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Abstract

Implicit representations have the potential to represent large volumes succinctly. In this paper we present

a multiresolution and progressive implicit representation of scalar volumetric data using anisotropic

Gaussian radial basis functions (RBFs) defined over an octree. Our representation lends itself well to

progressive level-of-detail representations. Our RBF encoding algorithm based on a Maximum Like-

lihood Estimation (MLE) calculation is non-iterative, scales in a O(n logn) manner, and operates in a

memory-friendly manner on very large datasets by processing small blocks at a time. We also present

a GPU-based ray-casting algorithm for direct rendering from implicit volumes. Our GPU-based im-

plicit volume rendering algorithm is accelerated by early-ray termination and empty-space skipping

for implicit volumes and can render volumes encoded with 16 million RBFs at 1 to 3 frames/second.

The octree hierarchy enables the GPU-based ray-casting algorithm to efficiently traverse using location

codes and is also suitable for view-dependent level-of-detail-based rendering.

1 Introduction

Scientific visualization is currently facing a grand challenge in coping with vast quantities of data arising

from high-fidelity acquisitions and large-scale scientific simulations. Such datasets range from a few gi-

gabytes to several terabytes and are often characterized by an imperative need for interactive exploratory

visualization capabilities. For instance, the Richtmyer-Meshkov instability simulation performed at the

Lawrence Livermore National Laboratory [23] has produced a 2048×2048×1920 data over 273 time

steps. The sheer size of this data makes it a challenge to visualize it on commodity graphics hardware.

We believe that implicit representations offer a powerful model for facilitating interactive visual

exploration of large volumetric datasets. Implicit functions have been used for almost two decades in

visual computing. Introduced as blobby models [1] and metaballs [27], they have grown to be widely

used in games and movies. A nice overview of some of the early work in implicit surfaces can be found
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Figure 1: Renderings from three different levels of an RBF hierarchy for the UNC Head data set. From

left to right, the renderings were generated using 4, 6, and 8 levels from the octree and consist of 561,

20.6 K, and 485 K RBFs.

in [4]. The use of implicit representations for volume modeling and rendering is a recent phenomenon.

Implicit representations offer several advantages for volumes. First, their expressive power makes them

well-suited for trading off memory accesses with computation. This is proving to be a powerful tech-

nique to hide memory latency for modern multi-core architectures. Second, the analytical formulation

of implicit representations is highly amenable to local geometry processing, such as computing first

and higher-order derivatives. Indeed, recent research has established the relationship of such geomet-

ric operators to features such as vortices and shocks by Weiler et al. [33] and the principled design of

transfer functions by Kniss et al. [20, 21]. Third, volumetric implicit representations offer a multi-scale,

and view-dependent capability to control visual detail in an intuitive manner. This is likely to have a

direct implication in devising techniques for facilitating comprehension and reducing clutter in visual

depictions.

In this paper we present an algorithm for succinctly representing and efficiently rendering large

scalar volumetric data using a hierarchy of implicit functions based on anisotropic radial basis functions.

The novel contributions of our work are:

1. A multiresolution representation using anisotropic radial basis functions that can encode a given

volumetric dataset with progressively greater detail. Our representation is well-suited for time-

critical rendering, progressive refinement, view-dependent level-of-detail, and progressive trans-

mission.

2. An O(n logn)-scalable fitting algorithm based on Maximum Likelihood Estimation that can rapidly

fit large datasets in a memory-friendly manner. Specifically, we can fit 5123 dataset in around 20

minutes with a 1.6% RMS error.

3. A GPU-based ray-casting algorithm that can efficiently and directly render from the hierarchical

implicit representation of volumes. Our GPU-based ray-casting algorithm supports acceleration

techniques such as empty-space skipping and early-ray termination with implicit volumes.

4. A multiresolution octree hierarchy over implicit RBFs that can leverage prior work on octree

location codes for efficient ray-casting, obviates the need to store cell boundaries, and enables

view-dependent level-of-detail rendering.

We review related work in section 2. We present our fitting algorithm in section 3 and our direct

volume rendering algorithm in section 4. Finally, we conclude with some suggestions for future work

in section 5.
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2 Related Work

The basic goal of implicit function fitting is to fit a representation f (xi) = di, i = 1, . . . ,n, to surface

or volumetric data, where di are appropriately chosen scalars, such that the level sets of the function

f , given by the values di have some meaning associated either with the geometry or the properties of

the object. When fitting an implicit function to the input data, a local form of the fitting expression

is desirable, since the fit must adapt to local geometrical features. Radial basis functions (RBFs) have

been shown to be a versatile fitting tool in various fields. A strong mathematical basis for their theory

has been established and theorems showing accuracy in various normed spaces have been proven for

both surface and volumetric data [6, 7, 10, 24, 30, 31, 32, 36]. These representations have several nice

properties associated with sensitivity to local features, ability to support different levels of detail, ability

to mitigate noise, ability to incorporate various degrees of smoothness and other priors via regularization

and choice of particular RBFs (e.g., thin plate splines [9]). While these methods are considered to be

accurate, their naive implementations are both expensive to fit, and subsequently evaluate, making them

not very popular methods for fitting large datasets of the type we are dealing with in this paper.

Research by Beatson et al. [5] shows how RBF function fitting and evaluation of the fitted function

can be sped up by an order of magnitude using the fast multipole method (FMM) [12]. They used non-

compactly supported RBFs due to their interpolation and extrapolation properties. Morse et al. [24]

were the first to fit surfaces using compactly-supported RBFs. Due to their local region of influence,

compactly-supported RBFs can permit efficient evaluation and the ability to incorporate local changes to

the fitted function without the need for the FMM data-structures. Co et al. [8] and Jang et al. [16] were

the first to represent scattered and irregular volumetric scalar fields using RBFs. They used Principal

Component Analysis (PCA) [17] to cluster and determine centers for the Gaussian RBFs and used the

Levenberg-Marquardt optimization method to determine the Gaussian RBF variances. Weiler et al. [33]

presented a k-d-tree-based method to fit Gaussian RBFs to an unstructured volumetric vector field. In

addition to using PCA clustering, they select some of their RBF centers to be at peaks and troughs of

low frequencies in the data. They also use an approximate iterative method to quickly solve the system

of equations for the RBF weights. Hong et al. [14] use arbitrarily-oriented elliptical RBFs to fit data on

an irregular grid. The RBF variances and orientations are chosen to match the Voronoi cells of the data

points. PCA is used to create an initial guess for the RBF parameters, which is then refined using an

iterative optimization algorithm. Jang et al. [15] give a method of fitting arbitrarily-oriented elliptical

RBFs using non-linear optimization, and extend it to support vector data.

Rendering of implicit functions has a rich history in visual computing. Ray tracing of implicit sur-

faces has been reasonably well-studied [1, 13, 18, 29, 35]. An alternative to ray-tracing is to sample the

implicit surface with a collection of well-distributed particles and then render such particles. Methods

for carefully sampling the implicit surfaces have been discussed by Witkin and Heckbert [34] as well

as by Turk and O’Brien [32]. Another approach involves converting the implicit functions to polygons

by using marching cubes [22] or continuation methods [2, 3]. The polygons can then be rendered as in

traditional graphics. Direct volume rendering of implicit functions is a relatively new endeavor. Jang et

al. [16] and Weiler et al. [33] have developed GPU-based volume rendering algorithms that proceed in

a slice-by-slice fashion. For each fragment in a slice, a fragment program iterates over RBF parameters

stored in a texture, computes the scalar value at that location, and looks up the corresponding color

from a 1D texture. Neophytou et al. [26] present a splatting-based GPU-accelerated volume rendering

method for arbitrarily-oriented elliptical RBFs. Their method splats each RBF onto each intersecting

slice as a textured polygon and accumulates the splats in a texture buffer. The slice can then be rendered

after classification with a fragment program.

In this paper we present the first GPU-accelerated ray-casting algorithm for direct rendering of

implicit volumes and the first octree-structured RBF representation of regular volume data that lends
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itself well to adaptive and progressive levels of detail.

3 Modelling

We model volume data as a sum of Radial Basis Functions (RBFs). Symbolically, this can be repre-

sented as:

f (x) = w0 +
M

∑
i=1

wi φi(x) (1)

where

x is the position vector of a point in the volume

f (x) is the scalar value at that point

φi is the ith RBF

M is the number of RBFs

w0 is a constant term

wi is the weight of the ith RBF

In this work we have used Gaussian RBFs:

φi(x) = e−r2/2 (2)

3.1 Multiresolution Hierarchical Fitting

Since we are targeting regular volumetric data, we can take advantage of the inherent structure of the

data and fit the RBFs to a multi-resolution octree hierarchy, from low resolution to high. We start by

fitting a single RBF to a 23 resolution downsampled version of the given dataset. This becomes the root

of our RBF hierarchy. We then take a version of the dataset that has been downsampled to 43, evaluate

the initial (root) RBF at each of the 43 data points, and compute the difference between the root RBF

value and the downsampled version. The 43 block of residual data is then divided into eight blocks of 23

data values, and the entire process is repeated for each of these blocks. This is continued using versions

of the data that have been downsampled to 83, 163, etc. (see fig. 2). Each time a new block is fit, the

RBFs in that block and all of its ancestors are sampled at the locations of the data points in the full

resolution data, and the current fitting error is computed. If the error is below a user-defined threshold,

that block is not subdivided any further. Otherwise, the blocks will continue to be subdivided until they

reach the full original data resolution.

This fitting algorithm only ever needs to access the full data in a sequential manner, during the error

evaluation stage. All other operations are performed on one small, fixed-size block of data at a time,

which will likely fit in a memory cache. Besides being memory-friendly, the overall fitting algorithm

also scales in a O(n logn) manner.

In this method we truncate each RBF at the boundary of its octree cell. Due to fitting errors, this

would cause noticeable discontinuities at the borders between octree cells during rendering. To avoid

this, we fit each RBF to not only the data within its 23 block, but also to data within a 1 data point border

around that block (each RBF is thus fitted to 43 data values). The fitting area of each block therefore

overlaps half of each face-adjacent block, one quarter of each edge-adjacent block, and one eighth of

each corner-adjacent block (see fig. 3 for an example on a quadtree). During rendering, the RBF values

are blended together based on the distance from the center of each RBF’s block (see section 4.3).
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(a) (b) (c) (d)

Figure 2: Overview of the fitting process. An RBF is first fit to low-resolution data (a), and the fitting

error is evaluated at the full resolution (b). If the error is too high, additional RBFs are fit at a higher

resolution (c), and their error evaluated (d). In the actual implementation the borders of each block

would overlap neighboring blocks by one data point on each side, giving each block a resolution of 43

rather than 23 – this is omitted in this illustration for clarity.

Figure 3: Blending between quadtree nodes. Only one edge-adjacent node (blue) and one corner-

adjacent node (red) are shown. Sample points within the central block (grey) would be blended with

samples from adjacent blocks whose shaded regions the points fell in.

3.2 Basic Algorithm

In the simplest version of the algorithm the RBF widths σi are identical. In this case, the RBF radius r

is simply:

r = ‖
x−µi

σi

‖ (3)

where

x is the position vector of a point in the volume

µi is the position vector of the ith RBF’s center

σi defines the width of the ith RBF.

Defining the RBF approximation is then only a matter of choosing a constant term w0, RBF weights

wi, RBF centers µi, and RBF widths σi. Some results of this simple algorithm are shown in the first row

of table 2. Some possible choices for the initial value of the constant term are zero, the minimum data

value, or the mean of the data. In our experiments we found that setting the initial value to zero often

produced the best results – this was done for all results reported in this work.

To compute the RBF centers and weights, the following simple algorithm can be used:

1. Perform a linear search over the data to find the data point with the maximum approximation

error. This will be the location of the new RBF’s center.

2. Set the RBF’s weight to the error value at this cell. Since Gaussian RBFs have a value of 1 at their

center, setting the weight in this way will cause the center data point to have zero error.

3. Update error values stored at each data point within the RBF’s radius of influence.

4. Repeat this process until the desired error threshold is reached.
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3.3 Anisotropic Width Selection

A natural extension to the basic algorithm is to allow the widths of the RBFs to vary anisotropically.

This can be accomplished by making σ in equation 1 a vector and allowing it to take on different values

for different dimensions, dividing it componentwise into the x−µi vector. General elliptical RBFs were

used by Hong et al.[14], Jang et al.[15], and Neophytou et al.[26], although we restrict our RBFs to

be axis-aligned, sacrificing some generality for a more compact representation. The effect of using

anisotropic widths is illustrated in table 1.

The simplest way to select the RBF widths is by using a greedy algorithm. For each RBF, we first

initialize the value of each σxi,σyi,σzi to some small number (we use 0.3 times the width of a grid

cell). We then begin iterating repeatedly over the x,y,z dimensions. For each dimension, we increment

the corresponding σi by some small number (we use 0.1 times the width of a grid cell), and check if

the average error in the RBF’s area of effect was made worse by this change. If it was, the change is

reverted, and that dimension is excluded from further iterations. Otherwise, the change is kept, and the

iterations continued. Intuitively, this algorithm can be viewed as blowing up the RBF like a balloon

inside a closed box, with the sides of the box representing the widths at which further inflation along

that axis begins increasing the error.

Alternatively, a fast, non-iterative method of selecting the RBF widths is Maximum Likelihood Esti-

mation (MLE)[19]. In this method, the data to be fit is treated as a histogram of samples from a Gaussian

probability density function with the previously computed mean. The width σ of the probability density

function that would give this set of samples the highest probability of being generated is then computed.

This computation can be performed independently for each dimension, giving σxi,σyi,σzi.

The equations for computing the MLE width for the x dimension are:

U0 = ∑ f

Ux = ∑x f

Uxx = ∑(x−Ux/U0) f

σ2
xi = U0/2Uxx

(4)

where
x is the x coordinate of the data point

f is the data value at that point

Other dimensions are computed similarly.

Since the residual data being fit can take on negative values, we must somehow convert this into

a positive-valued histogram for the MLE computation. We do this by treating negative data values as

zero when the RBF weight is positive, and the opposite when the RBF weight is negative (except then

also taking the absolute value of the data values). The rationale for this is that we would like the RBF’s

region of influence to be restricted to an area in which the data has the same sign as the RBF, since these

are the areas in which the RBF will decrease the fitting error rather than increase it. Setting values of the

histogram to zero outside this area encourages probability distribution widths that do not produce many

samples outside this area, and thus result in RBFs that do not have much influence outside this area.

A comparison between MLE width selection, iterative anisotropic width selection, and iterative

isotropic width selection is given in table 1. The MLE method is clearly comparable in accuracy and

yet is significantly faster to compute.

3.4 Weight selection

Once the RBF center and widths have been chosen, we compute the weights to minimize the sum of

squared errors by forming the following system of linear equations, similar to [16, 33, 24]:
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Data Width Fitting Number RMS

Data Set Size RBF Type Selection Time of RBFs Error

UNC Head 2563 Isotropic Iterative 4.12 m 520 K 1.93%

UNC Head 2563 Anisotropic Iterative 9.48 m 455 K 1.50%

UNC Head 2563 Anisotropic MLE 2.25 m 485 K 1.75%

VHF Torso 5123 Isotropic Iterative 29.9 m 3.48 M 1.68%

VHF Torso 5123 Anisotropic Iterative 58.2 m 2.95 M 1.23%

VHF Torso 5123 Anisotropic MLE 19.1 m 3.22 M 1.60%

LLNL R-M 10243 Isotropic Iterative 2.32 h 1.59 M 2.22%

LLNL R-M 10243 Anisotropic Iterative 5.25 h 1.54 M 1.64%

LLNL R-M 10243 Anisotropic MLE 1.42 h 1.60 M 1.85%

Table 1: Comparison of iterative fitting of isotropic RBFs, iterative fitting of anisotropic RBFs, and

single-step fitting of anisotropic RBFs. See section 3.7 for a description of the data sets. The iterative

fitting method can produce a somewhat better fit, but would take 3-4 times longer.
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where

m is the number of RBFs

n is the number of data cells

x j is the position of the jth data point in the volume

f (x j) is the data value at that point

w0 is the constant term

wi is the weight of the ith RBF

φi is the ith RBF, with center µi and widths σi

If m = n, then this system can be solved exactly. Typically we will have m < n, so in general we

compute the best solution in the least-squares sense through the use of singular-value decomposition.

3.5 Choice of the Basis Function

Gaussian RBFs (as in equation 2) have seen much use in prior work [8, 14, 15, 16, 26, 33], largely

due to the smooth blending that occurs when these RBFs are brought in close proximity to each other.

Since we truncate RBFs at octree cell boundaries and perform explicit blending between the cells, we

do not benefit from this natural blending. However, there are still some desirable properties of this

basis function. First, it decays to zero rather than going off to infinity, so if an octree cell is poorly

fit by its RBF in some region, there is a limit to how much damage the bad RBF can do to the final,

blended result. Second, the derivatives of Gaussian RBFs do not degenerate at higher orders, so these

basis functions are useful if higher-order derivative information needs to be computed. Still, most of our

work is not dependent on the particular choice of basis function, and investigation into other possible

basis functions may prove useful.
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3.6 Binary Representation

Once the RBF representation has been computed, we store it in the following format. The nodes of the

octree from section 3.1 are stored in breadth-first order. Each node contains exactly one RBF and has

either eight or zero children.

We first store a 4-byte integer giving the byte offset to the start of this node’s children. We then store

the maximum and minimum data values contained within the node as two 2-byte integers. The maxi-

mum and minimum values are packed into 2 bytes each by subtracting their minimum value, dividing

by their range, and then multiplying by the maximum size of a 2-byte integer. We next store the constant

term w0 and RBF weight w1, each as a 4-byte float. We then store the x,y,z components of the RBF

mean, each as a 1-byte integer. The packing computation takes into account the node’s size and position

in the octree. For each component we subtract the lowest value it could take on in that node, divide by

the width of the node, and then multiply by the maximum size of a 1-byte integer. Finally, we store the

σx,σy,σz width factors, each as a 4-byte float. This gives a total size of 31 bytes per node, which we pad

to 32 bytes so that it fits evenly into two 16-byte texture look-ups. This packing is illustrated in figure 4.

At the start of the file we store a header giving the number of levels in the octree and the minimum

values and ranges of the node maximums and minimums, to allow the packing to be undone.

Byte Offset
to Children

Max/Min

w0

w1

Mean x,y,z

Padding

Width x,y,z

0 32

4 2 2 4 4 1 1 1 1 4 4 4

Figure 4: RBF and octree parameters packed into 32 bytes.

3.7 Fitting Results

Data File Fitting Number RBF File RMS

Data Set Size Size Time of RBFs Size Error

UNC Head 1283 4 MB 0.28 m 91.4 K 2.8 MB 2.22%

UNC Head 2563 32 MB 1.90 m 485 K 15 MB 1.75%

VHF Torso 1283 4 MB 0.38 m 109 K 3.4 MB 2.14%

VHF Torso 2563 32 MB 2.10 m 520 K 16 MB 2.00%

VHF Torso 5123 256 MB 16.2 m 3.22 M 99 MB 1.60%

LLNL R-M 1283 2 MB 0.22 m 62.2 K 1.9 MB 5.24%

LLNL R-M 2563 16 MB 1.52 m 402 K 13 MB 4.37%

LLNL R-M 5123 128 MB 11.3 m 2.58 M 79 MB 3.31%

LLNL R-M 10243 1024 MB 85.3 m 16.0 M 489 MB 1.85%

Table 2: Fitting results for several different data sets using anositropic MLE-based RBF width selection.

For comparison, the VHF Torso and LLNL R-M data sets have been downsampled to several different

resolutions prior to fitting.
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We have tested our RBF fitting implementation on three different data sets. The first (UNC Head) is

a CT scan of a human head from the University of North Carolina. This data set originally consisted of

113 slices, with each slice being a 2562 array of 16-bit integers (although only 12 bits of precision are

actually used). We linearly interpolated additional slices between the existing ones and duplicated the

final slice several times to produce a data set of size 2563. In our tests we used this data set as well as a

version downsampled to 1283.

The second data set (VHF Torso) is a 5123 block of the torso area of the Female CT data set from

the Visible Human Project[25], in the same format as the UNC Head data. In our tests we used both the

full 5123 version and versions downsampled to 2563 and 1283.

The third data set (LLNL R-M) is time step 100 from the Richtmyer-Meshkov Instability data set

from LLNL[23], which consists of an array of 2048× 2048× 1920 8-bit integers. We padded this to

20483 and then downsampled it to several different resolutions for testing.

We performed our fittings on a 64-bit Linux machine with dual Intel Xeon 3.0 GHz CPUs and 8 GB

of RAM. As our fitting program is single threaded, it can only make use of one CPU.

Fitting results are given in table 2. For most of the data sets our fitting method achieves a reduction

in file size of about 50% with an RMS error of about 1%-2%. An exception to this was the lower

resolutions of the LLNL R-M data set. We suspect the reason for this is that these low resolution

versions contain sharp, large-magnitude discontinuities which are not amenable to fitting with smooth

Gaussian RBFs.

It is difficult to compare the efficiency of our fitting results with previous work due to a lack of prior

reported fitting times. One exception to this is Hong et al. [14] who report fitting at the rate of 1300

grid points per minute. Although our results are several orders of magnitude faster, this is not a fair

comparison since they are fitting unstructured data while we fit structured.

4 Rendering

We use ray-casting to render implicit RBF-encoded volumes. Data values at points in the volume are

computed directly from the RBF representation without reconstructing the full data set in memory.

Specifcally, the scalar value at a point is computed by summing up the values of all RBFs that overlap

that point. The gradient vectors can be computed in a similar fashion, by summing the gradients of

all RBFs that overlap the sample point (this works because the gradient operator distributes across

summations). This sampling method can then be used to implement any rendering scheme that works

by sampling data values and gradients at various points, such as direct volume rendering or point-based

isosurface rendering.

4.1 GPU Direct Volume Rendering

We have implemented a GPU direct volume rendering algorithm using NVIDIA’s new CUDA GPU

programming system. Our implementation supports piecewise-linear transfer functions, gradient-based

lighting, early ray termination based on accumulated opacity, and empty-space skipping based on check-

ing whether the range of values contained within an octree cell overlaps the range which, given the

transfer function, would produce any contribution to cumulative color or opacity. We also perform

view-dependent level-of-detail by adjusting the ray step size and maximum octree depth based on the

current distance along the ray.

Given an eye position and viewing direction, we construct ray origin and direction vectors for a

perspective projection on the GPU and store them in GPU memory. We then execute a GPU kernel that

traces each ray in parallel and writes the final resulting colors to GPU memory.
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The kernel first sets the initial sample point to the ray’s intersection with the data volume’s bounding

cube, and then begins stepping along the ray. At each sample point the kernel executes a space skipping

routine that descends through the octree cells containing that point. For each cell, it makes a single 16-

byte texture look-up and unpacks some parameters as described in section 3.6. It then checks whether

the cell’s range of data values would produce any contribution to the final color or opacity. If not, the

kernel computes the ray’s intersection with that octree cell and moves the sample point just beyond

the intersection point. This is repeated until the skipping routine encounters a sample point at which it

decends all the way through the octree.

The kernel then evaluates the scalar field and its gradient at the current sample point. This simply

requires traversing the octree from the root to a leaf, evaluating the value and gradient of the RBF stored

in each cell at the location of the sample point and summing up these values. We make use of the

efficient location-code-based octree traversal methods of Frisken and Perry[11]. For each octree cell the

kernel makes two 16-byte texture look-ups and unpacks some of the parameters as described in section

3.6. Finally, we sample color and opacity values from the transfer function using linear interpolation

and apply diffuse, gradient-based lighting.

4.2 View-Dependent Level of Detail

Figure 5: Comparison of varying amounts of view-dependent Level of Detail reduction (see section 4.2)

for the 10243 LLNL R-M data set. The top row shows the renderings with the LOD reduction applied.

The bottom row shows which LOD is being used in which area of the volume by color coding— from

front to back, the colors represent levels of detail generated from 10, 9, 8, and 7 levels of the octree.

From left to right, the rendering times are 0.59s, 0.53s, 0.48s, and 0.44s.

Our multi-resolution RBF hierarchy allows us to implement view-dependent level-of-detail render-

ing by reducing the depth in the octree that we visit based on the distance along the ray. Every time

a certain amount of distance has been traversed, we reduce the maximum depth in the octree that we

can visit by one level. To avoid level-of-detail transition discontinuities one can store the sample value

computed at one level above the current level during the octree traversal, and blend between this sample

and the final sample based on the distance from the previous level-of-detail transition. We experimented
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with this blending, but found that in practice the level-of-detail transitions tended to occur far enough

away from the viewer that the discontinuities were not perceptible, even without blending. We did not

use level-of-detail blending for the images and results in this paper.

In addition to decreasing the octree depth based on the distance along the ray, we also double the

ray step size every time we decrease the maximum depth by one level. We account for this during the

incremental updating of cumulative color and opacity by keeping track of the integer ratio of the current

step size to the original step size and iterating our incremental updates this many times at every step,

using the same sample color and opacity values.

Screen shots of renderings using various amounts of view-dependent level-of-detail reduction and

rendering rates are given in fig. 5.

4.3 Blending

Truncating the RBFs at octree cell boundaries can lead to visually noticeable discontinuities. To resolve

this, we take into account data in adjacent cells when fitting each cell’s RBF (see section 3.1). Then, for

each sample point, in addition to computing a sample value from the RBFs in that point’s octree cells,

we also compute sample values at that position from the RBFs in adjacent octree cells. We implement

this by simply altering the location code of the sample point to the location code of a point in each

adjacent cell.

Since each cell’s overlap region extends halfway into each adjacent cell, at each sample point there

is the possibility of blending with up to three face-adjacent cells, three edge-adjacent cells, and one

corner-adjacent cell. The contribution of each of the adjacent cells is linearly weighted based on the

distance from the sample point to the corresponding face, edge, or corner (see fig. 3 for an example on

a quadtree). This blending scheme is similar to the one used in Ohtake et al.’s multi-level partition of

unity implicits[28].

Figure 6: Comparison of (left to right) no blending, four-sample blending, and eight-sample blending

(see section 4.3) for the 2563 UNC Head and 10243 LLNL R-M data sets. Rendering times are given in

table 3.
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Rendering

Data Set Blending Type Time

LLNL R-M One-Sample 0.37 s

LLNL R-M Four-Sample 0.72 s

LLNL R-M Eight-Sample 1.11 s

UNC Head One-Sample 0.10 s

UNC Head Four-Sample 0.21 s

UNC Head Eight-Sample 0.33 s

Table 3: Comparison of no blending, four-sample blending, and eight-sample blending (see section 4.3)

for the 2563 UNC Head data set and the 10243 LLNL R-M data set. Screen shots are given in fig. 6

While completely smooth blending requires blending across faces, edges, and corners, many of the

discontinuities can be resolved by simply blending across faces. This reduces the number of samples

required per point from eight (1 local + 3 face + 3 edge + 1 corner) to four, reducing rendering time by

about a factor of two. A comparison between using no blending, four-sample blending, and eight-sample

blending is given in fig. 6 and table 3.

4.4 Rendering Results

Figure 7: Rendering results using three different transfer functions for the 5123 VHF Torso and the 2563

UNC Head. Rendering times and other details are given in table 4.

Unless stated otherwise, all renderings were done with MLE-fitted data (see section 3.3), four-

sample blending (see section 4.3), and an image resolution of 5122. Renderings were performed using

a beta version of NVIDIA’s CUDA drivers on a GeForce 8800 GTX with 768 MB of RAM. Rendering

12



Transfer Data Rendering

Data Set Function Size Step Size Time

UNC Head Skin 2563 384−1 0.45 s

UNC Head Skin/Bones 2563 384−1 0.67 s

UNC Head Bones 2563 384−1 0.21 s

VHF Torso Skin 2563 384−1 0.32 s

VHF Torso Skin/Bones 2563 384−1 1.09 s

VHF Torso Bones 2563 384−1 0.30 s

VHF Torso Skin 5123 768−1 0.54 s

VHF Torso Skin/Bones 5123 768−1 2.15 s

VHF Torso Bones 5123 768−1 0.53 s

LLNL R-M Isosurface 2563 384−1 0.26 s

LLNL R-M Isosurface 5123 768−1 0.40 s

LLNL R-M Isosurface 10243 1536−1 0.72 s

Table 4: Rendering results for several different transfer functions and data sets of several different sizes.

All renderings were done using four-sample blending (see section 4.3). Step Size is the length of a step

along the ray given that the data volume is a unit cube. Images of several of these data sets are given in

fig. 7.

times for several different data sets and transfer functions are given in table 4, and screen shots are given

in fig. 7.

We found that the ray step size required to avoid artifacts was dependent on the size of the smallest

octree nodes in the fitting, which is related to the amount of high frequencies in the fitted data. We

therefore needed to use smaller steps for higher resolution data. For a given data set and transfer func-

tion, most of the differences in rendering rate between original data resolutions are accounted for by the

difference in step size.

5 Future Work

A great deal of work has been done in the area of RBF fitting, for example in the machine-learning

community. It seems likely that some of that work could further benefit procedural encoding through

RBFs. Possible improvements include adding the ability to fit to a given error bound and removing the

need to perform explicit blending between octree cells. It also might prove beneficial to investigate basis

functions other than the Gaussian RBFs.

Another area of future work might be to investigate 4D fitting of time-varying data sets. Since these

data sets often contain a large amount of temporal coherence, fitting multiple time steps simultaneously

could result in a significant reduction in the number of basis functions required to represent the data set.

Finally, there are likely many possible uses of the higher-level information provided by the RBF

representation that have not yet been explored, perhaps involving the use of high order derivatives that

would have been too expensive to compute when using traditional volume rendering techniques.
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