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Abstract. A basic method in computer security is to perform integrity
checks on the file system to detect the installation of malicious programs,
or the modification of sensitive files. Integrity tools to date rely on the
operating system to function correctly, so once the operating system
is compromised even a novice attacker can easily defeat these tools. A
novel way to overcome this problem is the use of an independent auditor,
which uses an out-of-band verification process that does not depend on
the underlying operating system. In this paper we present a definition of
independent auditors and a specific implementation of an independent
auditor using an embedded system attached to the PCI bus.

1 Introduction

Computer systems have been made increasingly secure over the past decades.
However, new attacks and the spread of harmful viruses have shown that bet-
ter methods must be used. One approach gaining increasing popularity in the
computer community is to use Intrusion Detection Systems (IDSs).

Intrusion Detection Systems identify attacks against a system or users per-
forming illegitimate actions. Using a common analogy, having an Intrusion De-
tection System is like having a ”burglar alarm” in your house. The alarm will not
prevent the burglar from breaking into your house, but it will detect and warn
you of the problem. Following the publication of the first research in Intrusion
Detection Systems, a large number of diverse applications have been developed.
One method of accomplishing this type of detection is the use of file system
integrity tools. When a system is compromised, an attacker will often alter cer-
tain key files to provide continued access and to prevent detection. The changes
could target any portion of the system software, e.g. the kernel, libraries, log
files, or other sensitive files. File system integrity checkers detect those changes
and trigger a corresponding alert. To guarantee the integrity of the file system,
two approaches can be followed.

The first approach is to create a secure database, which is usually composed
of hashes. The stored hash will be periodically checked against a newly computed
hash. This method is used with tools such as Tripwire [1], Aide [2], and others.
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The second, more recent approach is to create digital signatures of sensitive
data, such as executable files using asymmetric cryptography, and use these
signatures to check the integrity of the signed file ([3], [4]).

Both approaches have advantages and drawbacks, but they share a common
flaw: the auditing relies on the validity of the operating system. All the previous
applications have made the assumption that the OS itself is not corrupted. Once
the operating system is compromised the intruder can easily defeat integrity
tools. As an example, in the Linux operating system, redirecting system calls
using kernel modules can potentially compromise the system.

Also, since the binary of the Integrity Tool resides in the machine to be
audited, the attacker may be able to corrupt the binary or the configuration
files of the tool.

This work develops a novel way to overcome the problems of traditional
Integrity Tools. Our approach is to use an independent auditor, i.e. a completely
standalone and independent device, potentially tamper resistant, to perform the
integrity detection checks.

2 Motivation

An Integrity Verification Tool that relies on the operating system of a penetrated
machine can be easily deceived by corrupting the kernel. In fact, this problem
is well known. In an article by ”Halflife” [5], a loadable kernel module was used
to bypass the Tripwire integrity checking System. Since then, several tools for
corrupting the operating system have been developed including Knark, famous
for being used in the Ramen worm [6]. This section will explain the mechan-
ics of these attacks. Although the attacks discussed here occurred on Unix-like
operating systems, all operating systems are vulnerable to these kinds of attacks.

2.1 System Calls

User processes and the kernel run in different modes. The CPU itself enforces
this policy. Every modern processor has at least two modes of operations, and in
some cases, as in the x86, more than two. Every mode of operation allows some
actions and does not permit others. In the case of the Unix operating system,
only two levels are used: the lower, called user space or protected mode and the
higher mode, called kernel space or supervisor mode. In this mode the process
has unrestricted access to memory and devices. User-space applications are run
in protected mode, while the kernel is executed in the supervisor mode. The only
way an application will be able to access the sources restricted by the protected
mode is through the kernel. If an application requests a service from the kernel,
such as asking for more memory or accessing a hardware device, system calls are
used to access the second mode of operation. These system calls, along with an
interrupt reaching to the system, are the only ways to access kernel space.

In order to use system calls, the process will fill certain registers with appro-
priate values, including the type of system call to access, and then call a defined



interrupt, dependent on the operating system and architecture. For example, in
the Intel architecture the user process will call interrupt 0x80 if the operating
system is Linux or interrupt 0x21 if the operating system is Windows. Then,
depending on the system call used, the process will jump to a certain location of
the kernel. The location in Linux is stored in a table (sys call table), where
the addresses of the functions in the kernel are stored. The kernel will look at
this table and jump to the corresponding address. After it returns from the call
the kernel will do some system checks and continue in the address of the user
space calling process.

2.2 Attacks in kernel space

In this section, we explore kernel attacks specific to the Linux operating system.
Similar attacks could be launched in other Unix-like operating systems. The
most straightforward way of changing the kernel is to replace the kernel binary
itself. The kernel binary is usually placed in the /boot partition, so an attacker
could compile his/her own version of the kernel and replace the binary. Some
operating systems make this more difficult now, but the attack remains feasible
on several current operating systems. Another possibility an attacker has is to
use Loadable kernel Modules (LKMs). LKMs are a feature of Unix-like operating
systems which allow dynamic changes to components of the kernel. An attacker
will not have to recompile the complete kernel, but rather just code a LKM
which can be loaded at any time and become part of the kernel.

Once the intruder has gained access to the kernel space, several attacks could
be launched against the system so as to remain undetected. The most obvious
attack is to redirect the system calls. Any program in user space such as Integrity
Tools will use system calls to access kernel space, even for very simple operation
such as reading a file. By redirecting the system call to a ”rogue” routine system
call the attacker can hide the existence of any file in the system even from
integrity checkers. Redirecting a system call using kernel modules is simple. As
we have seen, the addresses where systems call will jump to when loaded are
stored in a table. When the module is initialized, the kernel module will use
code similar to the following:

ori_syscall=sys_call_table[SYS_sycall]
sys_call_table[SYS_syscall]=hacked_syscall

where hacked syscall is a pointer to the function used to replace the system
call. In the function hacked syscall the attacker will call the original syscall and
then change the results. For example, in Figure 1 the IDS never sees the file
/foo/evilbinary because the system call filter eliminates it from the results.

res=(*ori_syscall)(parameters)

//change res to mislead the system

return(res)
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Fig. 1. Redirecting System Calls

Several Rootkits (a set of tools that an attacker uses to mask an intrusion
and/or regain access later) take advantage of kernel modules. Other operating
systems, such as Windows NT or 2000, may also be targets for these attacks,
by using malicious system patches to the system or corrupted drivers. Some
efforts have been made to counter the loading of kernel modules. Most of these
techniques, as [7] in Windows NT, operate by restricting modules and drivers
to be loaded or by using vigilant modules. However, the former creates a lack of
flexibility that is usually not reasonable for most systems and the later tends to
be a ”chicken and egg” solution, as the attacker could modify his/her module to
be loaded before the checking module, i.e. during the bootstrap.

3 Definition of Independent auditors

In the present and following sections the terms ”host processor” or ”host system”
will be used to define the machine or set of machines to be verified for file system
integrity. The term ”host” is slightly inaccurate. However, as in this work, the
out-of-band verification system is implemented as an embedded coprocessor, and
the term host processor will be used in order to avoid confusion. Other terms,
such as host operating system, will be used throughout the text to refer to
components of the system to be verified.

3.1 Properties

Machine A is an out-of-band auditor or independent auditor of Machine B if it
accomplishes the following set of properties

1. Unrestricted access: Machine A must have unrestricted access to the internal
devices of machine B to be verified or needed for the verification, including



peripherals, hard disks and interrupts. Notice, however, that unrestricted
write access, i.e. without mutual exclusion, to the internal components of
the host system could lead to an unstable system.

2. Secure transactions: The channel used by the independent auditor to retrieve
the data should be a secure channel, meaning a channel which cannot be
eavesdropped or intercepted, nor modified.

3. Inaccessibility: Machine B must not have access in any way to the internal
components of machine A, including memory and internal interrupts.

4. Continuity: Machine A must run immediately after machine B has setup the
internal devices and is in a known trusted state. After this moment, Machine
A must run continuously, independently of the behavior of machine B. Notice
that power failures or hardware reboots should be the only way to restart
machine A and must be labeled as high risk level alerts.

5. Transparency: The access to the internal devices should be transparent to the
host system. However, concurrent access to the devices will probably occur
unless mutual exclusion is provided. In these situations, the consequences to
the host system should be minimized.

6. Verifiable software: All the code running in machine A must be trusted and
verifiable. This, at least, implies that all running software in machine A must
have the source code available. This includes the firmware, operating system
and user space programs in machine A.

7. Non-volatile Memory: Machine A must be capable of retaining a record of
the alerts even in the event of a power failure or reboot. Hence, machine A
should have some non-volatile storage to record sensitive data.

8. Physically secure: Machine A should be physically secure.

3.2 Modes of Operation

The independent auditor has three different possible states. The running state
is the normal mode of operation and is dependent on the method used for the
integrity verification. The second state is the alarm state which is reached if an
alarm is triggered in the running state. A final mode, which can be accessed only
at boot time, is the management mode. This mode is only accessible through a
set of secure mechanisms, and allows the administrator to change parameters in
the secure coprocessor. An independent auditor is hence not vulnerable to API
level attacks as described by Bond & Anderson in [8], as there is no interface
to the independent auditor from the protected host. The running mode of op-
eration could follow different methods to ensure the integrity of the data in the
host machine, but the implementation described in section 4 uses a database to
perform the integrity checking. All of these modes of operation assume that the
host operating system is in a trusted state when the first checking takes place.

3.3 Audit logs

Information pertaining to the alarm should be stored in a non-volatile storage
device in the event of an alert. Using an independent auditor for integrity also



creates an opportunity to not only store the information of the attack but also
information before the attack. This is useful, as the auditor is not checking the
system in real time. The auditor could log processes, measurements or events.
The auditor stores these sensitive logs in a trusted state. Every check without
an alarm will ensure that the system remains in this trusted state. Hence, if
the system audit occurs without an alarm, the auditor will update the data. In
the event of an alarm, the data before the system compromise took place will
be preserved, allowing the supervisor to retrieve the logs before the attack took
place, in a trusted state. The recorded file could be compared to the files in the
compromised machine to discover if the attacker has tampered with the logs
and possibly uncover information about the type of attack and identity of the
intruder. A discussion of the importance of secure audit logs can be found in [9].
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Fig. 2. Secure Logs Mechanism

3.4 Independent auditor using a database mode

This method does not differ much from its software counterpart, but as we see
in Figure 3, all sensitive actions are moved inside the auditor and are therefore
protected by the strong separation between the protected host and the auditor.
The independent auditor will have a policy file, which is uploaded into the system
in management mode, where the files to be checked will be declared along with
the parameters to be verified. The files will be accessed periodically, and the set of
actions stated by the policy file will occur. The independent auditor will retrieve
the file’s information, possibly computing its hash function. This information
will then be checked against the locally stored information inside the auditor.
If the information matches, the file has not been compromised. If it does not
match, the alarm state will be triggered.

Using an independent auditor in database mode has several advantages as
compared to its counterpart which is managed by the host operating system.
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– The auditor handles the computational work. Hence, the performance of the
host system is not degraded.

– The system is not vulnerable to subversion errors. Following directly from
the inaccessibility property, an attacker gaining access to the host machine
will not be able to corrupt the auditor.

– Secure logs can be stored, which could greatly help in the forensics of the
attack.

– In a system with more than one administrator a central administrator could
make sure that the local administrators have not changed sensitive files.

4 Implementing an Independent Auditor

As an example of implementing an independent auditor, we used an embedded
co-processor plugged directly into the PCI bus. The co-processor used was the
SA-100 ARM processor with the 21285 core logic [10]. This coprocessor comes
packaged as a EBSA-285 [11]. The EBSA-285 includes support for both volatile
and non-volatile storage. The non-volatile storage is 4MB of flash ROM memory,
and the volatile memory is upgradeable up to 256 MB, but for our system only 16
MB were necessary. The EBSA-285 is shaped as PCI card, and runs a romized
Linux kernel. The Linux OS was chosen for the system as it supports a wide
range of file-systems and it had good support for the SA-110 processor. AIDE
was used as the application for performing the Integrity checks.

Our objective was to create a reliable integrity tool, which could be portable
to any OS. We met the first requirement. We were able to mount the partition of
a Linux box and a Windows NT box, and check the integrity of the file-systems
using AIDE. However, since the access to the IDE controller through the PCI bus
is non-atomic, when both the host OS and the EBSA-285 write to the registers
on the IDE controller at the same time, a race condition occurs. To avoid these
problems, patches for the host OS must be supplied to create a mutual exclusion
mechanism.



4.1 The EBSA-285 as an independent auditor

In this section the suitability of the EBSA-285 to act as an independent au-
ditor will be discussed. An assumption of this work is that the host machine
is physically secure. The term physically secure is used in this section to de-
scribe a machine whose internals can not be tampered with by an attacker. The
attacker, however, could have access to the peripherals attached to the host,
including keyboard and monitor.

The EBSA-285 must have open access to the hard disk data to meet the
property of unrestricted access. The EBSA-285 has access to the entire PCI
bus, hence is capable of reading the registers and data from all PCI devices
plugged into the same bus. If the IDE controller is plugged into the same bus
as the EBSA-285, the EBSA-285 will be able to read the hard disk without the
intervention of the host OS. Notice that if the EBSA-285 is plugged into a slot
using a different bus than the IDE controller, the access will not be possible and
the EBSA-285 will not be capable of acting as an independent auditor of the host
processor. The EBSA-285 is not able to ”listen” to the interrupts raised by the
different devices in the PCI bus. These interrupts, however are not imperative
to the auditing, as a polled method can be used to read and write data to the
peripherals.

The channel used to retrieve the information from the peripherals is the PCI
bus. This channel is secure as it is an internal part of the computer and we
have assumed that the internal parts of the host are secure. Hence, the EBSA-
285 accomplishes the property of secure transactions. The EBSA-285 does not
map its memory (either ROM or RAM) via the PCI bus, which allows the host
processor to access only mailbox registers and doorbell registers. The EBSA-
285 uses these register as information, and does not interfere with its operation,
hence not breaking the inaccessibility property.

Once the EBSA-285 starts auditing only a power failure or reset of the host
machine will stop it from functioning, and these events will be labeled as alarms.
The EBSA-285 will begin functioning after the host machine has set up all the
internal peripherals. In our case, the EBSA-285 will begin functioning before
this happens, so the EBSA-285 has a mechanism to stall its booting until all the
peripherals have been configured. Therefore the property of continuity is satis-
fied. Because the EBSA-285 has direct access to the registers of the PCI devices,
it is able to access the data by polling without the supervision of the host OS,
and therefore satisfying the requirement of the property of transparency. No-
tice, however, that some mechanism should be implemented to avoid concurrent
writes to the IDE registers, which would lead to an unstable system.

The software running in the EBSA-285 is open source. It is composed of a
minimum bootloader and the ARM-port of the Linux operating system, with
some changes to support the EBSA-285 and the polling method.

The EBSA-285 can use the flash ROM to store the alarms and logs. The
ROM normally cannot be reprogrammed if the program is executed from the
flash ROM. To avoid this problem, the bootloader copies the root file-system



and the operating system to the RAM memory before executing it, freeing the
flash ROM.

4.2 Solving race conditions

The EBSA-285 was able to access the IDE hard disk using a polled IDE driver
instead of the usual Linux driver and was able to mount the hard disk indepen-
dently of the host operating system used, as long as it was supported by the
Linux operating system[12]. However, if the host operating system tried to ac-
cess the hard disk at the same time as the EBSA-285, race conditions occurred,
as requests to the IDE controller through the PCI bus are not atomic. The PCI
specification [13] contains a method to achieve atomic transactions using the
PCI bus with the LOCK# signal. This signal, however, is not used in common
drivers and few motherboards support its use. While we hoped to avoid changes
to the host operating system, we could not due to the lack of an atomic lock on
the PCI bus.

To avoid the race conditions we used a communication path between the host
processor and the independent auditor, named mailbox registers and doorbell
interrupts. Using these tools will not break the inaccessibility property as the
independent auditor will only use this signal as information to prevent the race
conditions. The host processor is only able to modify these specific registers.

If the host accesses the hard disk, it will write a doorbell register in the
EBSA-285, which will raise a sleep interrupt in the EBSA-285. If the EBSA-
285 is engaged in any hard disk transaction, it will finish the current block
transaction, and then send an ACK to the host using a mailbox register. After
receiving the ACK the host will resume normal operation. Once the host has
finished using the hard disk, it will raise a wakeup doorbell interrupt in the
EBSA-285. The EBSA-285 will be then free to begin a new transaction. The
transaction size depends of the mode of operation.

The behavior of both the EBSA-285 and the host processor can be summa-
rized in the state machines shown in figures 4 and 5.

It could be argued that an attacker could easily halt the EBSA-285 by chang-
ing the driver so that the host will never send a wakeup interrupt to the EBSA-
285. To combat this attack we use a counter, which will be set to the maximum
transaction value and will wakeup the EBSA-285 after that time, even if the
interrupt never arrives. Additionally, an alarm will be raised.

Another possible attack would be to prevent the host from sending the sleep
interrupt to the EBSA-285. In this case, the EBSA-285 would proceed to read
even if the host is accessing the hard disk. This could cause a corruption of the
file-system. However, this attack is not only a problem with the EBSA-285, for
if an intruder is able to change the drivers, obviously he/she would be able to
corrupt the file-system anyway.
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Table 1. Different Timings of executing AIDE on the EBSA-285 . The first column
states if the host machine is accessing the hard disk concurrently with the EBSA-285.
the second column the number of files and the total size of all of them. The third
and fourth columns the amount of time spent in User Space and in kernel Space,
respectively. The tests performed by AIDE were: permissions, inode, user, group, size
and checksum using SHA1 checksum

Concurrent File Amount and Size User Space System Space Total

No 36 (7644k) 1.18s 3.69s 4.86s
Yes 36 (7644k) 1.26s 4.02s 5.03s
No 2302 (47552k) 7.12s 36.55s 43.68s
Yes 2302 (47552k) 7.06s 55.00s 62.71s
No 3484 (128736k) 17.53 75.51 93.29
Yes 3484 (128736k) 17.67 101.37 119.25



4.3 Implementation Results

To collect the timing information, the host used was an Intel Pentium III Cop-
permine. As stated before, the EBSA-285 uses a polled driver. The average
throughput of the EBSA-285 to the hard disk using this polled driver is 1.40
Mb/s.

The performance varies greatly from one system to another, or even in the
same machine: at different times the data to be checked could be stored in cache
or not, the CPU could be burdened by a huge amount of processes or just a few,
and so on.

In the EBSA-285, the numbers are deterministic. The EBSA-285 always by-
passes the internal cache and retrieves the data directly from the hard disk at a
constant rate. The CPU is always running a minimal number of process, so the
CPU is 99% devoted to computing the hashes and perform the different tests. In
Table 1 we can see the comparison between the two unique states we can have,
the EBSA-285 executing AIDE alone and the EBSA-285 executing AIDE at the
same time as the host machine is performing a hard disk access, for three differ-
ent amount of files. This hard disk access is performed using a ”worst scenario”
approach: we read a file from the host machine bigger than the RAM memory
while AIDE is running on the independent auditor, therefore the data will never
be cached.

The time spent in kernel space is roughly the time the EBSA-285 spent
retrieving the data. This time is directly proportional to the total size of the
data to be retrieved, while the amount spent in user space is proportional to the
complexity of the hash function.

The overhead of the locking mechanism to the host machine when there isn’t
a concurrent access with the EBSA-285 is negligible, as the only addition to the
driver is a new register write through the PCI bus (writing to a Mailbox Register
in the EBSA-285).

The locking mechanism was created to give priority to the host machine.
When the host machine begins a hard disk access, if the EBSA-285 is accessing
the hard disk at the same time, the EBSA-285 will stall until the host machine
has ended the request (the size of a request depends of the mode used to access
the hard disk). As a result the impact in the performance of the host machine
is very low. In fact, most of the time the host machine does not access the hard
disk, but reads the data stored in the internal cache. Even in the worst case
scenario, where the hard disk is reading a file bigger that its memory while the
EBSA-285 is performing several hard disk access, only supposes a maximum of
a 5% overhead in the timing results of the host machine.

5 Conclusions

Current computer systems can not fully protect themselves against motivated
attackers because of the attackers ability to change the underlying operating sys-
tem once gaining system privilege. The attacker can simply change the operating
system to “lie” to any security system– not only integrity detection systems.



In this paper, we proposed the notion of an independent auditor whose role
is to serve as an unimpeachable reviewer of the state of the protected host. We
defined the properties required for such an auditor, and we implemented such a
device for measuring the integrity of a protected host. The results we achieved
were excellent in that at most only five percent of overhead was added to the
protected host– in the worst case.

While such a system is not required in all computer systems within an orga-
nization, the capabilities provided by an independent auditor are tremendously
important to server systems. Given the low cost of these boards, $200, and the
vast increase in protection they provide– organizations serious about protecting
their resources should consider such protection.
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