 128 256

S
e
c
o
n
d
s

k (log scale)

Execution Time

MuX

 GORDER

Nested

BFS

kNN-R

kNN-Q
0.25

1

4

16

64

256

1024

1 2 4 8 16 32 64 128 256

D
is

ta
n
c
e
 S

e
n
s
it
iv

it
y

(l
o
g
 s

c
a
le

)

k (log scale)

Distance Sensitivity

GORDER

Nested

BFS

MuX

kNN-R

kNN-Q

a b

Fig. 12. Performance comparison of our kNN algorithm with the BFS, GORDER , MuX and the Nested join algorithms. ‘kNN-Q’ and ‘kNN-R’ refers to the

quadtree and R-tree implementations of our algorithm respectively. Plots a–b show the performance of the techniques on the Stanford Bunny model

containing 35,947 points for values of k ranging between 1 and 256; (a) execution time, and (b) distance sensitivity.

1

10

100

1000

10000

100000 1e+06

S
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Number of Points (log scale)

Execution Time

BF

V
A Do

Dr
Bu

Bl

MuX

GORDER

Nested

BFS

kNN-R

kNN-Q

1

10

100

1000

10000

1000 10000 100000 1e+06

D
is

ta
n
c
e
 S

e
n
s
it
iv

it
y

(l
o
g
 s

c
a
le

)

Number of Points (log scale)

Distance Sensitivity

Ap

Co

B

F

V

A

Do

Dr

Bu

Bl

 GORDER

Nested

MuX

BFS

kNN-R

kNN-Q

a b

Fig. 13. Performance comparison of our kNN algorithm with the BFS, GORDER , MuX and the Nested join algorithms. ‘kNN-Q’ and ‘kNN-R’ refers to the

quadtree and R-tree implementations of our algorithm, respectively. Plots a–b record the performance of all the techniques on data sets of various sizes for

k ¼ 8; (a) execution time, and (b) distance sensitivity.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 169

Best Journal Paper of 2007 Award

[3,13] and mollification [25] are two prominent techniques

for removing noise from a mesh. While the bilateral mesh

filtering algorithm attempts to correct the position of

erroneous points, the mollification approach, instead, tries

to correct the surface normals at the point. Bilateral mesh

filtering is analogous to displacement mapping [26] and

mollification is analogous to bump mapping [27], both of

which are prominent texturing techniques that can be used

to achieve the same result. In particular, displacement

mapping relies on shifting the points themselves to bring

about texturing of the surface, while bump-mapping

modifies the surface normals at each vertex of the mesh

surface. Bilateral filtering differs from another class of

techniques, that include MLS noise removal [28], which

ARTICLE IN PRESS

Model

Name

Size

(millions)

kNN Surface

Normals

Noise

Removal

Bunny (Bu) 0.037 6.22 9.0 9.64

Femme (F) 0.04 7.13 10.5 13.9

Igea (I) 0.13 24.05 36.6 47.52

Dog (Do) 0.195 32.9 53.4 64.45

Dragon (Dr) 0.43 72.62 118.9 122.2

Buddha (Bu) 0.54 93.04 152.3 157.25

Blade (Bl) 0.88 185.92 304.2 270.0

Dragon (Ld) 3.9 663.84 900.0 1209.8

Thai (T) 5.0 940.04 1240.0 1215.7

Lucy (L) 14.0 2657.9 3504.0 3877.78

Syn-38 (S) 37.5 4741.79 - -

Syn-50 (M) 50.0 6427.5 - -

1

10

100

1000

10000

10000 100000 1e+06 1e+07 1e+08

S
e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)

Number of Points (log scale)

Execution Time

B

F

V

A

Do

Dr

B u

B l

Ld

T

L
S

M

NOISE
NORMALS

kNN

a

b

Fig. 14. (a) Tabular and (b) graphical views of the execution time of the kNN algorithm for different point models, and the time to execute a number of

operations (i.e., normal computation and noise removal) using it. All results are for k ¼ 8.

Fig. 15. Dinosaur point-cloud models displayed using surface normals computed with neighborhoods of (a) 16; (b) 64, and (c) 128 neighbors.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174170

Best Journal Paper of 2007 Award

correct the points by reconstructing a smooth local surface

and re-sampling points from the surface. In the rest of this

section, we discuss the results of our application of both

bilateral mesh filtering and mollification to remove noise in

large point-cloud models.

We applied the bilateral mesh filtering algorithm in [3,13]

to the point-cloud model as follows. We initially computed

a neighborhood for each point in the model. Our

adaptation of the bilateral filtering method assigns weights

(an influence measure analogous to the Gaussian weights in

the bilateral filtering method) to each point in the

neighborhood in such a way that the computation becomes

less sensitive to outlier points. Note that mollification

corrects the normals instead of the point, but is similar in

approach. Fig. 17 shows the results of applying our point-

cloud model adaptation of the conventional bilateral mesh

filtering algorithm to the bunny model (35,947 points) for

different pairs of values of the Gaussian kernel. Note that

the quality of the results when using our adaptation does

not depend on the values of the Gaussian kernel.

As pointed out earlier, mollification is similar to bilateral

mesh filtering with the difference being that instead of

performing the filtering operation on the points, the

filtering operation is applied to the original surface normals

of the points. In order to evaluate the sensitivity of our

filtering and surface computation methods to noise, we

added Gaussian noise using the Box–Muller method [29] to

a bunny mesh-model. We computed the surface normals at

each vertex in the noisy mesh using the connectivity

information contained in the mesh. The resultant mesh,

disregarding the connectivity information, is a point-cloud

(as shown in Fig. 19a) with noisy point positions and noise-

corrupted normals. We use this approach to create the

noisy point-clouds used in Figs. 18 and 19. Figs. 19b–d

compare the result of using the mollification method (Fig.

19d) with the computation of surface normals as in Section

5.1 (Fig. 19b) and our adaptation of the bilateral mesh

filtering method (Fig. 9c). All three methods were applied

for 8 neighbors. From the figure, we see that when using

our kNN method to compute the neighborhoods to be used

in computing the surface normals, there is no perceptible

difference between the three methods even in the case of

noisy data.

7.3. Related applications

The most obvious application of the kNN algorithm is in

the construction of kNN graphs [30]. kNN graphs are

useful when repeated nearest neighbor queries need to be

performed on a data set. The kNN algorithm may also be

used in point reaction-diffusion [31] algorithms. Such

algorithms mimic a physical phenomenon to uniformly

distribute points on a given surface or space. Many of

natural texture patterns encountered in nature can be

recreated using this technique. The algorithm works as

follows. Each point is assigned a unit positive charge. The

resultant repulsion force acting on the point is computed

using the kNNs at each point. Next, the point is moved

along the direction of the force, and the kNN algorithm is

repeatedly reinvoked at each iteration until an equilibrium

condition is reached.

A recent contribution in the construction of approximate

surfaces from point sets is the moving least squares (MLS)

[28] method. Weyrich et al. [14] have identified useful

point-cloud operations that use the MLS method. Of these

operations, we believe that MLS point-relaxation, MLS

smoothing, MLS based upscaling [28], and downscaling can

all benefit when used in conjunction with the kNN algo-

rithm.

Tools that perform upscaling [32,33] and downscaling

[28] of point-clouds all use the kNN algorithm to generate

ARTICLE IN PRESS

Fig. 17. Results of applying the neighborhood-based adaptation of the

bilateral mesh filtering algorithm to the bunny model for Gaussian kernel

pairs: (a) sf ¼ 2, sg ¼ 0:2; (b) sf ¼ 4, sg ¼ 4, and (c) sf ¼ 10, sg ¼ 10 for

a neighborhood of size 8. The results are independent of the size of the

Gaussian kernel that was chosen.

Fig. 16. (a) A noisy mesh-model of a dragon, and (b) the corresponding model whose surface normals were recomputed using our kNN algorithm. The

algorithm took about 118 seconds and used eight neighbors.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 171

Best Journal Paper of 2007 Award

varied levels of detail (LOD) [34] of point models. The

quadratic error simplification method [32,33] simplifies a

point-cloud by removing the points that make the least

significant contribution to the surface details. We have

built a sample tool that implements Garland’s method [32]

on point-clouds and have used it to generate Igea point

models of different sampling-rate of as seen in Fig. 20. The

Igea model of size 135k was reduced to smaller models of

sizes 14k, 48k, 78k, 99k and 111k, the largest of which took

less than 120 seconds to generate. The general quality of the

reduced model produced by the tool however depends on

the extent by which the models were reduced. For example,

we can note some loss in facial features in Fig. 20 (14k)

while Fig. 20 (111k) is almost identical to the original

model.

A similar method to increase the point sampling uses a

variant of MLS [28] to insert additional points in the

neighborhood (termed upscaling). The algorithm computes

the k nearest neighbors to each point using the kNN algo-

rithm. Points are then evenly distributed [35] on the

hypothetical surface that is fit through the points in the

neighborhood. We built a variant of the algorithm which

when applied to the apple model (Fig. 21a) containing 867

points resulted in a new point model containing 27,547

points (Fig. 21b) which took about 1.2 s to construct.

8. Concluding remarks

We have presented a new kNN algorithm that yields an

improvement of several orders of magnitude for distance

sensitivity and at least one order of magnitude improve-

ment in execution time over an existing method known as

GORDER designed for dealing with large volumes of data

that are disk-resident. We have applied our method to

point-clouds of varying size including some as large as 50

million points with good performance. A number of

ARTICLE IN PRESS

Fig. 19. (a) A bunny point-cloud model to which Gaussian noise was added, and the result of applying; (b) the surface normal computation method in

Section 5.1; (c) our adaptation of bilateral mesh filtering, and (d) mollification.

Fig. 18. Three noisy models which were de-noised using filtering and mollification techniques. In the pairs of figures shown for each of the models, the

figure on the left is the noisy model, while the figure on the right is the corrected point model. The (a) Igea and (b) dog models were denoised with the

filtering method, while the (c) femme model was denoised using the mollification technique.

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174172

Best Journal Paper of 2007 Award

applications of the algorithm were presented. Below, we

summarize a few interesting directions for future research.

(i) Although our focus was on the computation of the

exact kNNs, our methods can also be applied to work

with approximate kNNs by simply stopping the search

for the kNNs when k neighbors of the query point

within � of the true distance of the kth neighbor have

been found. An interesting problem is to devise an �
approximate locality L of a block b, such that L

contains the �-approximate kNNs of all the points

contained in b.

(ii) We have shown that for a given subdivision of space,

the BUILDLOCALITY algorithm is optimal, although, the

time taken to perform the algorithm depends solely on

our choice of the data structure. It is not difficult to see

that certain point data set and data structure config-

urations may result in large localities of the points. An

interesting direction of research is the design and

analysis of a data structure that can ensure that the

average size of the locality is small, thereby providing

good performance.

(iii) Our kNN algorithm only requires the ability to

compute MinDist, MaxDist, and the number of

points contained in a block. An interesting study

would be to examine if smaller localities can be built if

additional statistics on the distribution of the points

contained in a block, such as the MAXNEARESTDIST

estimator [8], were available to the algorithm.

(iv) Modify our kNN algorithm to provide k nearest

neighbors that are radially well distributed around

the query point. It is not clear if a locality L of a block

b can be defined, such that all the radial neighbors of

all the points in b are contained in L.

(v) Explore the applicability of some of the concepts

discussed here to high-dimensional datasets using

techniques such as those described in [36,18].

Acknowledgments

The authors would like to gratefully acknowledge the

support of the National Science Foundation under Grants

CCF-0515241 and EIA-00-91474, Microsoft Research, and

the University of Maryland General Research Board. The

authors would like to thank the anonymous reviewers for

their useful comments and suggestions which helped

improve the quality of this paper immensely. Special

thanks are due to Chenyi Xia for providing us with the

GORDER source code. The point models used in the paper

are the creations of the following individuals or institu-

tions. The Bunny, Buddha, Thai, Lucy and the Dragon

models are from the Stanford 3D Scanning Repository.

The Igea and the Dinosaur models are from Cyberware Inc.

The Turbine blade model was obtained from the CD-ROM

associated with the Visualization Toolkit [37] book. The

Dog model is from MRL-NYU. The Femme model is

thanks to Jean-Yves Bouguet.

References

[1] Andersson M, Giesen J, Pauly M, Speckmann B. Bounds on the

k-neighborhood for locally uniformly sampled surfaces. In: Proceed-

ings of the eurographics symposium on point-based graphics, Zurich,

Switzerland; 2004. p. 167–71.

[2] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface

reconstruction from unorganized points. In: Proceedings of the

SIGGRAPH’92 conference. Chicago, IL: ACM Press; 1992. p. 71–8.

[3] Jones TR, Durand F, Desbrun M. Noniterative, feature-preserving

mesh smoothing. In: Proceedings of the SIGGRAPH’03 conference,

vol. 22(3). San Diego, CA: ACM Press; 2003. p. 943–49.

[4] Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L,

Ginzton M, Anderson S, Davis J, Ginsberg J, Shade J, Fulk D. The

digital Michelangelo project: 3D scanning of large statues. In:

Proceedings of the SIGGRAPH’00 conference, New Orleans, LA:

ACM Press; 2000. p. 131–44.

[5] Pauly M, Keiser R, Kobbelt LP, Gross M. Shape modeling

with point-sampled geometry. ACM Trans. Graph. 2003;22(3):

641–50.

[6] Clarkson KL. Fast algorithm for the all nearest neighbors problem.

In: Proceedings of the 24th IEEE annual symposium on foundations

of computer science, Tucson, AZ, 1983, p. 226–32.

ARTICLE IN PRESS

Fig. 20. Sizes and execution times for the result of applying a variant of the simplification algorithm [32] using the kNN algorithm to the Igea point model

of size 135k.

Fig. 21. (a) Initial apple model (867 points) and (b) the result of applying

an upscaling algorithm to it using the kNN algorithm (27,547 points).

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174 173

Best Journal Paper of 2007 Award

[7] Vaidya PM. An Oðn log nÞ algorithm for the all-nearest-neighbor

problem. Discrete and Computational Geometry 1989;4(1):101–15.

[8] Samet H. Foundations of Multidimensional and Metric Data

Structures, Morgan-Kaufmann, San Francisco, CA, 2006.

[9] Guttman A. R-trees: a dynamic index structure for spatial searching.

In: Proceedings of the ACM SIGMOD’84 conference. Boston, MA:

ACM Press; 1984. p. 47–57.

[10] Hjaltason GR, Samet H. Distance browsing in spatial databases.

ACM Transactions on Database Systems 1999;24(2):265–318.

[11] Roussopoulos N, Kelley S, Vincent F. Nearest neighbor queries.

In: Proceedings of the ACM SIGMOD’95 conference. San Jose,

CA: ACM Press; 1995. p. 71–9.

[12] Mount DM, Arya S. ANN: a library for approximate nearest

neighbor searching. In: Proceedings of the second annual center for

geometric computing workshop on computational geometry, electro-

nic edn., Durham, NC, 1997. URL hhttp://www.cs.duke.edu/CGC/

workshop97.htmli.

[13] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. In:

Proceedings of the SIGGRAPH’03 conference, vol. 22(3). San Diego,

CA: ACM Press; 2003. p. 950–3.

[14] Weyrich T, Pauly M, Heinzle S, Keiser R, Scandella S. Post-

processing of scanned 3d surface data. In: Proceedings of euro-

graphics symposium on point-based graphics 2004, Eurographics

Association, Aire-La- Ville, Switzerland, 2004. p. 85–94.

[15] Mitra NJ, Nguyen A. Estimating surface normals in noisy

point cloud data. In: Proceedings of the 19th ACM symposium

on computational geometry. San Diego, CA: ACM Press; 2003.

p. 322–8.

[16] Bentley JL. Multidimensional binary search trees used for associative

searching. Communications of the ACM 1975;18(9):509–17.

[17] Arya S, Mount DM, Netanyahu NS, Silverman R, Wu A. An

optimal algorithm for approximate nearest neighbor searching. In:

Proceedings of the 5th annual ACM-SIAM symposium on discrete

algorithms. Arlington, VA, 1994. p. 573–82 (also Journal of the ACM

1998;45(6):891–923).

[18] Xia C, Lu J, Ooi BC, Hu J. GORDER: an efficient method for KNN

join processing. In: VLDB’04: Proceedings of the 30th international

conference on very large data bases. Toronto, Canada: Morgan

Kaufmann; 2004. p. 756–67.

[19] Böhm C, Krebs F. The k-nearest neighbor join: Turbo charging the

KDD process. In: Knowledge and information systems (KAIS), vol.

6. London, UK: Springer; 2004. p. 728–49.

[20] Berchtold S, Böhm C, Keim DA, Kriegel H-P. A cost model for

nearest neighbor search in high-dimensional data space. In: Proceed-

ings of the 16th ACM SIGACT-SIGMOD-SIGART symposium on

principles of database systems (PODS). Tucson, AZ, 1997. p. 78–86.

[21] Böhm C, Krebs F. Supporting KDD applications by the k-nearest

neighbor join. In: Proceedings of international conference on

database and expert systems applications (DEXA), Lecture Notes

in Computer Science, Vol. 2736. Springer, Prague, Czech Republic,

2003. p. 504–16.

[22] Ullman JD, Garcia-Molina H, Widom J. Database systems: the

complete book, Upper Saddle River, NJ: Prentice Hall PTR; 2001.

[23] Roussopoulos N, Leifker D. Direct spatial search on pictorial

databases using packed R-trees. In: Proceedings of the ACM

SIGMOD conference, Austin, TX, 1985. p. 17–31.

[24] Floater MS, Reimers M. Meshless parameterization and surface

reconstruction. Computer Aided Geometric Design 2001;18(2):77–92.

[25] Murio DA. The mollification method and the numerical solutions of

Ill-posed problems. New York, NY: Wiley; 1993.

[26] Cook RL. Shade trees. In: Proceedings of the SIGGRAPH’84

conference. New York, NY: ACM Press; 1984. p. 223–31.

[27] Blinn JF. Simulation of wrinkled surfaces. In: Proceedings of the

SIGGRAPH’78 conference. Atlanta, GA: ACM Press; 1978.

p. 286–92.

[28] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT.

Point set surfaces. In: VIS’01: Proceedings of the conference on

visualization ’01. San Diego, CA: IEEE Computer Society; 2001.

p. 21–8.

[29] Weisstein EW. Box-Muller Transformation, Math World-A Wolfram

Web Resource, Champaign, IL, 1999, hhttp://mathworld.wolfram.

com/Box-MullerTransformation.htmli.

[30] Sebastian TB, Kimia BB. Metric-based shape retrieval in large

databases. In: Kasturi R, Laurendau D, Suen C, editors. Proceedings

of the 16th international conference on pattern recognition, vol. 3,

Quebec City, Canada: IEE Computer Society; 2002. p. 291–6.

[31] Turk G. Generating textures on arbitrary surfaces using reaction-

diffusion. In: Proceedings of the SIGGRAPH’91 conference. Las

Vegas, NV: ACM Press; 1991. p. 289–98.

[32] Garland M, Heckbert P. Surface simplification using quadratic error

metrics. In: Proceedings of the SIGGRAPH’97 conference. Los

Angeles, CA: ACM Press; 1997. p. 209–16.

[33] Pauly M, Gross M, Kobbelt LP. Efficient simplification of point

sampled surfaces. In: VIS’02: Proceedings of the conference on

visualization’02. Boston, MA: IEEE Computer Society; 2002.

p. 163–70.

[34] Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R.

Level of detail for 3D graphics. San Francisco, CA: Morgan

Kaufmann; 2003.

[35] Lloyd S. Least squares quantization in PCM. IEEE Transactions on

Visualization and Computer Graphics 1982;28(2):129–37.

[36] Datar M, Immorlica N, Indyk P, Mirrokni VS. Locality-sensitive

hashing scheme based on p-stable distributions. In: SCG 04:

Proceedings of the twentieth annual symposium on computational

geometry, Brooklyn, NY, 2004. p. 253–62.

[37] Schroeder W, Martin K, Lorensen B. Visualization toolkit. Engle-

wood Cliffs, NJ: Prentice-Hall; 1996.

ARTICLE IN PRESS

J. Sankaranarayanan et al. / Computers & Graphics 31 (2007) 157–174174

Best Journal Paper of 2007 Award

http://www.cs.duke.edu/CGC/workshop97.html
http://www.cs.duke.edu/CGC/workshop97.html
http://mathworld.wolfram.com/Box-MullerTransformation.html
http://mathworld.wolfram.com/Box-MullerTransformation.html

	A fast all nearest neighbor algorithm for applications �involving large point-clouds
	Introduction
	Preliminaries
	Building the locality of a block
	Optimality of the BuildLocality algorithm

	Incremental kNNalgorithm
	Non-incremental kNNalgorithm
	Experimental comparison with other algorithms
	Effect of bucket capacity (B)
	Effect of cache size
	Effect of data set size
	Comparison

	Applications
	Computing surface normals
	Noise removal
	Related applications

	Concluding remarks
	Acknowledgments
	References

