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Abstract

View-dependent simplification has emerged as a powerful tool
for graphics acceleration in visualization of complex environ-
ments. However, view-dependent simplification techniques
have not been able to take full advantage of the underlying
graphics hardware. Specifically, triangle strips are a widely
used hardware-supported mechanism to compactly represent
and efficiently render static triangle meshes. However, in
a view-dependent framework, the triangle mesh connectiv-
ity changes at every frame making it difficult to use trian-
gle strips. In this paper we present a novel data-structure,
Skip Strip, that efficiently maintains triangle strips during such
view-dependent changes. A Skip Strip stores the vertex hi-
erarchy nodes in a skip-list-like manner with path compres-
sion. We anticipate that Skip Strips will provide a road-map to
combine rendering acceleration techniques for static datasets,
typical of retained-mode graphics applications, with those for
dynamic datasets found in immediate-mode applications.

1 Introduction

Recent advances in three-dimensional acquisition, simulation,
and design technologies have led to generation of datasets
that are beyond the interactive rendering capabilities of cur-
rent graphics hardware. Several software and algorithmic so-
lutions have been recently proposed to bridge the increasing
gap between hardware capabilities and the complexity of the
graphics datasets. These include level-of-detail rendering with
multi-resolution hierarchies, occlusion culling, and image-
based rendering. Graphics rendering has also been accelerated
through compact representations of polygonal meshes using
data-structures such as triangle strips and triangle fans.

View-dependent simplifications have been recently intro-
duced to enable fine-grained changes to multiresolution hi-
erarchies that depend on parameters such as view location,
illumination, and speed of motion. Such simplifications
change the mesh structure at every frame to adapt to just
the right level of detail necessary for visual realism. One
drawback of such schemes is that they fail to take advan-
tage of hardware-supported mechanisms for graphics acceler-
ation, such as triangle strips. Luebke and Erikson [15] point
out that view-dependent simplification, being an immediate-
mode technique, has a relative disadvantage since most cur-
rent graphics hardware takes advantage of retained-mode rep-
resentations such as display lists that have static geometry
and connectivity. To overcome this drawback Hoppe [12]
has proposed a solution to compute triangle strips per frame
for the view-dependent simplification specific to that frame.
In this paper we introduce Skip Strips as a solution to this

dichotomy of immediate-mode simplifications and retained-
mode hardware-supported acceleration.

A Skip Strip stores the vertex hierarchy nodes in a skip-list-
like manner with path compression. Our approach combines
the advantagesof the two methods – selection of varied level of
detail at different regions of the surface from view-dependent
simplification and faster rendering from triangle strip repre-
sentations. In addition, Skip Strips perform edge collapse and
vertex split in constant time per operation, and the test to pre-
vent foldovers at run time is done much faster as a result of
using compact dependency lists. As other view-dependent
simplification approaches, Skip Strips also take advantage of
coherence between frames and incrementally update the dis-
played triangle strips. By using triangle strips, our algorithm
is able to display the same number of triangles faster and uses
less memory to store the active set of triangles.

2 Previous Work

In this section we give an overview of previous work done
in the areas of view-dependent simplifications, triangle strip
generation, and path compression data-structures.

2.1 View-Dependent Simplifications

Most of the previous work on generating multiresolution hi-
erarchies for level-of-detail-based rendering has concentrated
on computing a fixed set of view-independent levels of de-
tail. At runtime an appropriate level of detail is selected based
on viewing parameters. Such methods are overly restrictive
and do not take into account finer image-space feedback such
as light position, visual acuity, silhouettes, and view direc-
tion. Recent advances to address some of these issues in a
view-dependent manner take advantage of the temporal co-
herence to adaptively refine or simplify the polygonal envi-
ronment from one frame to the next. In particular, adaptive
levels of detail have been used in terrains by Grosset al [8]
and Lindstromet al [13]. A number of techniques for con-
ducting view-dependent simplifications of generalized polyg-
onal meshes rely on the primitive operations of vertex-split and
edge collapse as shown in Figure 1. The edge(pc) in the mesh
on the left collapses to the vertexp and the resulting mesh is
shown on the right. Conversely, the vertexp in the mesh on the
right can split to the edge(pc) to generate the mesh on the left.
We refer to vertexp as the parent of vertexc (asc is created
from p through a vertex split). The primitives of vertex split
and edge collapse were proposed in the context of progressive
meshes [11].
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Figure 1: Edge collapse and vertex split

View-dependent simplifications using the edge-
collapse/vertex-split primitives include work by Xiaet
al [20], Hoppe [12], Gu´eziec et al [9], and El-Sana and
Varshney [4]. View-dependent simplifications by Luebke
and Erikson [15], and De Florianiet al [3] do not rely
on the edge-collapse primitive. Our work is most directly
applicable to view-dependent simplifications that are based
upon the vertex-split/edge-collapse primitive; its extension to
more general view-dependent simplifications is a part of our
planned future work.

2.2 Triangle Strips

Triangle strips provide a compact representation of triangular
meshes and are supported by several graphics APIs includ-
ing OpenGL. Triangle strips enable fast rendering and trans-
mission of triangular meshes. An example triangle strip in
the model of a cow is shown in Figure 2. The set of trian-
gles shown in Figure 3(a) can be compactly represented by
a triangle strip(1; 2; 3; 4; 5; 6), where theith triangle is de-
scribed by theith, (i + 1)st, and(i + 2)nd vertices in this
sequence. Such triangle strips are referred to assequential tri-
angle strips. A sequential triangle strip allows rendering of
n triangles using onlyn + 2 vertices instead of3n vertices.
This results in substantial saving for memory bandwidth and
computation of per-vertex operations such as transformations,
lighting, and clipping. Sequential triangle strips cannot how-
ever represent general sequences of triangles, such as the one
shown in Figure 3(b). To represent such triangle sequences,
the notion of triangle strips has been extended togeneralized
triangle stripswhere the two vertices of the previous trian-
gle can be swapped. This can be also simulated by repeating
vertices. Thus, the triangle sequence in Figure 3(b) can be
represented as(1; 2; 3; 4; 5; 4; 6; 7).

Figure 2: A triangle strip in a cow model

Akeley et al [1] have developed a program that constructs
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Figure 3: A triangle strip example

generalized triangle strips for a given triangle mesh model
[1]. The algorithm tries to generate strips which minimize the
number of one-triangle strips. This algorithm chooses the tri-
angle which is adjacent to the least number of neighbors as
the next triangle in a strip. Evanset al [6] use global adja-
cency information in conjunction with several heuristics such
as maximizing the length of each strip, minimizing swaps, and
minimizing the number of single-triangle strips. Speckmann
and Snoeyink [17] have computed the triangle strips for trian-
gulated irregular networks by creating a spanning tree of the
dual graph, and then traversing the tree in a modified depth-
first fashion. Chow [2], Taubinat al [19], and Gumhold and
Straßer [10] have used strips to efficiently compress polygonal
meshes.

2.3 Efficient Link Traversal

Let us study what happens when an edge collapses in a triangle
strip. Figure 4 shows such a situation. As can be seen, the
results of an edge collapse can be represented by replacing all
occurrences of the child vertexc with the parent vertexp. In
this example,c = 4 andp = 2.
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Figure 4: Edge Collapse in a Triangle Strip

The above example illustrates that to maintain triangle
strips under view-dependent changes to the triangle mesh con-
nectivity, we should replace each vertex in a triangle strip by
its nearest uncollapsed ancestor. In an arbitrarily long se-
quence of such edge collapses, it is easy to see why efficient
traversal of links to a vertex’s ancestors becomes important.

Skip list [16] has been proposed as an efficient probabilis-
tic data-structure to store and retrieve data. Skip lists can also
be used for efficient compression of pointer paths. Consider a
simple linked list as shown in Figure 5(a). Reaching thenth

node on this list requires O(n) pointer hops. Consider next
a data-structure that hasn=2 additional pointers that connect
linked list nodes that are 2 away (refer Figure 5(b)). Using
these additional pointers, any node on the list can be accessed
in O(n=2) time. Skip lists generate O(n) such additional point-
ers in a probabilistic manner to provide O(log n) time access
in the average case (refer Figure 5(c)).
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Figure 5: A Skip list example

In a skip list, a node that hask forward pointers is a levelk
node. The level of a node is determined in a probabilistic man-
ner. The search for an element is done by traversing forward
pointers that do not overshoot the required element. When no
more progress is possible, the search moves down to the next
level. This is shown by the gray path in Figure 5(c). To ac-
complish insertion or deletion of an element in a skip list, a
search is carried out for that element using the above method.
A vector of pointers is set up during this search to represent
the set of pointers that are changed to implement the insert or
delete operation.

3 Technical Background

In this paper we build upon two previous algorithms – con-
struction of vertex hierarchy for view-dependent simplifica-
tions [20, 12] and construction of efficient triangle strips [6].
Let us overview these two algorithms next.

3.1 Construction of Merge Trees

Merge trees have been introduced by Xiaet al [20] as a data-
structure built upon progressive meshes [11] to enable real-
time view-dependent rendering of an object. As discussed ear-
lier, let the vertexp in Figure 1 be considered the parent of
the vertexc. Theneighborhoodof a vertexv is defined as the
set of triangles that are adjacent tov. The neighborhood of
an edge(va; vb) is defined as the union of neighborhoods of
va andvb. The merge tree is constructed in a bottom-up fash-
ion from a high-detail mesh to a low-detail mesh by storing
these parent-child relationships (representing edge collapses)
in a hierarchical manner over the surface of an object. At each
level l of the tree a maximal set of edge-collapses is selected in
the shortest-edge-first order and with the constraint that their
neighborhoods do not overlap. The vertices remaining after
these edge collapses are promoted to levell+ 1.

View-dependent simplification is achieved by performing
edge-collapses and vertex-splits on the triangulation used for
display, depending upon view-dependent parameters such as
lighting (detail is directly proportional to intensity gradient);
polygon orientation, (high detail for silhouettes and low de-
tail for backfacing regions) and screen-space projection. This
is shown in Figure 6. Since there is a high temporal coher-
ence the selected levels in the merge tree change only gradu-
ally from frame to frame. Unconstrained edge-collapses and
vertex-splits during runtime can be shown to result in mesh

Active Nodes

Low Detail

High Detail

Figure 6: Varying detail in a Merge Tree

foldovers resulting in visual artifacts such as shading disconti-
nuities. To avoid these artifacts Xiaet al [20] propose the con-
cept of dependencies or constraints that necessitate the pres-
ence of the entire neighborhood of an edge before it is col-
lapsed (or its parent vertex is split). Thus, for the example
shown in Figure 1, the neighborhood of edgepc should con-
sist exactly of verticesn0 : : : n6 for c to collapse top. Sim-
ilarly, for the vertexp to split to c, the vertices adjacent top
should be exactly the setn0 : : : n6. Our current implementa-
tion of merge trees can construct the merge tree for 69K trian-
gles bunny model in10:3 seconds on an SGI Onyx 2.

3.2 Generating Triangle Strips

We use theStripeprogram by Evanset al [6] to generate high
quality triangle strips. This approach considers the problem of
constructing good triangle strips from polygonal models. Of-
ten such models are not fully triangulated, and contain quadri-
laterals and other non-triangular faces, which must be trian-
gulated prior to rendering. The choice of triangulation can
significantly impact the cost of the resulting strips. Evanset al
have experimented with several variants of local and global al-
gorithms; the details are available in [6]. After comparing the
results from20 different local and global approaches on over
200 datasets, the best option has been empirically observed to
use the global row or column strips with a patch cutoff size of
5. In this approach the model is first partitioned into regions
that have collections ofm � n quadrilaterals arranged inm
rows andn columns, which is referred to as apatch. Each
patch whose number of quadrilaterals,mn, is greater than a
specified cutoff, in this case5, is converted into one strip at a
cost of three swaps per turn. Further, every such strip is ex-
tended backwards from the starting quadrilateral and forwards
from the ending quadrilateral of the patch to the extent possi-
ble. On triangulated models like the ones we consider in this
paper,Stripehas been found to work as well as other public-
domain triangle strip converters.StripeVersion 2.0 [5] con-
verts the 69K triangles bunny model into triangle strips with a
total of 90K vertices in6 seconds on an SGI Onyx2.

Stripegenerates efficient triangle strips but requires more
time than simplistic methods such as the greedy method [12].
Since we wanted to do comparisons with an on-line algorithm
to convert polygonal meshes into triangle strips we also de-
cided to implement the greedy method. The greedy method
proceeds as follows. From a given triangle we extend a tri-
angle strip as far as possible. Once it is no longer possible
to extend the triangle strip, we stop and begin a new triangle
strip. In our current implementation of the greedy method we
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are working only with sequential triangle strips as discussed in
Section 2.2. We found that for an on-line method, the greedy
method is a better choice thanStripesince the former takes
much less time, even though it generates about15 � 20%
more vertices. The greedy method takes0:2 seconds on an
SGI Onyx2 to convert a 69K triangle bunny model to triangle
strips and generates 96K vertices.

4 Our Approach

In our approach we generate a merge tree and the triangle strip
representation of the original polygonal model off-line. The
merge tree file, which contains the parent-child relationships
for each node of the tree, is constructed as overviewed in Sec-
tion 3.1 and described in [20]. Even though our implementa-
tion uses merge trees, the concept of Skip Strips is quite gen-
eral and can be used in conjunction with other vertex-collapse-
based simplification schemes as well. The triangle strip repre-
sentation is generated using theStripeprogram as overviewed
above in Section 3.2 and described in [6]. At run-time we load
the merge tree and triangle strip representations generated dur-
ing preprocessing and build theSkip Stripdata-structure on the
fly. Then, depending on scene parameters such as eye posi-
tion, local illumination, front/back-facing regions, we perform
vertex split and edge collapse operations directly on the Skip
Strips. The information from Skip Strips is then used to gen-
erate triangle strips for display.

4.1 Skip Strip data-structure

A Skip Strip is an array of Skip Strip nodes. Each Skip Strip
node contains vertex information, a list of child pointers and a
parent pointer. This can be seen in Figure 7 where the parent
pointer is shown on the right and the list of child pointers is
shown on the left of each Skip Strip node. We shall see in
Section 4.3 how to generalize this data-structure to support a
list of parent pointers to accelerate access in an edge-collapse
hierarchy.

A Skip Strip is constructed at run time from the merge tree
and triangle strip representations. A Skip Strip node is allo-
cated for every merge tree leaf (terminal node) and parent-
child pointers are set up to mimic the merge tree structure.
In our current implementation we are assuming that a child
vertexc collapses to a parent vertexp. For this case, a Skip
Strip node corresponding to a vertexp will have child pointers
to all its children, includingc, that collapse to it at different
stages of simplification. In general, if there aren vertices then
the average height of the merge tree isO(log n). Thus, the
average length of this child-pointer list for a Skip Strip node
is O(log n). At a given time only one of these child pointers
is flaggedactiveand represents the node that will result from
the most imminent split. Each Skip Stripnode points to its
immediate parent via the parent pointer. Parent pointer of the
node is markedactiveif this node has collapsed to its parent at
a given stage of simplification; otherwise it is markedinactive.

To illustrate the Skip Strip data-structure, let us see how it
is built from a merge tree. Figure 8(a) shows a hypothetical
merge tree over four vertices 1 to 4. As in all the merge tree
diagrams in this paper, the right node is the child node and
the left is the parent node (as defined by Figure 1). Let us
assume that we are dealing with edge collapses in which one
vertex collapses to another (i.e. no new vertices are created).
The equivalent Skip Strip data-structure will have four nodes

Vertex
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Figure 7: A Skip Strip node

representing the leaves of the merge tree (the highest detail
vertices in the original model). Since according to the merge
tree vertex 2 can merge to vertex 1, the parent pointer for the
Skip Strip node 2 will point to Skip Strip node 1 and the child
pointer for the node 1 will point to node 2. Similarly, the par-
ent and child pointers of Skip Strip nodes 3 and 4 will be set.
This stage is shown in Figure 8(b). The edge collapse3 ! 1
can be represented in the Skip Strip as a parent pointer from
node 3 to node 1 and a child pointer from node 1 to node 3.
The completed Skip Strip structure is shown in Figure 8(c).
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Figure 8: Building a Simple Skip Strip

The method that we have outlined above assumes that in
an edge collapse fromc to p, the new vertex isp. However,
several other researchers have pointed out the advantage of
creating new vertices during edge collapses. These new ver-
tices could be created for accomplishing geomorphs [11] or for
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better placement of approximating vertices using sophisticated
error metrics [7, 14, 4]. For incorporating such simplification
metrics into the framework of Skip Strips we suggest storing
multiple coordinate sets, once per approximating vertex, in the
child pointer of the Skip Strip node.

4.2 Real-Time Adaptive Representation

Once the Skip Strip has been constructed it is easy to con-
struct an adaptive level-of-detail mesh representation during
run-time. Real-time adaptive mesh representation involves the
determination of the vertices and triangle strips at the current
level of detail. We shall refer to the vertices and triangle strips
selected for display at a given frame asdisplay verticesand
display strips.

4.2.1 Determination of display vertices

Determination of display vertices proceeds along the same
lines as proposed in earlier work on view-dependent simpli-
fication [20, 12] where image-space feedback is used to guide
the selection of the level of detail for the mesh. We deter-
mine which region of an object to simplify more and which
to simplify less using several parameters such as viewer loca-
tion and orientation, local illumination, and front/back-facing
regions of an object. Similar to merge tree nodes, Skip Strips
nodes also store aswitch valueto determine whether to refine,
merge, or leave a Skip Strip node in its current level. If the
computed value of the view-dependent error at a given node
v is less than theswitch valuestored at nodev, then nodev
splits. If the computed value is larger than theswitch value
stored at the parent of nodev, thenv merges.

In addition to the above criteria,each collapse and split also
depends on the validity of the operation as determined dur-
ing the preprocessing to avoid artifacts such as mesh foldovers
as explained earlier in Section 3.1. One way to avoid such
artifacts is to use dependencies [13, 20]. In [4], we have intro-
duced the concept of implicit dependencies that can test valid-
ity of edge collapse or vertex split in constant time. However,
implicit dependencies rely on the existence of independent tri-
angles that can be individually tagged. Since in the Skip Strip
data-structure we do not store triangles explicitly it is difficult
to use implicit dependencies. For Skip Strips we can use the
traditional method of storing dependencies explicitly as a set
of adjacent nodes [20]. Instead, we have chosen to optimize
the explicit dependencies by storing only that subset of adja-
cent nodes that do not participate in an ancestor-child relation-
ship, i.e. we do not include an adjacent node in the dependency
list if any of its ancestors is already in the list.

The execution of edge collapse and split operation is done in
a small constant time (only integer increment and flag change
or integer decrement and flag change) as follows. To perform
a merge on the Skip Strip we activate the parent pointer and
increment the child index of the merged node by one, followed
by removing the merged node from the active nodes list. Split
is done by deactivating the parent pointer and decrementing
child index of the split node by one. Then we insert the node
pointed to by the previous child index into the active nodes
list. We have discovered that these simpler operations have
reduced the time for checking and performing a vertex split or
edge collapse from around60�seconds to6�seconds.

4.2.2 Determination of display strips

The graphics dataset is represented as a set of triangle strips.
Each triangle strip has two representations – the original high-
est resolution triangle strip that was generated using pre-
processing, and the Skip-Strip-derived run-time representation
of it that represents a triangle strip suitable for the current level
of detail. We refer to the former as aoriginal triangle strip
and the latter as adisplay strip. At each frame we first per-
form view dependent edge collapses/vertex splits as outlined
in Section 4.2.1. Each time an edge collapses or vertex splits,
all display strips that contain that edge are flagged as modified.
At the end of these simplifications, if a display strip remains
unmodified, it is used for rendering. However, if a display strip
is modified we discard it and begin generating its replacement
by scanning each vertex in the corresponding original triangle
strip. Each vertex of the original triangle strip has a pointer to
a corresponding node in a Skip Strip. For each vertex’s node
in the Skip Strip we check whether its parent pointer is active
or not. If the parent pointer is active we follow the sequence
of active parent pointers until we reach a node that has an in-
active parent pointer. The vertex information stored with the
first node that has an inactive parent pointer is added to the new
display strip. After the new display strip has been completely
generated it is sent to the graphics system for display.

Let us next illustrate how the Skip Strips are used to split
and collapse vertices of a triangle strip to generate the display
strips. Figure 9 shows the original mesh with vertices num-
bered1::10. The two triangle strips representing this mesh are
labeleda andb. Since no edges have collapsed, the display
strips are the same as the original triangle strips. Figure 11
shows the same after two edge collapses (6 ! 5, and8 ! 7)
to the mesh of Figure 9. In Figure 10 none of the parent
pointers is active (since there have been no edge collapses).
Figure 10 shows the merge tree and the skip strip with one
parent pointer per node, constructed for the mesh in Figure 9
at the highest detail. In Figure 11, the parent pointers for nodes
6 and8 pointing to5 and7 respectively, are active and appear
dot shaded. The nodes6 and8 are inactive and appear with
hatched shading.
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Figure 9: Original triangle mesh

4.3 Efficient Skipping for Parent pointers

As the object moves to a coarse representation, the time spent
in following the active parent pointers increases. On the aver-
age, the maximum number of active parent pointers that one
might need to traverse isO(log n) – the height of the vertex
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Figure 10: Skip Strip for Triangle Mesh in Figure 9
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Figure 11: Skip Strip for Triangle Mesh in Figure 9 after two
edge collapses

hierarchy. To reduce this time we trade off memory for speed.
To accomplish this we use ideas from path compression [18]
and skip lists [16] to build a list of parent pointers for each
Skip Strip node. The parent pointers of each node point to
its ancestors that are1; 2; 4; : : : ; log n hops away in the edge
collapse hierarchy. By using an efficient, skip-list-like pointer
hopping scheme we can reduce this toO(log log n). Although
reducingO(log n) to O(log log n) factor might seem minor,
in practice this results in an appreciable difference, especially
when we note that the merge tree height is generally a loga-
rithm to the base5=4 [20]. Thus, even if the edge-collapse-
based vertex hierarchy tree is balanced (which it often is not),
the height for a tree over one million vertices (and therefore
the worst-case pointer hopping) will be62 (� log1:25(10

6))
while a skip-list-like pointer hopping scheme will only need
to traverse 6 (� log2 62) pointers, an order of magnitude im-
provement for present-day datasets.

To efficiently implement traversal of parent pointers, each
Skip Strip node has an active parent field to indicate which
pointer in the parent list to follow to get closest to, without
overshooting, the first active ancestor. We use a lazy update
scheme to modify the active parent field for each Skip Strip
node. For this we make use of the fact that the vertex hier-
archy nodes are collapsed in an accordion-style fashion from
high detail to low detail. In other words, if a vertexi collapses
to vertexj, then it means thatall vertices that lie in the sub-
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Figure 12: More efficient Skip Strip representations for Fig-
ures 10 and 11

tree rooted at vertexi have already collapsed to vertexi. If
the triangle strips reference one of the vertices in this sub-tree
rooted ati, and if their active parent pointer overshootsj, then
we need to decrement the active parent pointer until it points to
a node that is belowj (in other words has already collapsed).
Because of a high temporal coherence, these updates are few
and each requires only one or two ancestor checks to find the
“correct” ancestor that does not overshoot the first active an-
cestor. Likewise, when a vertexj splits weupdate all pointers
from triangle strips that point toj as the first active ancestor
to point to a lower level ancestor. We would like to note that
in this application, traversal of triangle strips requires that we
access each vertex of the triangle strip and, therefore, the over-
head of such lazy updates of pointers to reflect split and col-
lapse in Skip Strips is minimal. Figure 12 shows the Skip Strip
representation with multiple parent pointers foreach node for
the mesh in Figure 9. Note that the active parent and child
pointers appear shaded.

4.4 Further Optimizations

As the model moves to coarser levels the triangle strips begin
to accumulate identical vertices. Sending such vertices mul-
tiple times is equivalent to sending degenerate triangles that
do not contribute to the final scene but add an overhead to the
graphics rendering. To address this we filter the triangle strips
while sending them to the graphics engine. We have imple-
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mented a simple triangle strip scanner that detects and replaces
patterns of vertices of the regular expression form(aa)+ by
(aa) and(ab)+ by (ab) in the sequence of vertices sent for
rendering.

Figure 13 shows the relationship between the triangle strip
a (top half of the mesh from Figure 9) and how the display
strip relates to it. As can be seen, a display strip is simply a
linked list of pointers to the triangle strip. At the beginning
of each frame the display strip is updated from the triangle
strip. As the underlying mesh is simplified and vertex repeti-
tions (as detected by triangle strip filtering) increase, it pays to
do two further optimizations: (a) skip over the repetitions, and
(b) change the display strip incrementally from frame to frame
instead of constructing it from the original triangle strip per
frame. The first optimization can be easily accomplished by
using a skip-list-like structure instead of a linked list for the
triangle strip (refer Figure 13(b)). The second optimization
is accomplished by storing two pointers with each collapsible
edge. These pointers point to the two triangle strips to which
the two triangle sharing that edge belong. Since the trian-
gle strips are computed statically, these pointers are generated
only once during the pre-processing stage. For non-manifold
meshes that can have more than two triangles sharing an edge,
one can accordingly store one triangle strip pointer per addi-
tional triangle. Whenever an edge collapses at run-time, the
(at most) two triangle strips that are affected have their head-
ers flagged asmodified. When a display strip is considered
for rendering, we first check to see if its corresponding trian-
gle strip has been modified since the last frame. If it has, we
update the display strip, otherwise use it as is.
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Figure 13: (a) Arrows mark edge collapses. (b) Efficient local
skipping over triangle strip.

We note again that the Skip Strips are computed only once,
at the pre-processing stage. Therefore, as the simplification
increases there comes a stage when triangle strips computed
from a Skip Strip representation are highly fragmented (they
each represent a small number of triangles). To address this is-
sue, we have added a stage in our current implementation that
performs merging of display strips. This proceeds as follows.
We check the triangle strip pointers on the last edge of a dis-
play strip to see if a new display strip is beginning at that edge.
If it is, we extend the current strip effectively merging the two
strips.

5 Results

We have implemented Skip Strips and have obtained the re-
sults shown in Table 1 and Figure 14. All of these results have
been obtained on an SGI Onyx 2 with four R10000 processors,
1 GB RAM. Timings reported here do not assume paralleliza-
tion of the view-dependent simplifications.

Table 1 shows the comparison between rendering datasets
using three modes of view-dependent renderings. The three
modes differ in how triangles are sent for rendering. Iden-
tical parameters of view-dependent simplifications are used
across the three modes resulting in identical sets of triangles
rendered. In the first mode triangles are sent independently
without taking advantage of any adjacency information. In the
second mode triangles determined for display in one frame are
converted into triangle strips using the greedy method for gen-
erating sequential triangle strips. This is the current state-of-
the-art method for using triangle strips with view-dependent
simplifications. The third mode involves using Skip Strips to
generate display strips for rendering triangles. The compar-
isons for the three modes are shown in Table 1 for four datasets
across representative flythroughs (as shown in the video). The
Frame Countrow indicates the number of frames in the fly-
through path. TheAdapt Countrow indicates the total num-
ber of edge collapse/vertex split operations performed for the
given flythrough path. TheTris CountandVertsrows repre-
sent the total number of triangles and vertices sent for ren-
dering, respectively, over the entire flythrough path. Within
each modeAdapt, Display, andTotal indicate the cumulative
times spent over the flythrough paths in changing the view-
dependent detail, rendering, and the total time, respectively.
In online strippingStrip is the time to generate triangle strips
whereas for Skip-Strips, the time to maintain the strips is part
of theDisplaytime. As can be seen from these numbers, Skip
Strips result in a35% � 95% improvement over sending raw
triangles and50%� 63% improvement over computing trian-
gle strips on-the-fly from scratch.

As the simplification levels increase and mesh sizes reduce,
it becomes more attractive to perform on-the-fly greedy trian-
gle strip computation than to maintain Skip Strips since the
fragmentation amongst triangle strips increases as mentioned
in Section 4.4. Merging of triangle strips on the fly addresses
this problem to a certain extent, but it is inevitable that at some
stage of simplification it becomes less attractive to maintain
Skip Strips. Figure 14 shows our results in determining the
threshold above which we found it better to use Skip Strips
for the bunny model. We found similar performance curves
for other datasets. Rather than clutter the graph with several
curves, we have simply reported the crossover points for the
other datasets on the same graph.

The datasets used for the above results appear in Figures
15, 16, and 17. In these figures, parts (a) show an interme-
diate level of view-dependent simplification, while parts (b),
(c), and (d) show how the triangle strips are maintained across
different levels of detail using Skip Strips. Colors in parts (a)
depict object colors, whereas colors in parts (b), (c), and (d)
denote different triangle strips.

6 Conclusions

We have shown how Skip Strips can provide a convenient
and simple representation to integrate retained-mode data-
structures such as triangle strips with immediate-mode view-
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Dataset Bunny Buddha AMR Terrain
Frame count 215 152 101 150
Adapt Count 61.5K 55.2K 65.8K 83.5K
Tris count 9.6M 10.5M 6.5M 12.5M

S
e

n
d

T
ria

n
g

le
s Verts 28.8M 31.5M 19.5M 37.5M

Adapt 7.4s 7.1s 8.1s 10.5s
Display 36.5s 41.6s 22.8s 48.6s
Total 43.9s 48.7s 30.9s 59.1s

O
n

lin
e

S
tr

ip
p

in
g Verts 15.9M 16.8M 18.0M 14.3M

Adapt 10.5s 9.8s 11.7s 14.5s
Strip 12.5s 13.2s 9.1s 16.3s
Display 20.1s 22.2s 16.4s 18.5s
Total 43.1s 45.2s 37.2s 49.3s

S
ki

p
-

S
tr

ip
s

Verts 17.3M 18.8M 16.1M 16.5M
Adapt 3.1s 2.6s 3.2s 4.7s
Display 24.1s 26.1s 19.6s 26.3s
Total 27.2s 28.7s 22.8s 31.0s

Table 1: Performance of view-dependent triangle, triangle
strips on the-fly, and Skip Strips
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Figure 14: Skip-Strips versus stripping online

dependent simplifications. The Skip Strips offer two main ad-
vantages. First, they make pointer hopping along parent links
in any hierarchical vertex collapse scheme efficient. Second,
they simplify the execution of the vertex split and edge col-
lapse operations to be as simple as two integer increment or
decrement operations.

Skip Strips provide the advantage of hardware-assisted ac-
celeration to view-dependent simplifications. However, they
also suffer from some of the same limitations that afflict trian-
gle strips. Thus, Skip Strip performance will not be very good
for datasets that have several discontinuities in surfaces such
as cracks, T-junctions , normals, colors, and textures. For such
datasets, the triangle strips that are generated have to be split
across such surface attribute discontinuities thereby limiting
their efficacy in succinctly representing the polygonal mesh.
Although this does affect overall performance, the results will
likely still be better than rendering raw triangles.

Another issue to consider is the performance of Skip Strips
over genus-reducing simplifications. Our preliminary results
indicate that Skip Strips are also applicable to view-dependent

genus-reducing simplifications; we need to test this further.

Acknowledgements

This work has been supported in part by the NSF grants: CCR-
9502239, DMI-9800690, ACR-9812572 and a DURIP instru-
mentation award N00014970362. Jihad El-Sana has been sup-
ported in part by the Fulbright/Israeli Arab Scholarship Pro-
gram and the Catacosinos Fellowship for Excellence in Com-
puter Science. Figure 17 shows the Auxiliary Machine Room
part from the dataset of a notional submarine provided to us
by the Electric Boat Division of General Dynamics. We would
like to thank the reviewers for their insightful comments which
led to several improvements in the presentation of this paper.

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c : C Pro-
gram on SGI Developer’s Toolbox CD, 1990.

[2] M. Chow. Optimized geomerty compression for real-
time rendering. InIEEE Visualization ’97 Proceed-
ings, pages 403 – 410. ACM/SIGGRAPH Press, October
1997.

[3] L. De Floriani, P. Magillo, and E. Puppo. Efficient im-
plementation of multi-triangulation. InProceedings Vi-
sualization ’98, pages 43–50, October 1998.

[4] J. El-Sana and A. Varshney. Generalized view-dependent
simplification. InEurographics ’99 (to appear), Milano,
Italy, 1999.

[5] F. Evans, E. Azanli, S. Skiena, and A. Varshney. Stripe
Version 2.0, http://www.cs.sunysb.edu/�stripe.

[6] F. Evans, S. Skiena, and A. Varshney. Optimizing trian-
gle strips for fast rendering. InIEEE Visualization ’96
Proceedings, pages 319 – 326. ACM/SIGGRAPH Press,
October 1996.

[7] M. Garland and P. Heckbert. Surface simplification using
quadric error metrics. InProceedings of SIGGRAPH ’97,
pages 209 – 216, August 1997.

[8] M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolu-
tion surface meshing. In G. M. Nielson and D. Silver,
editors,IEEE Visualization ’95 Proceedings, pages 135–
142, 1995.
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