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Abstract

We propose the idea of simplification envelopes for gen-
erating a hierarchy of level-of-detail approximations for a
given polygonal model. Our approach guarantees that all
points of an approximation are within a user-specifiable
distance � from the original model and that all points of the
original model are within a distance � from the approxima-
tion. Simplificationenvelopes provide a general framework
within which a large collection of existing simplification
algorithms can run. We demonstrate this technique in con-
junction with two algorithms, one local, the other global.
The local algorithm provides a fast method for generating
approximations to large input meshes (at least hundreds of
thousands of triangles). The global algorithm provides the
opportunity to avoid local “minima” and possibly achieve
better simplifications as a result.

Each approximation attempts to minimize the total num-
ber of polygons required to satisfy the above � constraint.
The key advantages of our approach are:

� General technique providing guaranteed error bounds
for genus-preserving simplification

� Automation of both the simplification process and the
selection of appropriate viewing distances

� Prevention of self-intersection
� Preservation of sharp features
� Allows variation of approximation distance across dif-

ferent portions of a model

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation — Display
algorithms; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling — Curve, surface, solid,
and object representations.
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1 Introduction

We present the framework of simplification envelopes for
computing various levels of detail of a given polygonal
model. These hierarchical representations of an object can
be used in several ways in computer graphics. Some of
these are:

� Use in a level-of-detail-based rendering algorithm for
providing desired frame update rates [4, 9].

� Simplifyingtraditionallyover-sampled models such as
those generated from volume datasets, laser scanners,
and satellites for storage and reducing CPU cycles
during processing, with relatively few or no disadvan-
tages [10, 11, 13, 15, 21, 23].

� Using low-detail approximations of objects for illumi-
nation algorithms, especially radiosity [19].

Simplification envelopes are a generalization of offset
surfaces. Given a polygonal representation of an object,
they allow the generation of minimal approximations that
are guaranteed not to deviate from the original by more than
a user-specifiable amount while preserving global topol-
ogy. We surround the original polygonal surface with two
envelopes, then perform simplification within this volume.
A sample application of the algorithms we describe can be
seen in Figure 1.

Figure 1: A level-of-detail hierarchy for the rotor from a brake
assembly.
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Such an approach has several benefits in computer graph-
ics. First, one can very precisely quantify the amount of
approximation that is tolerable under given circumstances.
Given a user-specified error in number of pixels of devia-
tion of an object’s silhouette, it is possible to choose which
level of detail to view from a particular distance to maintain
that pixel error bound. Second, this approach allows one a
fine control over which regions of an object should be ap-
proximated more and which ones less. This could be used
for selectively preserving those features of an object that
are perceptually important. Third, the user-specifiable tol-
erance for approximation is the only parameter required to
obtain the approximations; fine tweaking of several param-
eters depending upon the object to be approximated is not
required. Thus, this approach is quite useful for automat-
ing the process of topology-preserving simplifications of a
large number of objects. This problem of scalability is im-
portant for any simplification algorithm. One of our main
goals is to create a method for simplification which is not
only automatic for large datasets, but tends to preserve the
shapes of the original models.

The rest of the paper is organized in the following man-
ner: we survey the related work in Section 2, explain our
assumptions and terminology in Section 3, describe the en-
velope and approximation computations in Sections 4 and
5, present some useful extentions to and properties of the
approximation algorithms in Section 6, and explain our im-
plementation and results in Section 7.

2 Background

Approximation algorithms for polygonal models can be
classified into two broad categories:

� Min-# Approximations: For this version of the ap-
proximation problem, given some error bound �, the
objective is to minimize the number of vertices such
that no point of the approximation A is farther than �
distance away from the input model I.

� Min-� Approximations: Here we are given the num-
ber of vertices of the approximationA and the objec-
tive is to minimize the error, or the difference, between
A and I.

Previous work in the area of min-# approximations has
been done by [6, 20] where they adaptively subdivide a
series of bicubic patches and polygons over a surface until
they fit the data within the tolerance levels.

In the second category, work has been done by several
groups. Turk [23] first distributes a given number of vertices
over the surface depending on the curvature and then re-
triangulates them to obtain the final mesh. Schroeder et
al. [21] and Hinker and Hansen [13] operate on a set of
local rules — such as deleting edges or vertices from almost
coplanar adjacent faces, followed by local re-triangulation.
These rules are applied iteratively till they are no longer
applicable. A somewhat different local approach is taken in
[18] where vertices that are close to each other are clustered
and a new vertex is generated to represent them. The mesh
is suitably updated to reflect this.

Hoppe et al. [14] proceed by iteratively optimizing an
energy function over a mesh to minimize both the distance
of the approximating mesh from the original, as well as the
number of approximating vertices. An interesting and ele-
gant solution to the problem of polygonal simplification by
using wavelets has been presented in [7, 8] where arbitrary
polygonal meshes are first subdivided into patches with

subdivision connectivity and then multiresolution wavelet
analysis is used over each patch. This wavelet approach
preserves global topology.

In computational geometry, it has been shown that com-
puting the minimal-facet �-approximation is NP-hard for
both convex polytopes [5] and polyhedral terrains [1]. Thus,
algorithms to solve these problems have evolved around
finding polynomial-time approximations that are close to
the optimal.

Let ko be the size of a min-# approximation. An
algorithm has been given in [16] for computing an �-
approximation of size O(ko logn) for convex polytopes.
This has recently been improved by Clarkson in [3]; he
proposes a randomized algorithm for computing an approx-
imation of size O(ko logko) in expected time O(kon

1+�)
for any � > 0 (the constant of proportionality depends on
�, and tends to+1 as � tends to 0). In [2] Brönnimann and
Goodrich observed that a variant of Clarkson’s algorithm
yields a polynomial-time deterministic algorithm that com-
putes an approximation of size O(k0). Working with poly-
hedral terrains, [1] present a polynomial-time algorithm
that computes an �-approximation of size O(ko logko) to a
polyhedral terrain.

Our work is different from the above in that it allows
adaptive, genus-preserving, �-approximation of arbitrary
polygonal objects. Additionally, we can simplify bordered
meshes and meshes with holes. In terms of direct compari-
son with the global topologypreserving approach presented
in [7, 8], for a given � our algorithm has been empirically
able to obtain “reduced" simplifications, which are much
smaller in output size (as demonstrated in Section 7). The
algorithm in [18] also guarantees a bound in terms of the
Hausdorff metric. However, it is not guaranteed to preserve
the genus of the original model.

3 Terminology and Assumptions
Let us assume thatI is a three-dimensional compact and ori-
entable object whose polygonal representation P has been
given to us. Our objective is to compute a piecewise-linear
approximationA of P. Given two piecewise linear objects
P andQ, we say thatP andQ are �-approximationsof each
other iff every point on P is within a distance � of some
point of Q and every point on Q is within a distance � of
some point ofP. Our goal is to outline a method to generate
two envelope surfaces surroundingP and demonstrate how
the envelopes can be used to solve the following polygonal
approximation problem. Given a polygonal representation
P of an object and an approximation parameter �, generate
a genus-preserving �-approximationA with minimal num-
ber of polygons such that the vertices of A are a subset of
vertices of P.

We assume that all polygons in P are triangles and that
P is a well-behaved polygonal model, i.e., every edge has
either one or two adjacent triangles, no two triangles inter-
penetrate, there are no unintentional “cracks" in the model,
no T-junctions, etc.

We also assume that each vertex ofP has a single normal
vector, which must lie within 90o of the normal of each of
its surrounding triangles. For the purpose of rendering,
each vertex may have either a single normal or multiple
normals. For the purpose of generating envelope surfaces,
we shall compute a single vertex normal as a combination
of the normals of the surrounding triangles.

The three-dimensional �-offset surface for a parametric
surface

f (s; t) = (f1(s; t); f2(s; t); f3(s; t));



whose unit normal to f is

n(s; t) = (n1(s; t); n2(s; t); n3(s; t));

is defined as f �(s; t) = (f�1 (s; t); f
�
2 (s; t); f

�
3 (s; t)), where

f�i (s; t) = fi(s; t) + �ni(s; t):

Note that offset surfaces for a polygonal object can self-
intersect and may contain non-linear elements. We define
a simplification envelope P(+�) (respectively P(��)) for
an object I to be a polygonal surface that lies within a dis-
tance of � from every point p on I in the same (respectively
opposite) direction as the normal to I at p. Thus, the simpli-
fication envelopes can be thought of as an approximation to
offset surfaces. Henceforth we shall refer to simplification
envelope by simply envelope.

Let us refer to the triangles of the given polygonal repre-
sentation P as the fundamental triangles. Let e = (v1; v2)
be an edge of P. If the normals n1;n2 to I at both v1 and
v2, respectively, are identical, then we can construct a plane
�e that passes through the edge e and has a normal that is
perpendicular to that of v1. Thus v1, v2 and their normals
all lie along �e. Such a plane defines two half-spaces for
edge e, say �+e and ��e (see Fig 2(a)). However, in general
the normals n1 and n2 at the vertices v1 and v2 need not
be identical, in which case it is not clear how to define the
two half-spaces for an edge. One choice is to use a bilinear
patch that passes through v1 and v2 and has a tangent n1 at
v1 and n2 at v2. Let us call such a bilinear patch for e as the
edge half-space �e. Let the two half-spaces for the edge e
in this case be �+e and ��e . This is shown in Fig 2(b).
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Figure 2: Edge Half-spaces

Let the vertices of a fundamental triangle be v1, v2, and
v3. Let the coordinates and the normal of each vertex v be
represented as c(v) andn(v), respectively. The coordinates
and the normal of a (+�)-offset vertex v+i for a vertex vi
are: c(v+i ) = c(vi) + �n(vi), and n(v+i ) = n(vi). The
(��)-offset vertex can be similarly defined in the opposite
direction. These offset vertices for a fundamental triangle
are shown in Figure 3.

Now consider the closed object defined by v+i and v�i ,
i = 1; 2; 3. It is defined by two triangles, at the top and
bottom, and three edge half-spaces. This object contains
the fundamental triangle (shown shaded in Figure 3) and
we will henceforth refer to it as the fundamental prism.

4 Envelope Computation
In order to preserve the input topology of P, we desire
that the simplification envelopes do not self-intersect. To
meet this criterion we reduce our level of approximation
at certain places. In other words, to guarantee that no
intersections amongst the envelopes occur, we have to be
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Figure 3: The Fundamental Prism

content at certain places with the distance betweenP and the
envelope being smaller than �. This is how simplification
envelopes differ from offset surfaces.

We construct our envelope such that each of its trian-
gles corresponds to a fundamental triangle. We offset each
vertex of the original surface in the direction of its normal
vector to transform the fundamental triangles into those of
the envelope.

If we offset each vertex vi by the same amount �, to
get the offset vertices v+i and v�i , the resulting envelopes,
P(+�) and P(��), may contain self-intersections because
one or more offset vertices are closer to some non-adjacent
fundamental triangle. In other words, if we define a Voronoi
diagram over the fundamental triangles of the model, the
condition for the envelopes to intersect is that there be at
least one offset vertex lying in the Voronoi region of some
non-adjacent fundamental triangle. This is shown in Fig-
ure 4 by means of a two-dimensional example. In the figure,
the offset vertices b+ and c+ are in the Voronoi regions of
edges other than their own, thus causing self-intersection of
the envelope.
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Figure 4: Offset Surfaces

Once we make this observation, the solution to avoid self-
intersections becomes quite simple — just do not allow
an offset vertex to go beyond the Voronoi regions of its
adjacent fundamental triangles. In other words, determine
the positive and negative � for each vertex vi such that
the vertices v+i and v�i determined with this new � do not
lie in the Voronoi regions of the non-adjacent fundamental
triangles.

While this works in theory, efficient and robust com-
putation of the three-dimensional Voronoi diagram of the
fundamental triangles is non-trivial. We now present two
methods for computing the reduced � for each vertex, the
first method analytical, and the second numerical.



4.1 Analytical � Computation
We adopt a conservative approach for recomputing the � at
each vertex. This approach underestimates the values for
the positive and negative �. In other words, it guarantees
the envelope surfaces not to intersect, but it does not guar-
antee that the � at each vertex is the largest permissible �.
We next discuss this approach for the case of computing
the positive � for each vertex. Computation of negative �
follows similarly.

Consider a fundamental triangle t. We define a prism
tp for t, which is conceptually the same as its fundamental
prism, but uses a value of 2� instead of � for defining the
envelope vertices. Next, consider all triangles ∆i that do
not share a vertex with t. If ∆i intersects tp above t (the
directions above and below t are determined by the direction
of the normal to t, above is in the same direction as the
normal to t), we find the point on ∆i that lies within tp and
is closest to t. This point would be either a vertex of ∆i,
or the intersection point of one of its edges with the three
sides of the prism tp. Once we find the point of closest
approach, we compute the distance �i of this point from t.
This is shown in Figure 5.
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Figure 5: Computation of �i

Once we have done this for all ∆i, we compute the new
value of the positive � for the triangle t as �new = 1

2 mini �i.
If the vertices for this triangle t have this value of positive �,
their positive envelope surface will not self-intersect. Once
the �new(t)values for all the triangles thave been computed,
the �new(v) for each vertex v is set to be the minimum of
the �new(t) values for all its adjacent triangles.

We use an octree in our implementation to speed up the
identification of triangles ∆i that intersect a given prism.

4.2 Numerical � Computation
To compute an envelope surface numerically, we take an it-
erative approach. Our envelope surface is initially identical
to the input model surface. In each iteration, we sequen-
tially attempt to move each envelope vertex a fraction of
the � distance in the direction of its normal vector (or the
opposite direction, for the inner envelope). This effectively
stretches or contracts all the triangles adjacent to the vertex.
We test each of these adjacent triangles for intersection with
each other and the rest of the model. If no such intersections
are found, we accept the step, leaving the vertex in this new
position. Otherwise we reject it, moving the vertex back
to its previous position. The iteration terminates when all
vertices have either moved � or can no longer move.

In an attempt to guarantee that each vertex gets to move
a reasonable amount of its potential distance, we use an

adaptive step size. We encourage a vertex to move at least
K (an arbitrary constant which is scaled with respect to �
and the size of the object) steps by allowing it to reduce its
step size. If a vertex has moved less than K steps and its
move is been rejected, it divides its step size in half and tries
again (with some maximum number of divides allowed on
any particular step). Notice that if a vertex moves i steps
and is rejected on the (i+ 1)st step, we know it has moved
at least i=(i+ 1) % of its potential distance, so K=(K + 1)
which is a lower bound of sorts. It is possible, though rare,
for a vertex to move less than K steps, if its current position
is already quite close to another triangle.

Each vertex also has its own initial step size. We first
choose a global, maximum step size based on a global prop-
erty: either some small percentage of the object’s bounding
box diagonal length or �=K, whichever is smaller. Now
for each vertex, we calculate a local step size. This local
step size is some percentage of the vertex’s shortest incident
edge (only those edges within 90o of the offset direction are
considered). We set the vertex’s step size to the minimum
of the global step size and its local step size. This makes it
likely that each vertex’s step size is appropriate for a step
given the initial mesh configuration.

This approach to computing an envelope surface is ro-
bust, simple to implement (if difficult to explain), and fair
to all the vertices. It tends to maximize the minimum off-
set distance amongst the envelope vertices. It works fairly
well in practice, though there may still be some room for
improvement in generating maximal offsets for thin objects.
Figure 6 shows internal and external envelopes computed
for three values of � using this approach.

As in the analytical approach, a simple octree data struc-
ture makes these intersection tests reasonably efficient, es-
pecially for models with evenly sized triangles.

5 Generation of Approximation
Generating a surface approximation typically involves start-
ing with the input surface and iteratively making modifica-
tions to ultimately reduce its complexity. This process may
be broken into two main stages: hole creation, and hole
filling. We first create a hole by removing some connected
set of triangles from the surface mesh. Then we fill the hole
with a smaller set of triangles, resulting in some reduction
of the mesh complexity.

We demonstrate the generality of the simplification en-
velope approach by designing two algorithms. The hole
filling stages of these algorithms are quite similar, but their
hole creation stages are quite different. The first algorithm
makes only local choices, creating relatively small holes,
while the second algorithm uses global information about
the surface to create maximally-sized holes. These design
choices produce algorithms with very different properties.

We begin by describing the envelope validity test used to
determine whether a candidate triangle is valid for inclusion
in the approximation surface. We then proceed to the two
example simplification algorithms and a description of their
relative merits.

5.1 Validity Test
A candidate triangle is one which we are considering for
inclusion in an approximation to the input surface. Valid
candidate triangles must lie between the two envelopes.
Because we construct candidate triangles from the vertices
of the original model, we know its vertices lie between
the two envelopes. Therefore, it is sufficient to test the
candidate triangle for intersections with the two envelope



Inner Envelopes � Outer Envelopes
Figure 6: Simplification envelopes for various �

surfaces. We can perform such tests efficiently using a
space-partitioning data structure such as an octree.

A valid candidate triangle must also not cause a self-
intersection in our surface, Therefore, it must not intersect
any triangle of the current approximation surface.

5.2 Local Algorithm
To handle large models efficiently within the framework
of simplification envelopes we construct a vertex-removal-
based local algorithm. This algorithm draws heavily on
the work of [21], [23], and [14]. Its main contributions
are the use of envelopes to provide global error bounds as
well as topology preservation and non-self-intersection. We
have also explored the use of a more exhaustive hole-filling
approach than any previous work we have seen.

The local algorithm begins by placing all vertices in
a queue for removal processing. For each vertex in the
queue, we attempt to remove it by creating a hole (remov-
ing the vertex’s adjacent triangles) and attempting to fill it.
If we can successfully fill the hole, the mesh modification
is accepted, the vertex is removed from the queue, and its
neighbors are placed back in the queue. If not, the vertex is
removed from the queue and the mesh remains unchanged.
This process terminates when the global error bounds even-
tually prevent the removal of any more vertices. Once the
vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing
all adjacent triangles. We begin the hole-filling process by
generating all possible triangles formed by combinations

of the vertices on the hole boundary. This is not strictly
necessary, but it allows us to use a greedy strategy to favor
triangles with nice aspect ratios. We fill the hole by choos-
ing a triangle, testing its validity, and recursively filling the
three (or fewer) smaller holes created by adding that trian-
gle into the hole (see figure 7). If a hole cannot be filled
at any level of the recursion, the entire hole filling attempt
is considered a failure. Note that this is a single-pass hole
filling strategy; we do not backtrack or undo selection of a
triangle chosen for filling a hole. Thus, this approach does
not guarantee that if a triangulation of a hole exists we will
find it. However, it is quite fast and works very well in
practice.

A

B C

Figure 7: Hole filling: adding a triangle into a hole creates up
to three smaller holes

We have compared the above approach with an exhaus-
tive approach in which we tried all possible hole-filling tri-
angulations. For simplifications resulting in the removal of
hundreds of vertices (like highly oversampled laser-scanned
models), the exhaustive pass yielded only a small improve-
ment over the single-pass heuristic. This sort of confirma-
tion reassures us that the single-pass heuristic works well
in practice.

5.3 Global Algorithm
This algorithm extends the algorithm presented in [3] to
non-convex surfaces. Our major contribution is the use of
simplification envelopes to bound the error on a non-convex
polygonal surface and the use of fundamental prisms to
provide a generalized projection mechanism for testing for
regions of multiple covering (overlaps). We present only a
sketch of the algorithm here ; see [24] for the full details.

We begin by generating all possible candidate triangles
for our approximation surface. These triangles are all 3-
tuples of the input vertices which do not intersect either of
the offset surfaces. Next we determine how many vertices
each triangle covers. We rank the candidate triangles in
order of decreasing covering.

We then choose from this list of candidate triangles in a
greedy fashion. For each triangle we choose, we create a
large hole in the current approximation surface, removing
all triangles which overlap this candidate triangle. Now
we begin the recursive hole-filling process by placing this
candidate triangle into the hole and filling all the subholes
with other triangles, if possible. One further restriction in
this process is that the candidate triangle we are testing
should not overlap any of the candidate triangles we have
previously accepted.

5.4 Algorithm Comparison
The local simplification algorithm is fast and robust enough
to be applied to large models. The global strategy is the-
oretically elegant. While the global algorithm works well
for small models, its complexity rises at least quadratically,
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Figure 8: Curve at local minimum of approximation

making it prohibitive for larger models. We can think of the
simplification problem as an optimization problem as well.
A purely local algorithm may get trapped in a local “min-
imum” of simplification, while an ideal global algorithm
will avoid all such minima.

Figure 8 shows a two-dimensional example of a curve for
which a local vertex removal algorithm might fail, but an
algorithm that globally searches the solutionspace will suc-
ceed in finding a valid approximation. Any of the interior
vertices we remove would cause a new edge to penetrate
an envelope curve. But if we remove all of the interior
vertices, the resulting edge is perfectly acceptable.

This observation motivates a wide range of algorithms of
which our local and global examples are the two extremes.
We can easily imagine an algorithm that chooses nearby
groups of vertices to remove simultaneously rather than
sequentially. This could potentially lead to increased speed
and simplification performance. However, choosing such
sets of vertices remains a challenging problem.

6 Additional Features

Envelope surfaces used in conjunction with simplification
algorithms are powerful, general-purpose tools. As we will
now describe, they implicitly preserve sharp edges and can
be extended to deal with bordered surfaces and perform
adaptive approximations.

6.1 Preserving Sharp Edges
One of the important properties in any approximation
scheme is the way it preserves any sharp edges or normal
discontinuities present in the input model. Simplification
envelopes deal gracefully with sharp edges (those with a
small angle between their adjacent faces). When the � tol-
erance is small, there is not enough room to simplify across
these sharp edges, so they are automatically preserved. As
the tolerance is increased, it will eventually be possible to
simplify across the edges (which should no longer be vis-
ible from the appropriate distance). Notice that it is not
necessary to explicitly recognize these sharp edges.

6.2 Bordered Surfaces
A bordered surface is one containing points that are home-
omorphic to a half-disc. For polygonal models, this corre-
sponds to edges that are adjacent to a single face rather than
two faces. Depending on the context, we may naturally
think of this as the boundary of some plane-like piece of a
surface, or a hole in an otherwise closed surface.

The algorithms described in 5 are sufficient for closed
triangle meshes, but they will not guarantee our global er-
ror bound for meshes with borders. While the envelopes
constrain our error with respect to the normal direction

of the surface, bordered surfaces require some additional
constraints to hold the approximation border close to the
original border. Without such constraints, the border of the
approximation surface may “creep in,” possibly shrinking
the surface out of existence.

In many cases, the complexity of a surface’s border
curves may become a limiting factor in how much we can
simplify the surface, so it is unacceptable to forgo simpli-
fying these borders.

We construct a set of border tubes to constrain the error
in deviation of the border curves. Each border is actually
a cyclic polyline. Intuitively speaking, a border tube is a
smooth, non-self-intersecting surface around one of these
polylines. Removing a border vertex causes a pair of border
edges to be replaced by a single border edge. If this new
border edge does not intersect the relevant border tube, we
may safely attempt to remove the border vertex.

To construct a tube we define a plane passing through
each vertex of the polyline. We choose a coordinate system
on this plane and use that to define a circular set of vertices.
We connect these vertices for consecutive planes to con-
struct our tube. Our initial tubes have a very narrow radius
to minimize the likelihood of self-intersections. We then
expand these narrow tubes using the same technique we
used previously to construct our simplification envelopes.

The difficult task is to define a coordinate system at
each polyline vertex which encourages smooth, non-self-
intersecting tubes. The most obvious approach might be to
use the idea of Frenet frames from differential geometry to
define a set of coordinate systems for the polyline vertices.
However, Frenet frames are meant for smooth curves. For
a jagged polyline, a tube so constructed often has many
self-intersections.

Instead, we use a projection method to minimize the
twist between consecutive frames. Like the Frenet frame
method, we place the plane at each vertex so that the normal
to the plane approximates the tangent to the polyline. This
is called the normal plane.

At the first vertex, we choose an arbitrary orthogonal pair
of axes for our coordinate system in the normal plane. For
subsequent vertices, we project the coordinate system from
the previous normal plane onto the current normal frame.
We then orthogonalize this projected coordinate system in
the plane. For the normal plane of the final polyline vertex,
we average the projected coordinate systems of the previous
normal plane and the initial normal plane to minimize any
twist in the final tube segment.

6.3 Adaptive Approximation
For certain classes of objects it is desirable to perform an
adaptive approximation. For instance, consider large ter-
rain datasets, models of spaceships, or submarines. One
would like to have more detail near the observer and less
detail further away. A possible solution could be to sub-
divide the model into various spatial cells and use a dif-
ferent �-approximation for each cell. However, problems
would arise at the boundaries of such cells where the �-
approximation for one cell, say at a value �1 need not nec-
essarily be continuous with the �-approximation for the
neighboring cell, say at a different value �2.

Since all candidate triangles generated are constrained
to lie within the two envelopes, manipulation of these en-
velopes provides one way to smoothly control the level of
approximation. Thus, one could specify the � at a given
vertex to be a function of its distance from the observer —
the larger the distance, the greater is the �.

As another possibility, consider the case where certain



features of a model are very important and are not to be
approximated beyond a certain level. Such features might
have human perception as a basis for their definition or
they might have mathematical descriptions such as regions
of high curvature. In either case, a user can vary the �
associated with a region to increase or decrease the level of
approximation. The bunny in Figure 9 illustrates such an
approximation.

Figure 9: An adaptive simplification for the bunny model.
� varies from 1/64% at the nose to 1% at the tail.

7 Implementation and Results

We have implemented both algorithms and tried out the
local algorithm on several thousand objects. We will first
discuss some of the implementation issues and then present
some results.

7.1 Implementation Issues

The first important implementation issue is what sort of
input model to accept. We chose to accept only manifold
triangle meshes (or bordered manifolds). This means that
each edge is adjacent to two (one in the case of a border)
triangles and that each vertex is surrounded by a single ring
of triangles.

We also do not accept other forms of degenerate meshes.
Many mesh degeneracies are not apparent on casual in-
spection, so we have implemented an automatic degener-
acy detection program. This program detects non-manifold
vertices, non-manifold edges, sliver triangles, coincident
triangles, T-junctions, and intersecting triangles in a pro-
posed input mesh. Note that correcting these degeneracies
is more difficult than detecting them.

Robustness issues are important for implementations of
any geometric algorithms. For instance, the analytical
method for envelope computation involves the use of bi-
linear patches and the computation of intersection points.

The computation of intersection points, even for linear el-
ements, is difficult to perform robustly. The numerical
method for envelope computation is much more robust be-
cause it involves only linear elements. Furthermore, it
requires an intersection test but not the calculation of inter-
section points. We perform all such intersection tests in a
conservative manner, using fuzzy intersection tests that may
report intersections even for some close but non-intersecting
elements.

Another important issue is the use of a space-partitioning
scheme to speed up intersection tests. We chose to use an
octree because of its simplicity. Our current octree im-
plementation deals only with the bounding boxes of the
elements stored. This works well for models with trian-
gles that are evenly sized and shaped. For CAD models,
which may contain long, skinny, non-axis-aligned triangles,
a simple octree does not always provide enough of a speed-
up, and it may be necessary to choose a more appropriate
space-partitioning scheme.

7.2 Results

We have simplified a total of 2636 objects from the auxiliary
machine room (AMR) of a submarine dataset, pictured in
Figure 10 to test and validate our algorithm. We reproduce
the timings and simplifications achieved by our implemen-
tation for the AMR and a few other models in Table 1.
All simplifications were performed on a Hewlett-Packard
735/125 with 80 MB of main memory. Images of these
simplifications appear in Figures 11 and 12. It is interest-
ing to compare the results on the bunny and phone models
with those of [7, 8]. For the same error bound, we are able
to obtain much improved solutions.

We have automated the process which sets the � value
for each object by assigning it to be a percentage of the
diagonal of its bounding box. We obtained the reductions
presented in Table 1 for the AMR and Figures 11 and 12 by
using this heuristic.

For the rotor and AMR models in the above results, the
ith level of detail was obtained by simplifying the i � 1th
level of detail. This causes to total � to be the sum of
all previous �’s, so choosing �0s of 1, 2, 4, and 8 percent
results in total �0s of 1, 3, 7, and 15 percent. There are two
advantages to this scheme:
(a) It allows one to proceed incrementally, taking advantage
of the work done in previous simplifications.
(b) It builds a hierarchy of detail in which the vertices at the
ith level of detail are a subset of the vertices at the i � 1th
level of detail.

One of the advantages of the setting � to a percent of
the object size is that it provides an a way to automate
the selection of switching points used to transition between
the various representations. To eliminate visual artifacts,
we switch to a more faithful representation of an object
when � projects to more than some user-specified number
of pixels on the screen. This is a function of the � for
that approximation, the output display resolution, and the
corresponding maximum tolerable visible error in pixels.

8 Future Work

There are still several areas to be explored in this research.
We believe the most important of these to be the generation
of correspondences between levels of detail and the moving
of vertices within the envelope volume.



Bunny Phone Rotor AMR
� % # Polys Time � % # Polys Time � % # Polys Time � % # Polys Time

0 69,451 N/A 0 165,936 N/A 0 4,735 N/A 0 436,402 N/A
1=64 44,621 9 1=64 43,537 31 1=8 2,146 3 1 195,446 171
1=32 23,581 10 1=32 12,364 35 1=4 1,514 2 3 143,728 61
1=16 10,793 11 1=16 4,891 38 3=4 1,266 2 7 110,090 61
1=8 4,838 11 1=8 2,201 32 1 3=4 850 1 15 87,476 68
1=4 2,204 11 1=4 1,032 35 3 3=4 716 1 31 75,434 84
1=2 1,004 11 1=2 544 33 7 3=4 688 1

1 575 11 1 412 30 15 3=4 674 1

Table 1: Simplification �’s and run times in minutes

8.1 Generating Correspondences
A true geometric hierarchy should contain not only repre-
sentations of an object at various levels of detail, but also
some correspondence information about the relationship
between adjacent levels. These relationships are neces-
sary for propagating local information from one level to the
next. For instance, this information would be helpful for
using the hierarchical geometric representation to perform
radiosity calculations. It is also necessary for performing
geometric interpolation between the models when using the
levels of detail for rendering. Note that the envelope tech-
nique preserves silhouettes when rendering, so it is also a
good candidate for alpha blending rather than geometric
interpolation to smooth out transitions between levels of
detail.

We can determine which elements of a higher level of
detail surface are covered by an element of a lower level of
detail representation by noting which fundamental prisms
this element intersects. This is non-trivial only because
of the bilinear patches that are the sides of a fundamental
prism. We can approximate these patches by two or more
triangles and then tetrahedralize each prism. Given this
tetrahedralization of the envelope volume, it is possible to
stab each edge of the lower level-of-detail model through
the tetrahedrons to determine which ones they intersect,
and thus which triangles are covered by each lower level-
of-detail triangle.

8.2 Moving Vertices
The output mesh generated by either of the algorithms we
have presented has the property that its set of vertices is
a subset of the set of vertices of the original mesh. If we
can afford to relax this constraint somewhat, we may be
able to reduce the output size even further. If we allow the
vertices to slide along their normal vectors, we should be
able to simplify parts of the surface that might otherwise
be impossible to simplify for some choices of epsilon. We
are currently working on a goal-based approach to mov-
ing vertices within the envelope volume. For each vertex
we want to remove, we slide its neighboring vertices along
their normals to make them lie as closely as possible to a
tangent plane of the original vertex. Intuitively, this should
increase the likelihood of successfully removing the vertex.
During this whole process, we must ensure that none of
the neighboring triangles ever violates the envelopes. This
approach should make it possible to simplify surfaces using
smaller epsilons than previously possible. In fact, it may
even enable us to use the original surface and a single en-
velope as our constraint surfaces rather than two envelopes.
This is important for objects with areas of high maximal
curvature, like thin cylinders.

9 Conclusion

We have outlined the notion of simplification envelopes and
how they can be used for generation of multiresolution hi-
erarchies for polygonal objects. Our approach guarantees
non-self-intersecting approximations and allows the user
to do adaptive approximations by simply editing the sim-
plification envelopes (either manually or automatically) in
the regions of interest. It allows for a global error toler-
ance, preservation of the input genus of the object, and
preservation of sharp edges. Our approach requires only
one user-specifiable parameter, allowing it to work on large
collections of objects with no manual intervention if so de-
sired. It is rotationallyand translationally invariant, and can
elegantly handle holes and bordered surfaces through the
use of cylindrical tubes. Simplification envelopes are gen-
eral enough to permit both simplification algorithms with
good theoretical properties such as our global algorithm, as
well as fast, practical, and robust implementations like our
local algorithm. Additionally, envelopes permit easy gen-
eration of correspondences across several levels of detail.
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Figure 10: Looking down into the auxiliary machine room
(AMR) of a submarine model. This model contains nearly 3,000
objects, for a total of over half a million triangles. We have sim-
plified over 2,600 of these objects, for a total of over 430,000
triangles.

Figure 11: An array of batteries from the AMR. All parts but the
red are simplified representations. At full resolution, this array
requires 87,000 triangles. At this distance, allowing 4 pixels of
error in screen space, we have reduced it to 45,000 triangles.



(a) bunny model: 69,451 triangles (e) phone model: 165,936 triangles (i) rotor model: 4,736 triangles

(b) � = 1=16%, 10; 793 triangles (f) � = 1=32%, 12; 364 triangles (j) � = 1=8%, 2; 146 triangles

(c) � = 1=4%, 2; 204 triangles (g) � = 1=16%, 4; 891 triangles (k) � = 3=4%, 1; 266 triangles

(d) � = 1%, 575 triangles (h) � = 1%, 412 triangles (l) � = 3 3=4%, 716 triangles

Figure 12: Level-of-detail hierarchies for three models. The approximation distance, �, is taken as a percentage of the bounding box
diagonal.


