
Plan Generation for GUI Testing†

Atif M. Memon‡ and Martha E. Pollack and Mary Lou Soffa
Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260 USA
{atif, pollack, soffa}@cs.pitt.edu

Abstract

Graphical user interfaces (GUIs) have become
nearly ubiquitous as a means of interacting with
software systems. GUIs are typically highly com-
plex pieces of software, and testing their correct-
ness poses a large challenge. In this paper, we
present a new approach to automatic testing of
GUIs that builds on AI planning techniques. The
motivating idea is that GUI test designers will of-
ten find it easier to specify typical goals that users
of their software might have than to specify se-
quences of GUI actions that users might perform
to achieve those goals. Thus we cast GUI test-
case generation as an instance of plan generation:
given a specification of initial and goal states for
a GUI, a planner is used to generate sequences of
GUI actions that lead from the initial state to the
goal state. We describe our GUI testing system,
PATHS (Planning Assisted Tester for grapHical
user interface Systems), and we report on experi-
ments using PATHS to generate test cases for Mi-
crosoft’s WordPad.

Introduction
Graphical user interfaces (GUIs) have become nearly
ubiquitous as a means of interacting with software sys-
tems. GUIs are typically highly complex pieces of soft-
ware, and testing their correctness poses a large chal-
lenge (Myers 1993; Wittel, Jr. & Lewis 1991), due to
the fact that the space of possible GUI interactions is
enormous and that measures of coverage developed for
conventional software testing do not apply well to GUI
testing.
In this paper, we present a new approach, based on

AI planning techniques, for partially automating GUI
testing. The motivating idea is that GUI test designers
will often find it easier to specify typical user goals than

† Partially supported by the Air Force Office of Scientific
Research (F49620-98-1-0436) and by the National Science
Foundation (IRI-9619579) (EIA0906525).
‡ Partially supported by the Andrew Mellon Pre-doctoral

Fellowship, awarded by the Andrew Mellon Foundation.

Copyright c© 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

to specify sequences of GUI actions that users might
perform to achieve those goals. The software underlying
any GUI is designed with certain intended uses in mind;
thus the test designer can describe those intended uses.
It is typically harder to specify all the ways in which
a user might interact with the GUI to achieve typical
goals. Users interact in idiosyncratic ways, which the
designer might not anticipate. Additionally, there can
be a large number of ways to achieve any given goal, and
it would be very tedious for the GUI tester to specify
even those action sequences that s/he can anticipate.
We thus cast GUI test-case generation as an instance

of plan generation, in which the human tester provides
a specification of initial and goal states for likely uses of
the system. An automated planning system then gen-
erates multiple plans for each specified planning prob-
lem. Each plan generated represents a test case that
is, at least intuitively, a reasonable candidate for help-
ing achieving good test coverage, because it reflects an
intended use of the system. Of course, most systems
can and will be used in ways other than those initially
intended by the GUI designers. Thus, the test cases
generated by our system will likely need to be supple-
mented with other test cases as is the usual case for
any test-case generation scheme, for example, randomly
generated sequences of GUI actions could also be used
as test cases.1

Earlier work made similar use of planning, generating
test cases for a robot tape-library command language
(Howe, von Mayrhauser, & Mraz 1997). Our work ex-
tends the idea in several ways: by developing techniques
for semi-automatically constructing the planning oper-
ators; by using hierarchical operators that reflect struc-
tural properties of GUIs and lead to increased efficiency;
and by developing means for generating multiple, alter-
native plans for the same goal. We are also using our
approach to automate other aspects of GUI testing, in-
cluding verification, oracle creation and regression test-
ing, but those topics are outside the scope of the current

1Experimental analysis could be performed to measure
the actual coverage of our test-case generation procedure,
e.g., by comparing the plans it produces against actual se-
quences of GUI actions performed by users once it has been
fielded. Such experimentation is deferred to future research.

paper.
In the next section, we briefly review the issues in

GUI testing. We then describe our approach to plan-
ning GUI test cases. In particular, we show how the
operators that represent GUI events can be created in
a semi-automatic fashion and how AI planning tech-
niques are used to generate test cases. We also discuss
how our use of a restricted form of hierarchical planning
leads both to an improvement in planning efficiency and
to the generation of multiple alternative test cases. We
have implemented our approach in Planning Assisted
Tester for grapHical user interface Systems (PATHS),
and in the section entitled “Feasibility Experiments,”
we describe PATHS and report on the results of exper-
iments in which it generated test cases for Microsoft’s
Word Pad system. Finally, we conclude with a sum-
mary of our main contributions to date and our plans
for continued research.

GUI Testing and An Example
Testing the correctness of a GUI is difficult for a num-
ber of reasons. First, the space of possible interactions
with a GUI is enormous. Each sequence of GUI actions
can result in a different state of the combined system
(i.e., the GUI and underlying software). In general, a
GUI action might have different results in each state,
and thus need to be tested in a very large number of
states: the amount of testing required can be enormous
(White 1996). Related to this is the fact that measures
of coverage that have been defined for testing conven-
tional software systems do not work well for GUIs. For
conventional software, coverage is measured using the
amount and type of underlying code exercised. In test-
ing GUIs, while one must still be concerned with how
much of the code is tested, there needs also to be sig-
nificantly increased focus on the number of different
possible states in which each piece of code is exercised.
Existing metrics do not allow one to say whether a GUI
has been “well-enough” tested. As a result, GUI test-
ing often relies on extensive beta testing: for example,
Microsoft released almost 400,000 beta copies of Win-
dows95 targeted at finding program failures (Kasik &
George 1996).
Software testing involves several steps. Initially, a

set of test cases must be generated. This is particu-
larly challenging for GUI testing, because of the diffi-
culties mentioned above: the set of possible test cases is
huge, and conventional metrics for selecting “good” test
case sets do not apply. After test cases are constructed,
they must be executed: this is when the actual “test-
ing” occurs, to check whether the GUI is performing
correctly. An incorrect GUI state can lead to an unex-
pected screen, making further execution of the test case
useless because events in the test case might not match
the corresponding GUI components on the screen. Con-
sequently, the execution of the test case must be ter-
minated as soon as an error is detected. Verification
checks, performed by using test oracles, must therefore
be inserted after each step, to catch errors as soon as

Up

Select

Figure 1: The Example GUI.

they occur. Yet another challenge is posed by regres-
sion testing, i.e., updating the set of test cases and the
verification check after changes are made to the GUI
during development or maintenance. Regression test-
ing presents special challenges for GUIs, because the
input-output mapping often does not remain constant
across successive versions of the software (Myers 1993).
In this paper, we focus on the first step: test-case gener-
ation. The test-case generator that we describe here is
part of a larger GUI testing system that we are build-
ing called PATHS. We plan to address other aspects
of testing such as verification and regression testing as
part of the overall design of PATHS in future work.

A GUI Example

Figure 1 illustrates a small part of the Microsoft Word-
Pad’s GUI. With this GUI, the user can load text from
files, manipulate the text by cutting and pasting, and
save the text into a file. At the highest level, the GUI
contains a menu bar that allows the user to perform two
possible actions: clicking File and clicking Edit. When
either of these are clicked, other menus open, making
other actions available to the user. We say that a user
performs a GUI action (e.g., clicks the File command),
and thereby generates a GUI event (e.g., opening up a
pull-down menu). For convenience, we sometimes also
speak of the File action, meaning the action of click-
ing File. Note that the user can also generate events
by using the keyboard, e.g., by entering text onto the
screen.
Finally, we also distinguish between two types of win-

dows: GUI windows and object windows. The former
contain only GUI components (labels, buttons, com-
mands, etc.); the “Open” window at the bottom of the
Figure 1 is an example. In contrast, object windows
display and manipulate other, non-GUI objects; an ex-

(a)

(b)

new.doc must be
stored in /root/public

Figure 2: A Task for the Planning System; (a) the Ini-
tial State, and (b) the Goal State.

ample is the MS WordPad window that displays text.
In the example, we include a number of user actions

that involve clicking a component, e.g., clicking File
or clicking Cut. These all have their usual meanings.
We also provide labels for two other user actions: Up,
which involves clicking the arrow-in-a-folder icon, and
generating the event of moving one level up in the di-
rectory hierarchy; and Select, which is used to either
enter subdirectories or select files.
Finally, Figure 2 illustrates a planning problem for a

GUI test-case generator. The initial state, depicted in
part (a), shows the contents of a collection of files stored
in a directory hierarchy. It also shows the contents of
some of those files. The goal state is shown in part (b) of
the figure. The goal is to create a new document, with
the specified text (“This is the final text.”), and store
it in the file new.doc in the /root/public directory.
Note that the goal can be obtained in various ways. In
particular, to get the text into new.doc, one could load
file Document.doc and delete the extra text, or could
load file doc2.doc and insert text, or could create the
document from scratch by typing in the text.

Planning GUI Test Cases
Our test-case generation process is partitioned into two
phases, the setup phase and plan-generation phase. In
the first step of the setup phase, PATHS creates an
abstract model of a GUI and uses that to produce a
list of operators representing GUI events. These are
returned to the test designer, who uses his/her knowl-
edge of the GUI to define the preconditions and effects
of the operators; this constitutes the second step of the

Phase Step Test
Designer

PATHS

Setup 1 Derive Hier-
archical GUI
Operators

2 Define Pre-
conditions
and Effects of
Operators

Plan
Generation

3 Identify a
Task T

4 Generate
Test Cases
for T

Iterate 3 and 4 for Multiple Scenarios

Table 1: Roles of the Test Designer and PATHS During
Test-Case Generation.

setup phase. Next comes the plan-generation phase, in
which the test designer first describes scenarios (tasks)
by defining a set of initial and goal states. Finally, in
step four of the overall testing process, PATHS gen-
erates a set of test cases for each scenario. The test
designer can iterate through the plan-generation phase
any number of times, defining more scenarios and gen-
erating more test cases. Table 1 summarizes the tasks
assigned to the test designer and those automatically
performed by PATHS.

Deriving GUI Operators

We now describe the setup phase. This starts with
PATHS creating a list of operators to be used during
planning. The simplest approach would be to list ex-
actly one operator per GUI action. Although concep-
tually simple, this approach turns out to be inefficient,
and can be improved upon by exploiting the GUI struc-
ture to derive hierarchical operators that are decom-
posed during planning. We use two distinct forms of
decomposition. In the first, system-interaction opera-
tors are constructed to model sequences of GUI events
E1, . . . , En such that , for 1 ≤ i ≤ n−1, Ei makes avail-
able the user action that generates Ei+1. When these
operators are used in a plan, they are later decomposed
by a process we call mapping, which is similar to macro
expansion. In the second, abstract operators are con-
structed to model GUI events that lead to sequences of
GUI events which are themselves best viewed as “sub-
plans”. These operators are similar to abstract opera-
tors in HTN planning; when they are used in a plan,
they are later decomposed by an embedded call to the
planner. We give examples of both types of operators
below.
The first step in deriving the operators is to partition

the GUI events into three classes, listed below. The
classification is based only on the structural properties
of GUIs and can thus be done automatically by PATHS.

Unrestricted-focus events open GUI windows that

do not restrict the user’s focus; they merely expand
the set of GUI actions available to the user. Often
such events open menus, e.g., the events generated
by clicking File or Edit in our example.

Restricted-focus events open GUI windows that
have the special property that once invoked, they mo-
nopolize the GUI interaction. These windows restrict
the the user to a specific range of GUI actions avail-
able within the window; other GUI actions cannot be
performed until the window is explicitly terminated.
An example of a restricted-focus event is preference
setting in many GUI systems. The user clicks on
Edit and then Preferences, after which a “Prefer-
ences” window opens. The user can them modify
preferences, but cannot interact with the system in
any other way until s/he explicitly terminates the in-
teraction by either clicking OK or Cancel.

System-interaction events interact with the under-
lying software. Common examples include cutting
and pasting text, saving files, etc.

Note that these three classes are exhaustive and mu-
tually exclusive.

System-Interaction Operators Once the GUI
events have been classified, two types of planning op-
erators can be automatically constructed. The first are
system-interaction operators, which represent sequences
of GUI actions that a user might perform to eventually
interact with the underlying software. More specifi-
cally, a system-interaction operator is a sequence of zero
or more unrestricted-focus events, followed by a single
system-interaction event. Consider a part of the ex-
ample GUI: a menu bar with one option (Edit), which
can be clicked to provided more options, i.e., Cut and
Paste. The complete set of actions available to the
user is thus Edit, Cut and Paste. Edit generates an
unrestricted-focus event, while Cut and Paste gener-
ate system-interaction events. Using this information,
PATHS would create two system-interaction operators:
Edit Cut and Edit Paste.
The use of system-interaction operators reduces the

total number of operators made available to the plan-
ner, resulting in greater planning efficiency. In our small
example from the previous paragraph, the events Edit,
Cut and Paste would be hidden from the planner; only
the system-interaction operators namely, Edit Cut and
Edit Paste, would be made available to the planner.
This event-hiding prevents generation of test cases in
which Edit is used in isolation; any test case that in-
cludes an Edit will also include an immediately follow-
ing Cut or with Paste. To overcome this restriction
and to increase coverage, Edit can be tested in iso-
lation, and/or additional test cases can be created by
inserting Edit at random places in the generated test
cases.
When a generated test case includes system-

interaction operators, PATHS must eventually decom-
pose those operators to primitive GUI events, so that

Operator Name GUI Event Sequence
File New <File, New>
File Save <File, Save>
Edit Cut <Edit, Cut>
Edit Copy <Edit, Copy>
Edit Paste <Edit, Paste>

Table 2: Operator-event Mappings of the System-
interaction Operators for the Example GUI.

the test case can be directly executed. Thus, PATHS
keeps track of the sequence of GUI events that cor-
responds to each system-interaction operator it de-
rives, storing this information in a a table of operator-
event mappings. The event operator table for the sub-
example of the previous paragraph is shown in Table 2.

Abstract Operators The second type of operators
that are constructed by PATHS are abstract opera-
tors. These are created from the restricted-focus events,
which contain two parts. The prefix of an abstract op-
erator is a sequence of zero or more unrestricted-focus
events followed by a single restricted-focus event. As
was the case with system-interaction operators, PATHS
stores an operator-event mapping for the prefix of each
abstract operator. The suffix of an abstract operator
represents the possible events that may occur while the
restricted-focus window is opened. However, the rep-
resentation is only indirect, specifying the information
that is needed for an embedded call to the PATHS plan-
ner.
The idea behind abstract operators can be clarified

with an example. Figure 3 focuses again on a small part
of the running example from Figure 1. This time, the
File menu with two options, namely Open and SaveAs.
Open and SaveAs are both restricted-focus operators,
which cause restricted-focus windows to be opened.
Here PATHS creates two abstract operators: File Open
and File SaveAs. (For convenience, we name each ab-
stract operator by its prefix.) An operator-event map-
ping will be created for each prefix:

File Open = <File, Open>
File SaveAs = <File, SaveAs>.

In addition, PATHS creates a suffix for each operator.
The suffix contains all the information that is required
to define a planning problem π, such that the solution
to π is a sequence of GUI events that could reasonably
occur in the current context, while the the restricted-
focus window is open. The suffix of each abstract op-
erator then is essentially a hierarchical operator, which
is decomposed during planning by a separate call to
the planner itself. The sub-plans thus produced can be
stored and reused, essentially playing the role of meth-
ods in traditional HTN planning.
Figure 3(b) shows the abstract operators that are cre-

ated for the current example. Note that the suffix con-
tains a list of operators that the planner may use in

SaveAs

Save

File

File_Open

File_SaveAs
(a)

Define Abstraction

Define Abstraction

)LOHB2SHQ

6HOHFW 2SHQ

3ODQQHU

��� ���
+LJK�
/HYHO�3ODQ

6XE�3ODQ 8S

(c)

0DSSLQJ

'HFRPSRVLWLRQ

)LOH 2SHQ

Abstract Operator
Prefix: File_Open
Suffix:
•Initial State: determined at run time

•Goal State: determined at run time

•Operator List:
{Up, Select, Open, Cancel}

Abstract Operator
Prefix: File_SaveAs
Suffix:
•Initial State: determined at run time

•Goal State: determined at run time

•Operator List:
{Up, Select, Save, Cancel}

(b)

Figure 3: (a) Restricted Focus Operators: Open and
SaveAs (b) Abstract Operators, and (c) Decomposition
of the Abstract Operator

generating a sub-plan for the restricted-window inter-
action; it also contains slots for the initial state and the
goal state of the embedded planning problem. When
the test-cases are actually being planned, they are cre-
ated one level at a time. At the highest level, a plan is
created using system-interaction operators and abstract
operators; during this stage of planning, the suffixes of
any abstract operators used in the plan will remain un-
decomposed. Subsequently, the system-interaction op-
erators and the prefixes of abstract operators will be
decomposed by direct use of the operator-event map-
pings. The suffixes of abstract operators will be de-
composed by calls to the planner itself; by the time of
these calls, the initial and goal states for the sub-plan
can be directly derived from the high-level plan.
Part (c) of Figure 3 illustrates the decomposition pro-

cess. At the top is a high-level plan that includes the
abstract operator File Open. Its prefix is decomposed
with an operator-event mapping, to produce the first
two steps in the plan, File and Open. Its suffix is de-
composed with a call to the planner, which produces
the linear plan Up; Select; Open.
At the end of the first step of the setup phase, a

set of system-interaction and abstract operators have
been computed automatically. These are then passed

GUI Events = {File, Edit,
 New, Open, Save, SaveAs,
 Cut, Copy, Paste,
 Open.Up, Open.Select, Open.Cancel, Open.Open,
 SaveAs.Up, SaveAs.Select, SaveAs.Cancel, SaveAs.Save}.

Planning Operators = {
 File_New, File_Open, File_Save, File_SaveAs,
 Edit_Cut, Edit_Copy, Edit_Paste}.

(a)

(b)

Figure 4: The Running Example GUI: (a) GUI Ac-
tions, and (b) System-Interaction Operators derived by
PATHS.

2SHUDWRU ���(GLWB&XW

3UHFRQGLWLRQV�
∃ 2EM ∈ 2EMHFWV�_�6HOHFWHG�2EM��

(IIHFWV�
∀ 2EM ∈ 2EMHFWV�_ 6HOHFWHG�2EM��⇒

$'' LQ&OLSERDUG�2EM��Λ
'(/ RQ6FUHHQ�2EM��Λ
'(/ 6HOHFWHG�2EM��

Figure 5: An Example of a GUI Planning Operator.

to the test designer for completion. The planning op-
erators returned for the complete example in Figure 1
are shown in Figure 4(b).

Completing the Planning Operators

In the second step of the setup phase, the test designer
specifies the preconditions and effects for each plan-
ning operator derived in the first step. As is standard,
the preconditions represent all the conditions that must
hold for the event represented by the operator to occur,
and the effects represent the resulting changes to the
environment (i.e., the GUI and/or the underlying soft-
ware).
An example is given in Figure 5. Edit Cut is a

system-interaction operator. Its preconditions express
that in order for the user to generate the Cut event
(by performing the actions EDIT followed by CUT), at
least one object on the screen must be selected (high-
lighted). The effects express the facts that the selected
objects are moved to the clipboard and removed from
the screen.
The language used to define the preconditions and

effects of each operator is provided by the planning
system. Defining the preconditions and effects is not
difficult, as much of this knowledge is already built into
the GUI structure. For example, the GUI structure re-
quires that Cut be made active (visible) only after an
object is selected. This is precisely the precondition de-
fined for our example operator (Edit Cut). Definitions

Initial State:
isCurrent(root)
contains(root private)
contains(private Figures)
contains(private Latex)
contains(Latex Samples)
contains(private Courses)
contains(private Thesis)
contains(root public)
contains(public html)
contains(html gif)
containsfile(gif doc2.doc)
containsfile(private

Document.doc)
containsfile(Samples

report.doc)
currentFont(Times

Normal 12pt)
in(doc2.doc This)
in(doc2.doc is)
in(doc2.doc the)
in(doc2.doc text.)
isText(This)
isText(is)

isText(the)
isText(text)
after(This is)
after(is the)
after(the text.)
font(This Times Normal 12pt)
font(is Times Normal 12pt)
font(the Times Normal 12pt)
font(text. Times

Normal 12pt)
…………….
Similar descriptions for
Document.doc and report.doc

Goal State:
in(new.doc This)
in(new.doc is)
in(new.doc the)
in(new.doc final)
in(new.doc text.)
after(This is)
after(is the)
after(the final)
after(final text.)

Figure 6: Initial State and Goal State Describing the
Task of Figure 2.

of operators representing events that commonly appear
across GUIs, such as Cut, can be maintained in a library
and reused for subsequent similar applications.

Modeling the Initial and Goal States and
Generating Test Cases

Once the setup phase has been completed, the second
phase, test-case generation, can begin. First, the test
designer describes a typical user task by specifying it
in terms of initial and goal states. Figure 6 provides an
example. In the current version of PATHS, the test de-
signer models the initial and goal states directly. How-
ever, we plan to develop a tool that would allow the
test designer to visually describe the GUI’s initial and
goal states, and would then translate the visual repre-
sentation into a planner encoding.
Once the task has been specified, the system au-

tomatically generates a set of distinct test cases that
achieve the goal. (This is Step 4 of the overall test-case
generation process given in Table 1). An example of
one such plan is shown in Figure 7.2 This is a high-
level plan that must be decomposed. Figure 8 shows
one decomposition; note that it includes both decom-
position by mapping and decomposition by planning.
As we have noted before, it is important to gener-

ate alternative plans for each specified task, since these
correspond to alternative ways in which a user might
interact with the GUI. We achieve this goal in three
ways:

2Note that TypeInText() is an operator representing a
keyboard event, mentioned in “A GUI Example.” This op-
erator has its obvious meaning: it represents the event that
occurs when the user types the text to which its parameter
is bound.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

6\VWHP�,QWHUDFWLRQ�
2SHUDWRU
�NH\ERDUG�

Figure 7: A Plan Consisting of Abstract Operators and
a GUI Event.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

&K'LU
�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

6HOHFW�´SXEOLFµ�

3ODQQHU

3ODQQHU

0DSSLQJ

)LOH 2SHQ

0DSSLQJ 3ODQQHU

)LOH 6DYH$V

2SHQ

6HOHFW
�´QHZ�GRFµ�

6DYH

)LOH 2SHQ 6HOHFW�´SXEOLFµ�
6HOHFW

�´GRF��GRFµ�
2SHQ

)LOH 6DYH$V
6HOHFW

�´QHZ�GRFµ�
6DYH

7\SH,Q7H[W
�´ILQDOµ�

'HFRPSRVLWLRQ

'HFRPSRVLWLRQ

Low-level Test Case

Figure 8: Expanding the Higher Level Plan.

• We run the planner several times, each time produc-
ing a distinct high-level plan.
• Because we are using a partial-order planner, each
of the high-level plans can potentially be mapped to
more than one distinct linearization.
• Each of the linear plans can potentially be decom-
posed in multiple ways.
This is particularly important, because our experi-

ments have shown that the bulk of the time spent in
test-case generation is used in generating the highest
level plan. (See the section “Feasibility Experiments.”)
Whenever a plan includes an abstract operator, we in-
voke the planner multiple times to produce multiple
distinct sub-plans that can serve as decomposition of
the (suffix of the) abstract operator. Unlike typical
HTN planning, the sub-plans in this setting do not in-
teract, because they each take place during a separate
restricted-focus phase; thus the application of plan crit-
ics is not required here. Figure 9 shows an alternative
plan created from the high-level plan in Figure 7. It dif-
fers from the decomposition in Figure 8 in that it uses
a different decomposition of the first abstract operator.

)LOHB2SHQ
�´SXEOLFµ��
´GRF��GRFµ�

)LOHB6DYH$V
�´SXEOLFµ��
´QHZ�GRFµ�

$EVWUDFW
2SHUDWRU

$EVWUDFW
2SHUDWRU

7\SH,Q7H[W
�´ILQDOµ�

&K'LU
�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

6HOHFW�´SXEOLFµ�

3ODQQHU

3ODQQHU

0DSSLQJ

)LOH 2SHQ

0DSSLQJ 3ODQQHU

)LOH 6DYH$V

2SHQ

6HOHFW
�´QHZ�GRFµ�

6DYH

)LOH 2SHQ 6HOHFW�´SXEOLFµ�

6HOHFW
�´GRF��GRFµ�

2SHQ

)LOH 6DYH$V
6HOHFW

�´QHZ�GRFµ�
6DYH

7\SH,Q7H[W
�´ILQDOµ�

'HFRPSRVLWLRQ

'HFRPSRVLWLRQ

8S 6HOHFW�´5RRWµ�

8S 6HOHFW�´5RRWµ�

Low-level Test Case

Figure 9: An Alternative Decomposition of the Ab-
stract Operator Leads to a New Test Case.

The decomposition mechanism also aids regression
testing, because changes made to one component of
the GUI do not necessarily invalidate all test cases.
The higher level plans can thus often be retained af-
ter changes to the GUI; local changes can instead be
made to sub-plans specific to the changed component
of the GUI. Another advantage to using decomposition
is that the operators can be modeled at a platform-
independent level, resulting in platform-independent
test cases. An additional layer of mapping-like de-
composition can then be added to produce platform-
dependent test cases.

Algorithm for Generating Test Cases

The complete test-case generation algorithm is shown
in Figure 10. The operators are assumed to be available
before making a call to this algorithm, i.e., steps 1-3 of
the test-case generation process shown in Table 1 must
be completed before making a call to this algorithm.
The parameters (lines 1..5 of the algorithm)3 include
the initial and goal states for the planning problem, and
the set of available operators. An addition parameter
specifies a threshold (T) that determines the number of
iterations performed.
The main loop (lines 8..12) contains the explicit call

to the planner (denoted by the function Φ). Each time

3Each command in the program is given a separate num-
ber, but for space reasons, we sometimes show two com-
mands on one line.

the planner is invoked, a distinct plan is generated us-
ing the available operators, and is then stored in Λ.
Note that no decomposition occurs within this loop: the
plans that are generated are all “flat”. To guarantee
that the planner does not regenerate duplicate plans,
we modify each operator so that it is not used to gener-
ate previously generated plans. The key idea is to make
the goal state unreachable, if the operator instances are
used in a previously generated sequence. Using this ap-
proach to generate alternative plans, instead of back-
tracking in the planner’s search space, makes our algo-
rithm planner independent.
Once a set of distinct plans have been generated, lin-

earizations are created for each one (lines 13..16). Each
linear plan is then decomposed, potentially in multiple
ways. As described earlier, system-interaction steps are
decomposed using the operator-event mappings (lines
20..22), while abstract steps are decomposed using the
mappings for the prefix, and using a recursive call to
the test-case generation algorithm for the suffix (lines
23..28). The initial and goal states for the recursive
planning problem are extracted directly from the high-
level plan, which is available at the recursive call. The
sub-plans obtained as a result of the recursive call are
then substituted into the high-level plans (lines 29..31),
and the new plans obtained are appended to the list
of testCases (line 32). The final outcome of the algo-
rithm is a set of distinct, fully decomposed plans for the
specified task, that can serve as test cases for the GUI
(line 33).

Feasibility Experiments
A prototype of PATHS was developed with IPP
(Koehler et al. 1997) as the underlying planning sys-
tem. IPP was chosen based on the results of exper-
iments in which causal-link planners were compared
with propositional planners (Memon, Pollack, & Soffa
1999a). The key result of the study was that proposi-
tional planners perform better in domains such as GUI
testing, which contain a small number objects.
We now present several sets of experiments, that were

conducted to ensure that the approach in PATHS is fea-
sible. These experiments were executed on a Pentium
based computer with 200MB RAM running Linux OS.
A summary of the results of these experiments is given
next.

Generating Test Cases for Multiple Tasks
PATHS was used to generate test cases for Microsoft’s
WordPad. Examples of the generated high-level test
cases are shown in Table 3. The total number of GUI
events in WordPad was determined to be approximately
325. After deriving hierarchical operators (step 1 of Ta-
ble 1), PATHS reduced this set to 32 system-interaction
and abstract operators, a reduction of roughly 10 : 1.
This reduction in the number of operators helps to
speed up the plan generation process significantly.
Defining preconditions and effects for the 32 opera-

tors was fairly straightforward. The average operator

Lines
Algorithm :: GenTestCases(
Λ = Operator Set; D = Set of Objects; 1, 2

I = Initial State; G = Goal State; 3, 4

T = Threshold) { 5

planList ← {}; c← 0; 6, 7

/* Successive calls to the planner (Φ),
to generate distinct solutions */
WHILE ((p == Φ(Λ,D, I,G)) ! = NO PLAN) 8

&& (c < T) DO { 9

InsertInList(p, planList); 10

Λ ← RecordPlan(Λ, p); c++} 11, 12

linearPlans ← {};/* No linear Plans yet */ 13

/* Linearize all partial order plans */
FORALL e ∈ planList DO { 14

L ← Linearize(e); 15

InsertInList(L, linearPlans)} 16

testCases ← linearPlans; 17

/* decomposing the testCases */
FORALL tc ∈ testCases DO { 18

FORALL C ∈ Steps(tc) DO { 19

IF (C == systemInteractionOperator) THEN { 20

newC ← lookup(Mappings, C); 21

REPLACE C WITH newC IN tc} 22

ELSEIF (C == abstractOperator) THEN { 23

ΛC ← OperatorSet(C); GC ← Goal(C); 24, 25

IC ← Initial(C); DC ← ObjectSet(C); 26, 27

/* Generate the lower level test cases */
newC ← APPEND(lookup(Mappings, C),
GenTestCases(ΛC,DC, IC,GC, T)); 28

FORALL nc ∈ newC DO { 29

copyOftc ← tc; 30

REPLACE C WITH nc IN copyOftc; 31

APPEND copyOftc TO testCases}}}} 32

RETURN(testCases)} 33

Figure 10: The Complete Algorithm for Generating
Test Cases

definition required 5 preconditions and effects, with the
most complex operator requiring 10 preconditions and
effects. Since mouse and keyboard events are part of
the GUI, additional operators representing mouse (i.e.,
Select Text()) and keyboard (i.e., TypeInText() and
DeleteText()) events were defined.
Table 4 presents a typical set of CPU execution tim-

ings for this experiment. Each row represents one task.
The first column identifies the task; the second gives
the average time to generate a single high-level plan for
the task and the third shows the time taken to generate
a family of test cases by producing all the decomposi-
tions of the plan. The fourth column gives the total
planning time. As can be seen, the bulk of the time
is spent generating the high-level plan. Sub-plan gen-
eration is quite fast, amortizing the cost of initial plan
generation over multiple test cases. Plan 9, which took
the longest time to generate, was linearized to obtain
2 high-level plans, each of which was decomposed to

Plan Plan Plan

No. Step Action

1 1 FILE-OPEN(“private”, “Document.doc”)
2 DELETE-TEXT(“that”)
2 DELETE-TEXT(“must”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

2 1 FILE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“needs”)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

3 1 FILE-OPEN(“public”, “doc2.doc”)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 DELETE-TEXT(“to”)
2 DELETE-TEXT(“be”)
2 DELETE-TEXT(“modified”)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
2 SELECT-TEXT(“needs”)
3 EDIT-CUT(“needs”)
4 FILE-SAVEAS(“public”, “new.doc”)

4 1 FILE-NEW(“public”, “new.doc”)
2 TYPE-IN-TEXT(“This”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“is”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“the”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“final”, Times, Italics, 12pt)
2 TYPE-IN-TEXT(“text”, Times, Italics, 12pt)
3 FILE-SAVEAS(“public”, “new.doc”)

Table 3: Some WordPad Plans Generated for the Task
of Figure 2.

give several low-level test cases, the shortest of which
consisted of 25 GUI events.

The plans shown in Table 3 are at a still at a rel-
atively high level of abstraction. Many changes that
might be made to a GUI would have no effect on these
plans, making regression testing easier and less expen-
sive. For example, none of the plans in Table 3 contain
any GUI details such as font or color. The test suite
continues to be useful even in the face of changes to
these aspects of the GUI. The same is true for certain
changes that modify the functionality of the GUI. For
example, if the WordPad GUI were modified to intro-
duce an additional file opening feature, then most of
the high-level plans remain the same. Changes would
only be needed to sub-plans that are generated by the
abstract operator File Open. Hence the cost of initial
plans is again amortized over a large number of test
cases.

Task Plan Sub Total
No. Time Plan Time

(sec) Time (sec)
1 0.40 0.04 0.44
2 3.16 0.00 3.16
3 3.17 0.00 3.17
4 3.20 0.01 3.21
5 3.38 0.01 3.39
6 3.44 0.02 3.46
7 4.09 0.04 4.13
8 8.88 0.02 8.90
9 40.47 0.04 40.51

Table 4: Average Time Taken to Generate Test Cases
for WordPad.

Related Work

The manual creation of test cases and their mainte-
nance and evaluation is in general a very time consum-
ing process. Thus some form of automation is desir-
able. One class of tools that aid a test designer are
record/playback tools (The 1992; Hammontree, Hen-
drickson, & Hensley 1992). These tools record the user
events and GUI screens during an interactive session;
the recorded sessions can later be played back when it
is necessary to recreate the same GUI states. Another
technique that is popular for testing conventional soft-
ware involves programming a test-case generator (Kep-
ple 1994), in which the test designer develops software
programs to generate test cases. This approach requires
that the test designer encode all possible GUI decision
points. Programming a test-case generator is thus time-
consuming and may lead to a low quality set of test
cases if important GUI decisions are overlooked.
Several prior research efforts have focused on finite-

state machine (FSM) models have been proposed to
generate test cases (Clarke 1998; Chow 1978; Esmeli-
oglu & Apfelbaum 1997; Bernhard 1994). In this ap-
proach, the software’s behavior is modeled as a FSM
where each input triggers a transition in the FSM. A
path in the FSM represents a test case, and the FSM’s
states are used to verify the software’s state during test-
case execution. This approach has also been used exten-
sively for test generation for testing hardware circuits
(H. Cho, G.D. Hachtel, & F. Somenzi 1993). For small
sized software, it is easy to specify the software’s be-
havior in terms of states. Another advantage of this ap-
proach is that once the FSM is built, the test-case gener-
ation process is automatic. It is relatively easy to model
a GUI with an FSM; each user action leads to a new
state and each transition models a user action. How-
ever, a major limitation of this approach, which is an
especially pertinent to GUI testing, is that FSM models
have scaling problems (Shehady & Siewiorek 1997). To
aid in the scalability of the technique, variations such
as variable finite state machine (VFSM) models have
been proposed by Shehady et al. (Shehady & Siewiorek

1997).
Test cases have also been generated to mimic novice

users (Kasik & George 1996). The approach relies on
an expert to manually generate the initial sequence of
GUI events, and then uses genetic algorithm techniques
to modify and extend the sequence. The assumption is
that experts take a more direct path when solving a
problem using GUIs whereas novice users often take
longer paths. Although useful for generating multiple
test cases, the technique relies on an expert to generate
the initial sequence. The final test suite depends largely
on the paths taken by the expert user.
Finally, techniques have been proposed to reduce the

total number of test cases either by focusing the test-
case generation process on particular aspects of the GUI
(Esmelioglu & Apfelbaum 1997; Kasik & George 1996;
Kitajima & Polson 1992; 1995) or by establishing an
upper bound on the number of test cases (White 1996).
Unfortunately, many of these techniques are not in com-
mon use, either because of their lack of generality or
because they are difficult to use.
As mentioned before, AI planning has been previ-

ously used to generate test cases. In an earlier paper,
we describe a preliminary version of the PATHS sys-
tem, focusing on the software engineering aspects of the
work (Memon, Pollack, & Soffa 1999b). Howe et al. de-
scribe a planning based system for generating test cases
for a robot tape library command language (Howe, von
Mayrhauser, & Mraz 1997). There are strong similar-
ities between their approach and our own; major dif-
ferences were described in the “Introduction” section.
Note in particular that in this previous work, each com-
mand in the language was modeled with an distinct op-
erator. This approach works well for systems with a
relatively small command language. However, because
GUIs typically have a large number of possible user ac-
tions, we had to modify the approach by automatically
deriving hierarchical operators.

Conclusions

We have presented a new planning-based technique for
generating test cases for GUI software, which can serve
as a valuable tool in the test designer’s tool-box. Our
technique models test-case generation as a planning
problem. The key idea is that the test designer is
likely to have a good idea of the possible tasks of a
GUI user, and it is simpler and more effective to spec-
ify these tasks in terms of initial and goal state than it
is to specify sequences of events that achieve them. Our
technique is unique in that we use an automatic plan-
ning system to generate test cases given a set of tasks
and a set of operators representing GUI events. Addi-
tionally, we showed how hierarchical operators can be
automatically constructed from a structural description
of the GUI.
We have also provided initial evidence that our tech-

nique can be practical and useful, by generating test
cases for the popular MS WordPad software’s GUI.

The experiments demonstrated the feasibility of the ap-
proach and also showed the value of using hierarchical
operators for efficiently generating multiple plans for a
specified task.
The use of hierarchical operators in test-case genera-

tion also aids in performing regression testing. Changes
made to one part of the GUI do not necessarily invali-
date entire test cases. Often, it is possible simply to per-
form a new decomposition of some abstract operator(s)
in the high-level plan, and replace the prior decomposi-
tion with the new result. Finally, representing the test
cases at a high level of abstraction also makes it possible
to fine-tune the test cases to different implementation
platforms, making the test suite more portable.
One of the tasks currently performed by the human

test designer is the definition of the preconditions and
effects of the operators. Such definitions of commonly
used operators can be maintained in libraries, mak-
ing this task easier. We are also currently investigat-
ing ways of automatically generate the preconditions
and effects of the operators from a GUI’s specifica-
tions. Additionally, we are using our plan-based ap-
proach throughout the larger PATHS system, which,
in addition to test-case generation, performs such tasks
as oracle creation for verification, automated execution
of test cases, and test suite management for regression
testing.

References
Bernhard, P. J. 1994. A reduced test suite for protocol
conformance testing. ACM Transactions on Software
Engineering and Methodology 3(3):201–220.

Chow, T. S. 1978. Testing software design modeled by
finite-state machines. IEEE trans. on Software Engi-
neering SE-4, 3:178–187.

Clarke, J. M. 1998. Automated test generation from a
behavioral model. In Proceedings of Pacific Northwest
Software Quality Conference. IEEE Press.

Esmelioglu, S., and Apfelbaum, L. 1997. Automated
test generation, execution, and reporting. In Pro-
ceedings of Pacific Northwest Software Quality Con-
ference. IEEE Press.

H. Cho; G.D. Hachtel; and F. Somenzi. 1993. Re-
dundancy identification/removal and test generation
for sequential circuits using implicit state enumera-
tion. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 12(7):935–945.

Hammontree, M. L.; Hendrickson, J. J.; and Hensley,
B. W. 1992. Integrated data capture and analysis tools
for research and testing an graphical user interfaces.
In Bauersfeld, P.; Bennett, J.; and Lynch, G., eds.,
Proceedings of the Conference on Human Factors in
Computing Systems, 431–432. New York, NY, USA:
ACM Press.

Howe, A.; von Mayrhauser, A.; and Mraz, R. T. 1997.
Test case generation as an AI planning problem. Au-
tomated Software Engineering 4:77–106.

Kasik, D. J., and George, H. G. 1996. Toward auto-
matic generation of novice user test scripts. In Tauber,
M. J.; Bellotti, V.; Jeffries, R.; Mackinlay, J. D.;
and Nielsen, J., eds., Proceedings of the Conference
on Human Factors in Computing Systems : Common
Ground, 244–251. New York: ACM Press.

Kepple, L. R. 1994. The black art of GUI testing. Dr.
Dobb’s Journal of Software Tools 19(2):40.

Kitajima, M., and Polson, P. G. 1992. A computa-
tional model of skilled use of a graphical user interface.
In Proceedings of ACM CHI’92 Conference on Human
Factors in Computing Systems, Modeling the Expert
User, 241–249.

Kitajima, M., and Polson, P. G. 1995. A
comprehension-based model of correct performance
and errors in skilled, display-based, human-computer
interaction. International Journal of Human-
Computer Studies 43(1):65–99.

Koehler, J.; Nebel, B.; Hoffman, J.; and Dimopoulos,
Y. 1997. Extending planning graphs to an ADL subset.
In Steel, S., and Alami, R., eds., Proceedings of the 4th
European Conference on Planning (ECP-97): Recent
Advances in AI Planning, volume 1348 of LNAI, 273–
285. Berlin: Springer.

Memon, A. M.; Pollack, M.; and Soffa, M. L. 1999a.
Comparing causal-link and propositional planners:
Tradeoffs between plan length and domain size. Tech-
nical Report 99-06, University of Pittsburgh, Pitts-
burgh.

Memon, A. M.; Pollack, M. E.; and Soffa, M. L. 1999b.
Using a goal-driven approach to generate test cases
for GUIs. In Proceedings of the 21st International
Conference on Software Engineering, 257–266. ACM
Press.

Myers, B. A. 1993. Why are human-computer in-
terfaces difficult to design and implement? Technical
Report CS-93-183, Carnegie Mellon University, School
of Computer Science.

Shehady, R. K., and Siewiorek, D. P. 1997. A method
to automate user interface testing using variable fi-
nite state machines. In Proceedings of The Twenty-
Seventh Annual International Symposium on Fault-
Tolerant Computing (FTCS’97), 80–88. Washington
- Brussels - Tokyo: IEEE.

The, L. 1992. Stress Tests For GUI Programs. Data-
mation 38(18):37.

White, L. 1996. Regression testing of GUI event in-
teractions. In Proceedings of the International Confer-
ence on Software Maintenance, 350–358. Washington:
IEEE Computer Society Press.

Wittel, Jr., W. I., and Lewis, T. G. 1991. Integrating
the MVC paradigm into an object-oriented framework
to accelerate GUI application development. Technical
Report 91-60-06, Department of Computer Science,
Oregon State University. Fri, 15 Dec 1995 03:14:52
GMT.

