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LECTURE 11: Discrete-time quantum walk

In the last lecture we introduced the notion of continuous-time quantum walk. We now turn our
attention to discrete-time quantum walk, which provides a convenient framework for quantum
search algorithms.

Discrete-time quantum walk

It is trickier to define a quantum analog of a discrete-time random walk than of a continuous-time
random walk. In the simplest discrete-time random walk on G, at each time step we simply move
from any given vertex to each of its neighbors with equal probability. Thus the walk is governed
by the |V | × |V | matrix M with entries

Mjk =

{
1/deg(k) (j, k) ∈ E
0 otherwise.

(1)

for j, k ∈ V : an initial probability distribution p over the vertices evolves to p′ = Mp after one step
of the walk.

To define a quantum analog of this process, we would like to specify a unitary operator U with
the property that an input state |j〉 corresponding to the vertex j ∈ V evolves to a superposition
of the neighbors of j. We would like this to happen in essentially the same way at every vertex, so
we are tempted to propose the definition

|j〉 ?7→ |∂j〉 :=
1√

deg(j)

∑
k:(j,k)∈E

|k〉. (2)

However, a moment’s reflection shows that this typically does not define a unitary transformation,
since the orthogonal states |j〉 and |k〉 corresponding to adjacent vertices j, k with a common
neighbor ` evolve to non-orthogonal states. We could potentially avoid this problem using a rule
that sometimes introduces phases, but that would violate the spirit of defining a process that
behaves in the same way at every vertex. In fact, even if we give that up, there are some graphs
that simply do not allow local unitary dynamics.

We can get around this difficulty if we allow ourselves to enlarge the Hilbert space, an idea
proposed by Watrous as part of a logarithmic-space quantum algorithm for deciding whether two
vertices are connected in a graph. Let the Hilbert space consist of states of the form |j, k〉 where
(j, k) ∈ E. We can think of the walk as taking place on the (directed) edges of the graph; the state
|j, k〉 represents a walker at vertex j that will move toward vertex k. Each step of the walk consists
of two operations. First, we apply a unitary transformation that operates on the second register
conditional on the first register. This transformation is sometimes referred to as a “coin flip,” as
it modifies the next destination of the walker. A common choice is the Grover diffusion operator
over the neighbors of j, namely

C :=
∑
j∈V
|j〉〈j| ⊗

(
2|∂j〉〈∂j | − I

)
. (3)
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Next, the walker is moved to the vertex indicated in the second register. Of course, since the
process must be unitary, the only way to do this is to swap the two registers using the operator

S :=
∑

(j,k)∈E

|j, k〉〈k, j|. (4)

Overall, one step of the discrete-time quantum walk is described by the unitary operator SC.

In principle, this construction can be used to define a discrete-time quantum walk on any graph
(although care must be taken if the graph is not regular). However, in practice it is often more
convenient to use an alternative framework introduced by Szegedy, as described in the next section.

How to quantize a Markov chain

A discrete-time classical random walk on an N -vertex graph can be represented by an N×N matrix
P . The entry Pjk represents the probability of making a transition to k from j, so that an initial
probability distribution p ∈ RN becomes Pp after one step of the walk. To preserve normalization,
we must have

∑N
j=1 Pjk = 1; we say that such a matrix is stochastic.

For any N ×N stochastic matrix P (not necessarily symmetric), we can define a corresponding
discrete-time quantum walk, a unitary operation on the Hilbert space CN ⊗ CN . To define this
walk, we introduce the states

|ψj〉 := |j〉 ⊗
N∑
k=1

√
Pkj |k〉 (5)

=

N∑
k=1

√
Pkj |j, k〉 (6)

for j = 1, . . . , N . Each such state is normalized since P is stochastic. Now let

Π :=
N∑
j=1

|ψj〉〈ψj | (7)

denote the projection onto span{|ψj〉 : j = 1, . . . , N}, and let

S :=
N∑

j,k=1

|j, k〉〈k, j| (8)

be the operator that swaps the two registers. Then a single step of the quantum walk is defined as
the unitary operator U := S(2Π− 1).

Notice that if Pjk = Ajk/ deg(k) (i.e., if the walk simply chooses an outgoing edge of an
underlying digraph uniformly at random), then this is exactly the coined quantum walk with the
Grover diffusion operator as the coin flip.

If we take two steps of the walk, then the corresponding unitary operator is

[S(2Π− 1)][S(2Π− 1)] = [S(2Π− 1)S][2Π− 1] (9)

= (2SΠS − 1)(2Π− 1), (10)

which can be interpreted as the reflection about span{|ψj〉} followed by the reflection about
span{S|ψj〉} (the states where we condition on the second register to do a coin operation on the
first). To understand the behavior of the walk, we will now compute the spectrum of U ; but note
that it is also possible to compute the spectrum of a product of reflections more generally.
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Spectrum of the quantum walk

To understand the behavior of a discrete-time quantum walk, it will be helpful to compute its
spectral decomposition. Let us show the following:

Theorem. Fix an N ×N stochastic matrix P , and let {|λ〉} denote a complete set of orthonormal
eigenvectors of the N × N matrix D with entries Djk =

√
PjkPkj with eigenvalues {λ}. Then

the eigenvalues of the discrete-time quantum walk U = S(2Π − 1) corresponding to P are ±1 and
λ± i

√
1− λ2 = e±i arccosλ.

Proof. Define an isometry

T :=

N∑
j=1

|ψj〉〈j| (11)

=
N∑

j,k=1

√
Pkj |j, k〉〈j| (12)

mapping states in Cn to states in Cn ⊗ Cn, and let |λ̃〉 := T |λ〉. Notice that

TT † =

N∑
j,k=1

|ψj〉〈j|k〉〈ψk| (13)

=
N∑
j=1

|ψj〉〈ψj | (14)

= Π, (15)

whereas

T †T =
N∑

j,k=1

|j〉〈ψj |ψk〉〈k| (16)

=

N∑
j,k,`,m=1

√
P`jPmk|j〉〈j, `|k,m〉〈k| (17)

=
N∑

j,`=1

P`j |j〉〈j| (18)

= I (19)

and

T †ST =
N∑

j,k=1

|j〉〈ψj |S|ψk〉〈k| (20)

=

N∑
j,k,`,m=1

√
P`jPmk|j〉〈j, `|S|k,m〉〈k| (21)

=
N∑
j=1

√
PjkPkj |j〉〈k| (22)

= D. (23)
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Applying the walk operator U to |λ̃〉 gives

U |λ̃〉 = S(2Π− 1)|λ̃〉 (24)

= S(2TT † − 1)T |λ〉 (25)

= 2ST |λ〉 − ST |λ〉 (26)

= S|λ̃〉, (27)

and applying U to S|λ̃〉 gives

US|λ̃〉 = S(2Π− 1)S|λ̃〉 (28)

= S(2TT † − 1)ST |λ〉 (29)

= (2STD − T )|λ〉 (30)

= 2λS|λ̃〉 − |λ̃〉. (31)

We see that the subspace span{|λ̃〉, S|λ̃〉} is invariant under U , so we can find eigenvectors of U
within this subspace.

Now let |µ〉 := |λ̃〉−µS|λ̃〉, and let us choose µ ∈ C so that |µ〉 is an eigenvector of U . We have

U |µ〉 = S|λ̃〉 − µ(2λS|λ̃〉 − |λ̃〉) (32)

= µ|λ̃〉+ (1− 2λµ)S|λ̃〉. (33)

Thus µ will be an eigenvalue of U corresponding to the eigenvector |µ〉 provided (1−2λµ) = µ(−µ),
i.e. µ2 − 2λµ+ 1 = 0, so

µ = λ± i
√

1− λ2. (34)

Finally, note that for any vector in the orthogonal complement of span{|λ̃〉} = span{|ψj〉} (these
spaces are the same since

∑
λ |λ̃〉〈λ̃| =

∑
λ T |λ〉〈λ|T † = TT † = Π), U simply acts as −S, which has

eigenvalues ±1.

Hitting times

We can use random walks to formulate a generic search algorithm, and quantizing this algorithm
gives a generic square root speedup. Consider a graph G = (V,E), with some subset M ⊂ V of
the vertices designated as marked. We will compare classical and quantum walk algorithms for
deciding whether any vertex in G is marked.

Classically, a straightforward approach to this problem is to take a random walk defined by
some stochastic matrix P , stopping if we encounter a marked vertex. In other words, we modify
the original walk P to give a walk P ′ defined as

P ′jk =


1 k ∈M and j = k

0 k ∈M and j 6= k

Pjk k /∈M.

(35)

Let us assume from now on that the original walk P is symmetric, though the modified walk P ′

clearly is not provided M is non-empty. If we order the vertices so that the marked ones come last,
the matrix P ′ has the block form

P ′ =

(
PM 0
Q I

)
(36)
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where PM is obtained by deleting the rows and columns of P corresponding to vertices in M .

Suppose we take t steps of the walk. A simple calculation shows

(P ′)t =

(
P tM 0

Q(I + PM + · · ·+ P t−1M ) I

)
(37)

=

(
P tM 0

Q
P t
M−I
PM−I I

)
. (38)

Now if we start from the uniform distribution over unmarked items (if we start from a marked
item we are done, so we might as well condition on this not happening), then the probability
of not reaching a marked item after t steps is 1

N−|M |
∑

j,k/∈M [P tM ]jk ≤ ‖P tM‖ = ‖PM‖t, where

the inequality follows because the left hand side is the expectation of P tM in the normalized state
|V \M〉 = 1√

N−|M |

∑
j /∈M |j〉. Now if ‖PM‖ = 1−∆, then the probability of reaching a marked item

after t steps is at least 1−‖PM‖t = 1− (1−∆)t, which is Ω(1) provided t = O(1/∆) = O( 1
1−‖PM‖).

It turns out that we can bound ‖PM‖ away from 1 knowing only the fraction of marked vertices
and the spectrum of the original walk. Thus we can upper bound the hitting time, the time required
to reach some marked vertex with constant probability.

Lemma. If the second largest eigenvalue of P (in absolute value) is at most 1− δ and |M | ≤ εN ,
then ‖PM‖ ≥ 1− δε.

Proof. Let |v〉 ∈ RN−|M | be the principal eigenvector of PM , and let |w〉 ∈ RN be the vector
obtained by padding |v〉 with 0’s for all the marked vertices.

We will decompose |w〉 in the eigenbasis of P . Since P is symmetric, it is actually doubly
stochastic, and the uniform vector |V 〉 = 1√

N

∑
j |j〉 corresponds to the eigenvalue 1. All other

eigenvectors |λ〉 have eigenvalues at most 1− δ by assumption. Now

‖PM‖ = 〈v|PM |v〉 (39)

= 〈w|P |w〉 (40)

= |〈V |w〉|2 +
∑
λ 6=1

λ|〈λ|w〉|2 (41)

≤ |〈V |w〉|2 + (1− δ)
∑
λ 6=1

|〈λ|w〉|2 (42)

= 1− δ
∑
λ 6=1

|〈λ|w〉|2 (43)

= 1− δ(1− |〈V |w〉|2). (44)

But by the Cauchy-Schwarz inequality,

|〈V |w〉|2 = |〈V |ΠV \M |w〉|2 (45)

≤ ‖ΠV \M |V 〉‖2 · ‖|w〉‖2 (46)

=
N − |M |

N
(47)

= 1− ε (48)

where ΠV \M =
∑

j /∈M |j〉〈j|. Thus ‖PM‖ ≤ 1− δε as claimed.
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Figure 1: The classical gap, 1 − λ = 1 − cos θ, appears on the real axis. The quantum phase gap,
θ = arccosλ, is quadratically larger, since cos θ ≥ 1− θ2/2, i.e., arccosλ ≥

√
2(1− λ).

Thus we see that the classical hitting time is O(1/δε).

Now we turn to the quantum case. Our strategy will be to perform phase estimation with
sufficiently high precision on the operator U , the quantum walk corresponding to P ′, with the state

|ψ〉 :=
1√
N

∑
j 6∈M
|ψj〉. (49)

This state can easily be prepared by starting from the state

T |V 〉 =
1√
N

∑
j

|ψj〉 (50)

and measuring whether the first register corresponds to a marked vertex; if it does then we are
done, and if not then we have prepared |ψ〉.

The matrix D for the walk P ′ is (
PM 0
0 I

)
, (51)

so according to the spectral theorem, the eigenvalues of the resulting walk operator U are ±1 and
e±i arccosλ, where λ runs over the eigenvalues of PM . If the marked set M is empty, then P ′ = P ,
and |ψ〉 is an eigenvector of U with eigenvalue 1, so phase estimation on U is guaranteed to return
a phase of 0. But if M is non-empty, then the state |ψ〉 lives entirely within the subspace with
eigenvalues e±i arccosλ. Thus if we perform phase estimation on U with precision O(minλ arccosλ),
we will see a phase different from 0. Since arccosλ ≥

√
2(1− λ) (see Figure 1 for an illustration),

we see that precision O(
√

1− ‖PM‖) suffices. So the quantum algorithm can decide whether there
is a marked vertex in time O(1/

√
1− ‖PM‖) = O(1/

√
δε).
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