
Test Suite Prioritization by Interaction Coverage

Renée C. Bryce
Computer Science

University of Nevada at Las Vegas
Las Vegas, Nevada 89154
reneebryce@cs.unlv.edu

Atif M. Memon
Computer Science

University of Maryland
College Park, MD 20742

atif@cs.umd.edu

ABSTRACT
Event-driven software (EDS) is a widely used class of software that
takes sequences of events as input, changes state, and outputs new
event sequences. Managing the size of tests suites for EDS is dif-
ficult as the number of possible event combinations and sequences
grow exponentially with the number of events. We propose a new
testing technique for EDS that extends software interaction testing.
Traditional software interaction testing systematically examines all
t-way interactions of parameters for a program. This paper extends
this notion to t-way interactions over sequences of events. As a
proof-of-concept, we prioritize existing test suites (for four GUI-
based programs) by t-way interaction coverage. We compare the
rate of fault detection with that of several other prioritization crite-
ria. Our results show that prioritization by interaction coverage has
the fastest rate of fault detection in half of our experiments, making
the most impact when tests have high interaction coverage.

1. INTRODUCTION
Event-driven software (EDS) is a class of software that is quickly

becoming ubiquitous. All EDS share a common event-driven model
– they take sequences of events (i.e., messages, mouse-clicks) as in-
put, change their state, and (sometimes) output an event sequence.
Examples include web applications, graphical user interfaces (GUIs),
network protocols, device drivers, and embedded software. Quality
assurance tasks such as testing have become important for EDS as
they are now being used in critical applications.

Our earlier research on a particularly important class of EDS,
namely Graphical User Interfaces (GUIs) has shown that existing
testing techniques do not apply directly to GUIs primarily because
the number of permutations of input events leads to a large number
of states, and for adequate testing, an event may, in principle, need
to be tested in many of these states, thus requiring a large num-
ber of test cases (each represented as an event sequence) [8, 17].
Reduction and prioritization of GUI test suites is an important and
challenging area of research.

In this paper, we extend software interaction testing for the pur-
pose of testing GUIs. Software interaction testing can systemati-
cally examine event interactions. Further, test suites can be gen-
erated with a logarithmic guarantee on size [1]. For the purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Domain-Specific Approaches to Software Test Automation Workshop Sep-
tember, 2007, Dubrovnik, Croatia
Copyright 2007 ACM X-XXXXX-XXX-X/XX/XXXX ...$5.00.

of testing GUIs we need to extend “software interaction testing” to
consider sequences of events (that contain event interactions). As
preliminary work towards this ultimate goal of test-case generation
of test suites that are event-interaction adequate, we prioritize ex-
isting test suites by event interaction coverage. This enables us to
understand whether event interactions are indeed useful in testing.
Results of our empirical studies demonstrate that prioritization by
interaction coverage is useful for two programs under test and their
existing test suites. The test suites that benefit the most from our
prioritization have high 2-way and 3-way interaction coverage.

The specific contributions of this work include: (1) the exten-
sion of interaction coverage for EDS, (2) application of interac-
tion coverage for GUI test-suite prioritization, and (3) empirical
demonstration that higher 2-way and 3-way interaction coverage
test suites benefit the most from our prioritization technique.

Structure of the paper: Section 2 provides background of in-
teraction testing, GUI testing, and test prioritization in the next sec-
tion. Section 3 discusses how to prioritize tests by t-way interaction
coverage. Section 4 applies prioritization by 2-way and 3-way in-
teraction coverage to four GUI-based programs and their existing
test suites. Section 5 concludes with a discussion of future work.

2. BACKGROUND
This section gives an overview of interaction testing, GUI test-

ing, and test prioritization. Additional details have been presented
in earlier reported research [15].

2.1 Software interaction testing
Software interaction test suites are a collection of tests that sys-

tematically cover all t-way combinations of interactions among
system inputs. Consider an example of a subset of an on-line store.
Table 1 shows four parameters that each have three options. In-
teractions include combinations of options for different parame-
ters. For instance, a pairwise (2-way) interaction for this input
is: {Member Status=New Member, Member Type=basic}. Test-
ing pairwise interactions may be useful when exhaustive testing of
all parameter-option interactions is not possible. In this example,
such exhaustive testing requires 34 tests. Alternatively, a tester may
test all pairwise interactions in 9 tests.

Member Member Discount Ship
Status Type Method
New Member Basic None Standard

(5-7 day)
Verified Silver Employee Express
member (3 - 5 day)
Unverified Gold Holiday Overnight
member (1 day)

Table 1: Four parameters to a user interface

1



Software interaction testing has been applied to generate test
suites from scratch (see [3] and therein). Empirical studies of in-
teraction testing show promise. For instance, Kuhn et al. examine
109 medical devices recalled by the U.S. Food and Drug Admin-
istration and identify 97% of defects with pairwise combinations
of parameter settings [7]. White generates interaction test suites to
test component interactions on individual GUI screens [13]. Yil-
maz et al. find interaction testing useful for fault localization [16].
Dunietz et al. identify faults due to interactions and relate the in-
teraction coverage to code coverage [4]. Bryce et al. apply 2-way
through 5-way interaction test suites to a Flight Guidance System
and find that the tests do not significantly increase model coverage
over simple requirements-based test suites [2]. However, they con-
clude that the interaction tests only consider combinations of input
parameters and do not consider state information. This recent work
identifies the issue that testing internal states is often important and
that interaction testing should evolve to include temporal sequences
of events. This issue is important in many types of EDS. In the re-
mainder of this paper, we focus on a particular type of EDS, that of
GUI-based programs.

2.2 Event-interaction coverage for GUIs
GUI-based programs are difficult to test. A tester needs to con-

sider end-user behavior when testing GUI-based programs, yet such
behavior is often unpredictable. Users can invoke many events
from windows. The number of possible event sequences grows ex-
ponentially with length. GUI-based programs often have numerous
windows with many invocable events.

As exhaustive testing of all possible sequences of events between
windows is prohibitive, we consider that all combinations of events
between windows can be tested in a smaller number of tests with in-
teraction testing. However, interaction testing has not yet been ap-
plied to generate tests that consider temporal sequences of events.
As a precursor to such work, we explore prioritization by event in-
teractions for GUI programs and their test suites that already con-
tain such valid sequences of events.

2.3 Test Suite Prioritization
The prioritization problem is formally defined in [10]. Given

(T , Π, f), where T is a test suite, Π is the set of all test suites
obtained by permuting the tests of T , and f is a function from Π
to the real numbers, the problem is to find π ∈ Π such that ∀π′ ∈
Π, f(π) ≥ f(π′). In this definition, the possible prioritizations of
T are referred to as Π and f is a function to evaluate the orderings.

Prioritization can be based on any criteria. Examples include
code coverage, cost estimate (i.e., how much execution time a test
incurs), areas of recent changes, areas that testers believe to be par-
ticularly fault-prone, and others [5, 6, 10, 11]. Prioritization by
event interactions is a new criterion that we introduce next.

3. INTERACTION-BASED PRIORITIZATION
Consider the function for the test prioritization problem by inter-

action coverage. Given a test suite T , Π is the set of all possible test
suites obtained by permuting the ordering of tests. Each permuta-
tion is referred to as πi ∈ Π and an individual permutation contains
n tests, πi = (πi1, πi2, . . . , πin). A function tCov(πik) computes
the set of covered t-tuples in a test πik. Then our prioritization

function is f(πi) =
n�

j=0

|
j�

k=0

tCov(πik)|.
In our experiments, t-tuples are combinations of events such that

each event is from a unique window. For instance, assume that we
have unique windows: ω1, ω2, ω3, and ω4. Each window has two
events as shown in Table 2. A test, t={E0 → E1 → E4 →
E7} includes four events that are each from three unique windows.

Events E0 and E1 are both invocable from window ω0 and are not
counted as an event interaction in our work since we consider event
interactions between unique windows. (Indeed, this is different
than work in [14] that considers interactions on a single window;
this is also different from the definition of event-interaction cov-
erage used in [9], in which interaction is restricted to events that
are related via their follows relationship.) The 2-tuples of event
interactions that we count for this test include: (E0,E4), (E0,E7),
(E1,E4), (E1,E7), and (E4,E7). The 3-tuples include: (E0,E4,E7)
and (E1,E4,E7). No valid 4-tuples exist in this test.

ω0 ω1 ω2 ω3

E0 E2 E4 E6
E1 E3 E5 E7

Table 2: Four windows each have 3 events that may be invoked.

testCount = number of tests to prioritize
bestTest = select a test that covers the most

unique t-tuples
mark testbestTest as used
selectedTestCount = 1
while(selectedTestCount < testCount)

tCountMax = -1
for j=1 to (testCount-selectedTestCount)

if testj is not used
compute tCount as the number of

newly covered t-tuples in testj

if(tCount > tCountMax)
tCountMax = tCount
bestTest = j

else if(tCount == tCountMax)
break the tie at random

end for
add testbestTest to Tpi

mark testbestTest as used
selectedTestCount++

end while

Figure 2: Pseudocode to prioritize test suites

Previous algorithms generate interaction test suites from scratch,
whereas our algorithm here prioritizes existing test suites by inter-
action coverage. Further, unlike previous applications of interac-
tion testing, the tests that we use do not include exactly one op-
tion (event) for every parameter (window) in each test. In addition,
more than one event for a window may occur in the same test. Con-
sequently, a test may not include an event from every window. Our
algorithm accounts for these issues next.

A simple greedy algorithm can instantiate the prioritization func-
tion for t-way interaction coverage. Figure 2 shows one such al-
gorithm. We select one-test-at-a-time to incrementally cover the
largest number of previously uncovered t-tuples (of event interac-
tions between unique windows). Ties are broken at random. Once
remaining tests do not cover any additional t-tuples, remaining tests
are ordered at random.

Figure 1 shows a sample trace of the algorithm for 2-way interac-
tion coverage. The program under test has 4 windows (ω0, ω1, ω2, ω3)
that each have 2 events. The existing test suite contains 5 tests
(T1,...,T5). In the first iteration of the algorithm, all five tests cover
6 new pairs. The tie is broken at random to select test T1. In the
second iteration, tests T3 and T5 tie as they both cover the most
(6) new pairs. Random tie-breaking selects test T3. In the third
iteration, test T5 covers the most new pairs and becomes the third
test in the prioritized test suite. In the fourth iteration, there are
two remaining tests. Test T2 covers 3 new pairs and test T4 covers
only 2 new pairs. Therefore, test T2 becomes the fourth test. In the

2



7531

6420

Input

6531T5

6421T4

7530T3

7420T2

6420T1

Test

No.

Original tests

0 21 3

0 21 3

----6T1

-3336T2

---66T3

22336T4

--566T5

T4T2T5T3T1Best test

Step 5Step 4Step 3Step 2Step 1

No. of uncovered 2-tuplesOriginal 

Test No.

Prioritized test selection

Step 1. All tests initially cover 6 pairs. Random tie-breaking selects test T1.

T1 contains six new pairs: (0,2), (0,4), (0,6), (2,4), (2,6), (4,6).

Step 2. Now that T1 has been selected as the first test, tests T3 and T5 both 

cover the most remaining pairs. Random tie-breaking selects test T3.

Step 3. Test T5 covers the most new pairs.

Step 4. Test T2 covers the most new pairs.

Step 5. Test T4 is the last remaining test.

Figure 1: Example trace of prioritizing existing tests by t-way interaction coverage

last iteration, only test T4 remains and becomes the last test in the
prioritized test suite.

4. EXPERIMENTS
In the following experiments, we set out to find whether prior-

itization by event interaction coverage improves the rate of fault
detection in four GUI-based programs that have existing regression
test suites. In the following sections, we describe the systems un-
der test, characterize the test suites in regards to their coverage of
2-way and 3-way event interactions, and compare the rate of fault
detection for tests prioritized by unique coverage of events, 2-way
and 3-way interaction coverage, test length, and at random.

4.1 Systems under test
We prioritize test suites for four GUI-based programs shown in

Table 3. The table shows each of the program names and the num-
ber of windows, widgets, and user-invocable events to test in each
program. For instance, the TerpCalc program has 2 windows and
151701 events (read as one window has 15 invocable events and
one window has 70 invocable events). Since there are only 2 win-
dows for TerpCalc, we can only prioritize by 2-way interactions
among windows at most. However, we may prioritize TerpPaint,
TerpSpreadsheet, and TerpWord by higher strength (t > 2) interac-
tion coverage since there are more than 2 windows. Table 3 also in-
cludes the number of lines of code, classes, methods, and branches
for each application.

4.2 Existing test suites
The TerpCalc, TerpPaint, and TerpSpreadsheet test suites contain

300 tests; TerpWord contains 250 tests. The existing test suites that
we use cover every window and unique user invocable event at least
once. The length of tests vary, as does the composition of tests. The
tests contain as many as 47 steps for TerpCalc, 51 for TerpPaint, 50
for TerpSpreadsheet, and 50 for TerpWord.

Additionally, each application has a pre-existing fault matrix,
i.e., a representation of a set of faults known to be detected by each
test case. These faults were similar to those described in earlier
reported research [15]. Hence, for each test suite, we can compute
the “set of faults detected” by simply taking a set union of the faults
detected by all its constituent test cases.

TerpCalc TerpPaint TerpSpread- TerpWord
sheet

Windows 2 11 9 12
Widgets 82 200 145 112
Events 85 247 188 156
LOC 9916 18376 12791 4893
Classes 141 219 125 104
Methods 446 644 579 236
Branches 1306 1277 1521 452

Table 3: Composition of TerpOffice applications.

4.3 Prioritization criteria
In these experiments, we prioritize by five criteria (with all ties

broken at random): (1) Unique event coverage - order tests to
cover as many unique events as possible, as early as possible; (2)
Event Interaction coverage (IC) - order tests by event interaction
coverage (we include 2-way and 3-way interaction coverage in the
studies in this paper); (3) Longest to shortest - order tests by their
lengths, from longest to shortest; (4) Shortest to longest - order
tests by their lengths, from shortest to longest; (5) Random test
ordering - randomly permute the ordering of tests.

4.4 Results
The results of the prioritization techniques vary among the four

GUI-based programs and their test suites. In this section, we be-
gin with a summary of the composition of the existing test suites
in regards to the number of 2-way and 3-way interactions that they
cover. We follow this summary with a discussion of the rate of
fault detection for each of the four programs, reported as the Aver-
age Percentage of Faults Detected (APFD). (APFD measures how
rapidly a prioritized test suite detects faults. We refer the reader to
[10] for a discussion of how APFD is computed.)

Table 4 shows that the existing test suites do not cover all 2-
way and 3-way interactions. The TerpCalc test suite includes the
largest coverage of 2-way interactions with 99.34% covered. The
TerpWord test suite contains the next best coverage with 64.58%
of 2-way and 16.51% of 3-way interactions. The TerpSpreadsheet

3



Calc Paint Spread- Word
sheet

2-way 2-way 2-way 2-way
No. of 2-tuples 1,065 26,253 14,721 10,815
% of 2-tuples 99.34% 46.34% 50.75% 64.58%
covered in
test suite
No. of tests 67 199 103 146
that cover the
unique 2-tuples
in the test suite

3-way 3-way 3-way 3-way
No. of 3-tuples n/a 1,577,160 626,012 439,734
% of 3-tuples n/a 6.15% 9.76% 16.51%
covered in
test suite
No. of tests n/a 185 127 168
that cover the
unique 3-tuples
in the test suite

Table 4: Summary of 2 and 3-tuples covered in the TerpCalc,
TerpPaint, TerpSpreadsheet, and TerpWord test suites

and TerpPaint test suites cover only about half of the possible 2-way
interactions and less than 10% of the possible 3-way interactions.
In the coming discussions, we observe that TerpCalc and TerpWord
have the best event interaction coverage and benefit the most from
prioritization by interaction coverage. Table 4 also shows that the
available 2-way and 3-way interactions are covered in only a subset
of the test suite. For instance, the TerpCalc test suite contains 300
tests, but as few as 67 tests cover the available 2-way interactions.

4.5 TerpCalc
The results of the prioritized test suites are shown in Figure 3.

The figure includes graphs of the rate of fault detection in (a) loga-
rithmic scale to better visualize the impact of prioritization in ear-
liest tests and also (b) unscaled. Prioritization by 2-way interaction
coverage is the most effective technique during the initial tests. The
results of the initial 30% of the tests show that prioritization by
2-way event interaction has the best APFD. Prioritization by test
length (longest to shortest) has the second best APFD, followed by
prioritization by unique events. Randomly ordered tests are less
effective and prioritization by shortest to longest test length is the
least effective. The first 30% of the test suite is most interesting
here because all 2-way event interactions are covered in the first 67
tests (we then prioritize the remaining tests at random).

The APFD for the first 10 tests is best with 2-way interaction
coverage prioritization. Prioritization by unique events is the sec-
ond most effective in these initial tests. While covering all unique
events early is useful in this example, it does not apply for priori-
tizing the entire test suite here since all unique events are covered
in the first 7 tests (we prioritize the remaining 293 tests at random).

After the initial 30% of the tests are run, prioritization by test
length (longest to shortest) is the most effective prioritization tech-
nique. Prioritization by 2-way interaction coverage and unique
events follows in effectiveness. Random ordering and prioritiza-
tion by length (shortest to longest) are least effective.

4.6 TerpPaint
Figure 4 shows that in TerpPaint, prioritization by the length of

tests (longest to shortest) has the best overall APFD. Prioritization
by 3-way interactions is the second best; by 2-way is the third best;
unique event coverage is fourth best; random is fifth; and length
(shortest to longest) is least effective.

4.7 TerpSpreadsheet

Figure 5 shows that prioritization by unique event coverage is
initially most effective, followed by 2-way and then 3-way inter-
action coverage. After 50% of the tests are run, 2-way and then
3-way interaction coverage are most effective. Prioritization by
length (longest to shortest) is generally less effective (especially
in earliest tests), but works better than random ordering and priori-
tization by length (shortest to longest).

4.8 TerpWord
Figure 6 shows that the TerpWord test suite has the most effective

APFD when prioritized by 2-way and 3-way interaction coverage
(each slightly outperforming each other at different points in the
test suite). Prioritization by test length (longest to shortest) and
unique event coverage are the next most effective. Random test
ordering and prioritization by length (shortest to longest) are the
least effective.

4.9 Summary of Results
The results of our experiments show that test suites with the high-

est event interaction coverage benefit the most from our prioritiza-
tion technique. Given that all of our test suites are in a compara-
ble range of size (250 to 300 tests) and yet the number of t-tuples
of event interactions are quite different for the 4 applications (see
Table 4), perhaps it is not surprising that the test suites for the pro-
grams with the larger number of t-tuples of possible event interac-
tions, do not have high interaction coverage in the limited number
of tests. For instance, TerpCalc has the fewest number of windows,
widgets, and events. The TerpCalc test suite has the best 2-way
interaction coverage among those in our experiments; as few as
67 out of the 300 tests cover 99% of the 2-way event interactions.
TerpWord is our smallest application in terms of LOC and has the
second smallest number of event interactions to cover. TerpWord
has the second highest 2-way interaction coverage and the best 3-
way interaction coverage in our experiments. Similar to TerpCalc,
it benefits from prioritization by 2-way, and also from 3-way inter-
action coverage. TerpSpreadsheet has more events than TerpCalc
and TerpWord; the test suite has less interaction coverage and does
not benefit as much from prioritization by event interaction cover-
age. Further, TerpPaint is the largest application and has a test suite
with the least event interaction coverage. Prioritizing the TerpPaint
test suite by event interaction coverage does not improve the rate of
fault detection. Indeed, these results show that prioritization by in-
teraction coverage is quite useful in some cases, particularly when
test suites have higher interaction coverage.

4.10 Threats to Validity
Threats to external validity are factors that may impact our abil-

ity to generalize our results to other situations. Our main threat to
external validity in this experiment is the small number of subject
applications. In this study, we only run our data collection and test
suite prioritization process on four programs, which we chose for
their availability. These programs were constructed in more or less
the same manner and may not be representative of the broader pop-
ulation of programs. An experiment that would be more readily
generalized would include multiple programs of different sizes and
from different domains. Moreover, the characteristics of original
test suites (such as their fault detecting ability and how they were
constructed) play a role in the size and fault detection reduction
results. This threat can be addressed in future work by choosing
original test suites adequate for a variety of coverage criteria.

Threats to construct validity are factors in the experiment design
that may cause us to inadequately measure concepts of interest. In
our experiment, we made some simplifying assumptions in the area
of costs. In test suite prioritization, we are primarily interested in
two different effects on costs. First, there is potential savings ob-

4



20

40

60

80

100

120

140

160

180

200

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC

Long to short
Short to long

Random

(a) log scale

20

40

60

80

100

120

140

160

180

200

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 3: TerpCalc: rate of fault detection using prioritized test orderings.

0

20

40

60

80

100

120

140

160

180

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

20

40

60

80

100

120

140

160

180

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 4: TerpPaint: rate of fault detection using prioritized test orderings.

tained by running “more effective” test cases sooner. In this study,
we assume that each test case has a uniform cost of running (proces-
sor time) and monitoring (human time); these assumptions may not
hold in practice. Second, we assume that each fault contributes
uniformly to the overall cost, which again may not hold in practice.

5. CONCLUSIONS AND FUTURE WORK
Event driven software (EDS) is a widely used class of software

that requires novel testing techniques that can adequately test soft-
ware with a manageable number of tests. We propose one technique
for this purpose that extends previous applications of software in-
teraction testing. Previous work on interaction testing generates
test suites that cover t-way combinations of input parameters. This
paper suggests that interaction testing evolve to consider tempo-
ral sequences of events. We begin to look at this issue by using
interaction coverage to prioritize existing test suites for four GUI-
based programs. We find that prioritization by interaction coverage
of events improves the rate of fault detection in half of our experi-
ments. The test suites that include the largest percentage of 2-way
and 3-way interactions have the fastest rate of fault detection when
prioritized by interaction coverage. The test suites with the high-
est event interaction coverage are our smallest programs that have
fewer t-way event interactions to cover. These results raise the need
for future work that identifies criteria for the “event-interaction ad-
equacy” of test suites. In addition, techniques to generate test-cases
that meet such event-interaction adequacy are needed.

Our ultimate goals are to (1) identify criteria for “event inter-
action adequacy” of tests suites and (2) to develop tools that au-
tomatically generate tests that meet such criteria. This is partic-
ularly useful in GUI-based testing where it is difficult to predict
end user behavior (in which users may execute numerous event se-
quences). The application of interaction testing to systematically

examine possible event sequences in EDS is a new contribution
that we have just begun to examine.

In this work, we show that prioritization by interaction coverage
can be useful. Future work may extend this prioritization work to
also consider: prioritization with respect to test lengths and incre-
mental t-way interaction coverage. We discuss each of these issues.

Prioritization by length: One major issue that arises when pri-
oritizing existing tests for GUIs is that tests may be of varying
lengths; those with more steps may likely cover more interactions
than tests of shorter length. Should one give preference to a test
that takes 10 seconds to run and covers 6 interactions; or should
one give preference to two tests that take 5 seconds each, but cover
a total of 8 interactions? (This problem is similar to the “time-based
test prioritization problem” in [12].)

Work in [15] shows that it is useful to give preference to run-
ning many shorter tests rather than fewer tests of longer length.
They rapidly identify many “shallow” faults with shorter tests and
then recommend using remaining time to run longer tests that find
“deeper” faults. Our results show that the test prioritization tech-
nique of “shortest to longest length” has the slowest rate of fault
detection on a test-by-test basis, but do not take the time to run the
tests into account. Future work will examine this issue.

Prioritization by incremental t-way coverage: In the tests that
we examine, the available 2-way and 3-way unique event interac-
tions are covered in only a subset of the test suite. While we priori-
tized remaining tests at random in our experiments, remaining tests
may instead be prioritized by higher strength (t > 2) interactions.
For instance, prioritize the first � tests to cover all unique events.
Prioritize the next batch of tests by t=2 interaction coverage. Once
remaining tests do not cover any additional t=2 (pairwise) interac-
tions, order remaining tests to cover the most t+1 interactions. This
process continues until all tests are prioritized by ascending order

5



0

10

20

30

40

50

60

70

80

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

10

20

30

40

50

60

70

80

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 5: TerpSpreadsheet: rate of fault detection using prioritized test orderings.

0

10

20

30

40

50

60

70

80

90

100

200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

10

20

30

40

50

60

70

80

90

100

200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 6: TerpWord: rate of fault detection using prioritized test orderings.

of t-way interaction coverage.

6. REFERENCES
[1] R. C. Bryce and C. J. Colbourn. The density algorithm for

pairwise interaction testing. Journal of Software Testing,
Verification, and Reliability, to appear.

[2] R. C. Bryce, A. Rajan, and M. P.E. Heimdahl. Interaction
testing in model-based development: Effect on
model-coverage. Proc. of the 13th Asia-Pacific Software
Engineering Conf., pages 258–269, Dec. 2006.

[3] C. J. Colbourn. Combinatorial aspects of covering arrays. Le
Matematiche (Catania), 58:121–167, 2004.

[4] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and
A. Iannino. Applying design of experiments to software
testing. In Proc. of the Int. Conf. on Software Engineering,
pages 205–215, Oct. 1997.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans. on
Software Engineering, 18(2):159–182, 2002.

[6] S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky.
Selecting a cost-effective test case prioritization technique.
Software Quality Journal, 12(3):185–210, 2004.

[7] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEEE
Trans. on Software Engineering, 30(6):418–421, Oct. 2004.

[8] Atif M. Memon. An event-flow model of gui-based
applications for testing. Software Testing, Verification and
Reliability, 2007.

[9] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack.
Coverage criteria for GUI testing. In ESEC/FSE-9: Proc. of
the 8th European software engineering conf. held jointly with

9th ACM SIGSOFT Int. symposium on Foundations of
software engineering, pages 256–267, 2001.

[10] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. ACM Trans. on
Software Engineering and Methodology, 27(10):929–948,
2001.

[11] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proc. of the Int. Symposium
on Software Testing and Analysis, pages 97–106, Jul. 2002.

[12] Kristen R. Walcott, Mary Lou Soffa, Gregory M.
Kapfhammer, and Robert S. Roos. Timeaware test suite
prioritization. In Proc. of the Int. Symposium on Software
Testing and Analysis, pages 1–12, Jul. 2006.

[13] L. White. Regression testing of gui event interactions. In
Proc. of the Int. Conf. on Software Maintenance, pages
350–358, Nov. 1996.

[14] L. White and H. Almezen. Generating test cases for gui
responsibilities using complete interaction sequences. In
Proc. of the Interactional Symposium on Software Reliability
Engineering, pages 110–121, 2000.

[15] Qing Xie and Atif M. Memon. Studying the characteristics
of a ‘good’ GUI test suite. In Proc. of the 17th IEEE Int.
Symposium on Software Reliability Engineering. IEEE
Computer Society Press, 2006.

[16] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for
efficient fault characterization in complex configuration
spaces. IEEE Trans. on Software Engineering, 31(1):20–34,
Jan. 2006.

[17] Xun Yuan and Atif M. Memon. Using GUI run-time state as
feedback to generate test cases. In Proc. of the 29th Int. Conf.
on Software Engineering, May 2007.

6


