
Using a Pilot Study to Derive a GUI Model for

Automated Testing

QING XIE

Accenture Technology Labs

ATIF M MEMON

University of Maryland

Graphical user interfaces (GUIs) are one of the most commonly used parts of today’s software.
Despite their ubiquity, testing GUIs for functional correctness remains an under-studied area. A
typical GUI gives many degrees of freedom to an end-user, leading to an enormous input event
interaction space that needs to be tested. GUI test designers generate and execute test cases
(modeled as sequences of user events) to traverse its parts; targeting a sub-space in order to
maximize fault detection is a non-trivial task. In this vein, in previous work, we used informal
GUI code examination and personal intuition to develop an event-interaction graph (EIG). In this
paper we empirically derive the EIG model via a pilot study, and the resulting EIG validates our

intuition used in previous work; the empirical derivation process also allows for model evolution
as our understanding of GUI faults improves. Results of the pilot study show that events interact
in complex ways; a GUI’s response to an event may vary depending on the context established
by preceding events and their execution order. The EIG model helps testers to understand the
nature of interactions between GUI events when executed in test cases and why certain events
detect faults, so that they can better traverse the event space. New test adequacy criteria are
defined for the EIG; new algorithms use these criteria and EIG to systematically generate test
cases that are shown to be effective on four fielded open-source applications.

Categories and Subject Descriptors: D.2.5 [Testing and Debugging]: Model-Based Testing;
K.6.3 [Software Management]: Software Development

General Terms: Verification, Reliability

Additional Key Words and Phrases: Graphical user interfaces, Model-based testing, test mini-
mization, test suite management

Prologue

Graphical user interfaces (GUIs) are typically implemented as a collection of widgets
associated with event-handlers designed to respond to individual events. An event-
handler’s response to an event may vary depending on the current state of the
software, established by preceding events and their execution order. Consider the

Authors’ addresses: Qing Xie Accenture Technology Labs 161 North Clark Street, Chicago, IL,
60601, USA; Atif M. Memon, 4115 A. V. Williams Building, Department of Computer Science,
University of Maryland, College Park, MD 20742, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1529-3785/2007/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007, Pages 1–0??.

2 · Q. Xie and A. M. Memon

following example of how the state in which an event “Properties1” is executed
affects its behavior.

—Software platform: Microsoft Windows XP, Professional, Version 2002, Service
Pack 2 (or 1).

—Setup steps: Launch the application “Computer Management” (under “Control
Panel” → “Administrative Tools”).

—Setting up the state for a crash: 1© Right-click “Computer Management (local)”;
2© choose “Connect to another computer ...”; 3© in the “Another Computer”
text-field, type a very long string (keep typing until the text-field allows no more
characters); 4© click the “OK” button; the expected error dialog opens stating
that the computer cannot be managed; 5© click “OK” to close this dialog.

—Causing the crash: 6© Right-click on “Computer Management (...)” and select
“Properties”; the application will crash.

The application would not have crashed if the user had typed-in a short string
as the computer name. On the other hand, if the user had executed other events
(except another “Connect to another computer ...” with a valid or a shorter
computer name; this event will be denoted by 7©) between “setting up the state”
and “causing the crash,” the software would still have crashed. Hence the event
sequence 1© through 5© is all that is needed to setup the state for a crash; subse-
quently, anytime the event 6© is performed, the software will crash, unless event 7©
is performed first.

. . .
︸︷︷︸

a©

→ 1© → 2© → 3© → 4© → 5©
︸ ︷︷ ︸

State Setup

→ . . .
︸︷︷︸

b©

→ 6©
︸︷︷︸

Crash

Although the above example reinforces popular belief that the software state
plays an important role during testing, it also illustrates several important points
pertinent to generating such sequences. First, the subsequence a© is irrelevant to
this crash; it can be omitted entirely. Second, b© must be generated carefully so
that it is either empty, or does not include 7©. Third, the event sequence 1© through
6© alone is sufficient to cause the crash. In practice, during testing, it is extremely
difficult (although obviously desirable) to generate such potentially problematic
event sequences.
Synopsis: This paper attempts to systematically generate potentially problematic
sequences by empirically understanding event sequences that lead to successful
fault detection. This understanding is used to derive an event-interaction graph
(EIG) (previously obtained via informal GUI code examination [Memon and Xie
2005; Xie and Memon 2006]) model of problematic GUI interactions. The EIG is
systematically and efficiently “covered” to yield effective test cases.

1. INTRODUCTION

GUIs are one of the most important parts of today’s software [Memon 2002]. Rec-
ognizing the importance and popularity of GUIs, software developers are dedicating

1This event is actually Click-on-Menu-Item-Properties; however, in this research, for brevity,
whenever possible, an event will be denoted by a unique label derived from the attributes of its
associated widget, e.g., button label (Cancel), menu-item label (Properties), etc.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 3

large parts of the code, up to 50% to implementing GUIs [Memon 2001]. One rea-
son for the popularity of GUIs is that they offer many degrees of freedom to a user
to interact with the software. The allowable number of permutations of GUI input
events in most non-trivial applications is extremely large. A pilot study in Sec-
tion 4 shows that the number of event sequences grows exponentially with length
of sequence. Events in GUIs have complex interactions. A user interacting with
a GUI may perform an event sequence X that puts the GUI in such a state that
a subsequent event sequence Y causes erroneous execution. Without the context
established by the event sequence X , the event sequence Y may not have led to
the error. The pilot study of Section 4 shows that many GUI events exhibit similar
behavior, i.e., they cause an error in the GUI in one context but not in another
context. This observation shows that, in non-trivial GUI applications, there are
complex dependencies between GUI events; after all, if context played no role, then
an event would behave exactly the same way each time it is executed.

The above characteristics (i.e., large number of permutations of events and com-
plex event interactions) of GUIs present new challenges for quality assurance tasks
such as testing. It is not sufficient to test each event in isolation (or in one state);
rather, an event needs to be executed together with other events. A test designer
needs to develop test cases (sequences of events) that test the enormous input in-
teraction space of the GUI. However, in practice, GUI test designers barely test a
minuscule part of the interaction space; they employ capture/replay tools (discussed
in Section 2) that provide very little automation, with the result that very few test
cases are created for GUIs, leading to inadequate testing. In our previous work on
automated GUI testing, we developed a model called the event-flow graph (EFG)
that represents the space of all possible event sequences that may be executed on
the GUI [Memon et al. 2001]. Later, by informally examining the GUI code, we
refined this model and created an event-interaction graph (EIG) [Memon and Xie
2005; Xie and Memon 2005; 2006].

In this paper we empirically derive the EIG model via a pilot study, and the re-
sulting EIG validates our intuition used in previous work. We leverage our previous
work on EFGs to empirically understand how GUI events behave when executed
in a test case. A new term is defined: the minimal effective event-context (MEEC)
of an event that has detected a fault in a test case as the shortest sequence of
preceding events needed to detect the fault. A pilot study involving four subject
applications is conducted. The study shows that for fault-detection in a specific
class of GUIs, the MEEC has a well-defined structure that may be represented by
four regular expressions and used to model problematic interactions. This under-
standing is used to derive EIGs; each regular expression is used to develop a test
adequacy criterion; algorithms generate test cases to satisfy the criteria. We note
that as our understanding of GUI errors improves in the future, we may obtain ad-
ditional patterns of MEEC that may yield additional criteria and/or help to evolve
the EIG model.

The usefulness of EIGs is demonstrated via a case study involving four well-
tested popular (all time activity2 > 98%) applications downloaded from Source-

2Note that the “All time activity” percentage is a good indicator of the popularity of a program;
more mature programs have all time activity percentages closer to 100%. Because the Sourceforge

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

4 · Q. Xie and A. M. Memon

Forge. The results show that the EIG-generated test cases uncovered errors that
were important and relevant. All the errors were reported on the SourceForge bug
reporting site; in response, the developers fixed some of the bugs. Because most
of the testing steps were automated (even the scripts required to setup, execute,
and tear-down test cases were generated automatically) the entire process executed
very quickly with very little human intervention. Most of the applications had
been used and tested for a number of years; the developers had never detected our
reported errors before because their own tools (and testing processes) were unable
to comprehensively and automatically test the applications.

The contributions of this research include:

—definition of the term minimal effective event context and its application to GUI
test-case generation,

—a bottom-up approach that studies actual GUI test case failures to derive the
EIG model,

—demonstration that parts of GUI test cases are actually sufficient for fault detec-
tion, and

—development of four new GUI test criteria.

Structure of the paper: The next section presents an overview of related work.
Section 3 defines minimal effective event context. Section 4 presents a pilot study
of GUI events in test cases. Section 5 represents minimal effective event contexts
using regular expressions. The structural analysis of the MEECs from the pilot
study is used to develop EIGs. Section 6 evaluates test cases generated from EIGs.
Finally, Section 7 concludes with a discussion of ongoing and future work.

2. RELATED WORK

The use of software models to generate sequences of events (commands, method
calls, data inputs) for software testing is not new. Numerous researchers have de-
veloped techniques that employ state machine models [Clarke 1998; Chow 1978; Es-
melioglu and Apfelbaum 1997; Bernhard 1994; Shehady and Siewiorek 1997; White
and Almezen 2000], grammars [Imanian 2005; von Mayrhauser and Crawford-Hines
1993; von Mayrhauser et al. 1994; Maurer 1990; Auguston et al. 2005], AI planning
[Memon et al. 2001; Howe et al. 1997; Scheetz et al. 1999; Leow et al. 2004], ge-
netic algorithms [Kasik and George 1996], probabilistic models [Woit 1998; 1993;
Whittaker 1992; Whittaker and Thomason 1994], and graph-traversal techniques
[Memon et al. 2005; Memon and Xie 2005] to generate various types of sequences.
This section presents some of these techniques (emphasizing on their application
to GUIs whenever possible), a discussion of GUI testing tools, and the relation-
ship between our work and unit testing of object-oriented programs [Jorgensen and
Erickson 1994; Xie et al. 2005], and delta debugging [Zeller 2002].
State Machine Models: The most well-known models used for GUI test-case
generation include finite-state machine (FSM) models [Clarke 1998; Chow 1978;
Esmelioglu and Apfelbaum 1997; Bernhard 1994] and their variants [Shehady and

database also includes projects that are incomplete or abandoned, the activity percentage helps
to avoid them.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 5

Siewiorek 1997; White and Almezen 2000]. The GUI’s behavior is modeled as an
FSM where each input event triggers a transition in the FSM; a path in the FSM
represents a test case. Since FSMs have scalability problems for large GUIs, variants
such as variable finite state machines (VFSM) have been used to “collapse” some
states by adding explicit conditional variables to the machine’s transitions [Shehady
and Siewiorek 1997]. White et al. [White and Almezen 2000] handle the scalability
problem by manually decomposing the GUI into multiple state machines called
“complete interaction sequences” (CISs); each CIS models a particular (manually
identified) GUI activity called a responsibility.

As can be imagined, the nature of test cases that are generated from state-
machine models depend largely on the definition of “state” and the test adequacy
criteria used. No one has empirically demonstrated the effectiveness of the above
state machine models for GUI testing.

Grammars: Several researchers have modeled the set of all possible valid sequences
(of commands, events) as a set of sentences that may be compactly represented
using a grammar [Imanian 2005; von Mayrhauser and Crawford-Hines 1993; von
Mayrhauser et al. 1994; Maurer 1990; Auguston et al. 2005]. Various types of “sen-
tence generators” are then used to obtain different types of test cases. For example,
Mayrhauser et al. [von Mayrhauser and Crawford-Hines 1993] use grammars to gen-
erate sequences of commands to test a robot tape library system. Imanian [Imanian
2005] extends this idea to an attributed event grammar, which models events, their
precedence or inclusion relation to other events, attributes of the events, and, if
applicable, time delays between input events. Auguston et al. [Auguston et al.
2005] use a similar approach to model a software application’s environment. The
environment model includes a description of hazardous states in which the system
may arrive. An attributed event grammar specifies all possible event traces.

AI Planning: One way to avoid the explicit state enumeration (and hence the
state-explosion problem) in GUIs is to use goal-directed search, generating states
on demand. One such form of goal-directed search uses AI Planning, which was first
used by Howe et al. [Howe et al. 1997] to generate test cases for a command-driven
system. Scheetz et al. [Scheetz et al. 1999] and Leow et al. [Leow et al. 2004] have
applied this technique to testing object-oriented programs.

Our own work on GUI testing has also used AI planning for test-case generation
[Memon et al. 2001]. The technique requires that all events be represented in the
form of pre- and postconditions, i.e., partial descriptions of the state in which an
event can execute and a description of how the state would change, respectively.
The AI Planner uses these event specifications and tasks (represented in the form of
initial and goal states) to generate test cases. An automated test replayer executes
the test cases automatically on the GUI.

Genetic Algorithms: Kasik et al. [Kasik and George 1996] have used genetic
algorithms to “improve” test cases so that they represent novice GUI users. This
approach relies on an expert to manually generate a sequence of GUI events, and
then uses the genetic algorithms to modify and lengthen the sequence, thereby
mimicking a novice user. The assumption made therein is that novice users, when
compared to expert users, take longer “paths” through the input event interaction
space when performing activities.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

6 · Q. Xie and A. M. Memon

Probabilistic Models: Several probabilistic models have been used to encode
software usage information (GUI usage may be encoded as sequences of events)
[Woit 1998; 1993; Whittaker 1992; Whittaker and Thomason 1994]. These models
are used to generate test cases that will exercise the software in a fashion typical
of actual operation. Whittaker et al. [Whittaker and Thomason 1994; Whittaker
1992] describes a method for statistical testing based on a Markov chain model
of software usage, which allows test input sequences to be generated from multiple
probability distributions. Woit [Woit 1993; 1998] extends this idea to a conditional-
event usage testing (CEUT), which retains the benefits of traditional operational
profile testing but is not limited in the class of systems to which it applies. In
CEUT, the expected usage of the software is modeled in such a way as to allow
specification of conditions upon expected input event sequences.
Graph Traversal: Our own past work on GUI testing has used several types of
graph models (e.g., event-flow graphs [Memon et al. 2005; Memon and Xie 2005])
to generate specific types of test cases. Our choice of these models was guided by
intuition, rather than an empirical understanding of event interactions and their
impact on GUI fault-detection. Consequently, we obtained the models first based
on intuition and later evaluated them on several software subjects. This work
takes an alternative approach – we first observe the effect of GUI interactions on
fault detection via a pilot study, use the observation to create the model, and then
evaluate the effectiveness of the test cases generated by the model on several new
applications not used in the pilot study.
GUI Testing Tools: Some tools used for GUI testing include extensions of JUnit
such as JFCUnit, Abbot, Pounder, and Jemmy Module3 that require manual creation
of test cases. Capture/replay (record/playback) tools [Hicinbothom and Zachary
1993] such as WinRunner4 provide very little automation [Memon 2003], especially
for creating tests. During the capture phase, a tester interacts with the GUI being
tested. The tool records the interactions and saves them in a database. The
recorded test cases can be replayed automatically on the software using the replay
part of the tool. Developers/testers who employ these tools typically come up with
a small number of test cases [Memon et al. 1999].
Unit Testing of Object-Oriented Programs: Jorgensen et al. [Jorgensen and
Erickson 1994] draw similarities between testing event-driven applications and unit
testing of object-oriented programs (OOPs). The primary similarity is that testing
object-oriented programs involves generating sequences of method calls. However,
the focus of research for OOP is on more complex problems commonly faced during
generation of sequences of methods, i.e., choosing method parameters and their
values during testing. The relationship between parameters of different methods in
an intra-class test is also considered [Xie et al. 2005].
Delta debugging: The work on delta debugging by Zeller et al. [Zeller 2002] is
somewhat related to our notion of an event context. Delta debugging views an
execution of a failing program as a sequence of program states; each state induces
the subsequent state, up to the failure. The delta debugging algorithm isolates the
failure-relevant variables and values by systematically narrowing the state difference

3http://junit.org/news/extension/gui/index.htm
4http://mercuryinteractive.com

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 7

between a passing run and a failing run – by assessing the outcome of altered
executions to determine whether a change in the program state makes a difference
in the test outcome. In our work, events cause state transitions in the GUI. We
define the context of an event in terms of event sequences; Zeller et al. view the
context of a failure as a collection of variables that caused the failure. However,
instead of debugging, our focus is on test case generation.

All the above techniques are useful, in that they can be used to generate different
types of test cases for different domains. The research presented in this paper
is orthogonal to all the work described above; it will serve to augment all these
techniques for GUI testing by specifying the types of sequences to generate for
effective testing. For example, we envision that this work can be used to build
better models and adequacy criteria for state machines that target problematic
interactions, better sentence generators based on grammars, improved crossover
and mutation operators for genetic algorithms, and axioms for AI planners.

3. MODELING THE MINIMAL EFFECTIVE EVENT CONTEXT

The overall goal of this paper is to create an abstract model of GUIs that can be
used to generate potentially problematic event sequences. This section takes the
first step to obtaining such a model by providing a formal definition of minimal
effective event context (MEEC) of an event X . Intuitively, the MEEC of X is (one
of) the shortest (in terms of number of events) event sequence that needs to be
executed before X detects a GUI fault, i.e., one that manifests itself on the visible
GUI. Subsequent sections will empirically study the structure of the MEEC and
use it to create the new model called an EIG.

3.1 Preliminaries

Note that some of the terms presented in this section have been defined in detail in
earlier work [Memon and Soffa 2003; Memon et al. 2001; Memon 2001]. They are
reproduced here only to the extent needed to understand the concepts presented in
this paper.

A GUI’s state is modeled as a set of objects (label, form, button, text, etc.)
and a set of properties of those objects (background-color, font, caption, etc.).
Hence, at a particular time t, the GUI can be represented by its constituent objects

O = {o1, o2, . . . , om}, and their properties P = {p1, p2, . . . , pl}. Note that all
properties correspond to physical properties of widgets in the GUI. The set of
objects and their properties constitutes the state of the GUI.

The state of a GUI is not static; events {e1, e2, . . . , en} performed on the GUI
change its state. Events are modeled as state transducers. The function notation
Sj = ei(Si) is used to denote that Sj is the state resulting from the execution of
event ei in state Si. An event ei is applied to state Si to obtain state Sj . Events
can be strung together into sequences. Extending the function notation above,
Sj = (e1 ◦ e2 ◦ . . . ◦ en)(Si), where e1 ◦ e2 ◦ . . . ◦ en is an executable event sequence,
denotes that Sj is the state that results from executing the specified sequence of
events starting in state Si. e1◦e2◦ . . .◦en is an executable event sequence for a state
S0 (S0 is one of the states in which the software starts) iff there exists a sequence
of states S0; S1; . . . ; Sn such that Si = ei(Si−1), for i = 1, . . . , n.

Our earlier work modeled the set of all possible executable event sequences as

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

8 · Q. Xie and A. M. Memon

an event-flow graph (EFG). An EFG contains nodes (that represent events) and
edges. An edge from node nx to ny means that the event represented by ny may be
performed immediately after the event represented by node nx. This relationship
is called the follows relationship – i.e., ny follows nx. Figure 1 shows a very
simple GUI and its associated EFG (the different shapes used for the events will
be discussed in Section 4.6). The EFG contains eight nodes, corresponding to the
eight events in the GUI (Edit, Copy, Cut, Paste, Goto Line, OK, Cancel, Line
Number()). The directed edges show the flow of events. For example, there is
an edge from Edit to Copy indicating that a user can execute Copy immediately
after Edit; ignoring short-cut keys, there is no edge from Copy to Paste. It is
important to note that an EFG is not a state-machine model. The nodes are
not states – they are events; edges are not state-transitions – they represent the
follows relationship. However, a state machine model that is equivalent to the
EFG can be constructed – the state would capture the possible events that can be
executed on the GUI at any instant; transitions cause state changes whenever the
set of available events changes. An important property of EFGs that makes them
useful is that they can be obtained automatically from an executing GUI using a
reverse engineering technique implemented in a tool called the GUI Ripper [Memon
et al. 2003]. Details of the GUI Ripper have been described in earlier reported
work [Memon et al. 2003]; in summary, the Ripper is given a handle to the GUI’s
main window; it uses windowing API (e.g., Java Swing API) to extract all those
widgets that have event listeners associated with them, and executes these events
in succession, thereby opening more windows; the Ripper recursively performs this
depth-first traversal of the GUI’s structure; the output of this step is the EFG.

���������������� ���������������� GotoLine

OK

Cancel

LineNumber

Edit

Cut

Copy

Paste

Fig. 1. A Simple GUI and its associated EFG

A set of states SI is called the valid initial state set for a particular GUI iff the
GUI may be in any state Si ∈ SI when it is first invoked. Given a GUI in state
Si ∈ SI , i.e., in a valid initial state of the GUI, new states may be obtained by
performing events on Si. These states are called the reachable states of the GUI.
The state Sj is a reachable state iff either Sj ∈ SI or there exists an executable
event sequence ex ◦ey ◦ . . .◦ez such that Sj = (ex ◦ey ◦ . . .◦ez)(Si), for any Si ∈ SI .

3.2 GUI Test Cases

A test case is a pair < S0, e1 ◦ e2 ◦ . . . ◦ en >, where S0 ∈ SI is a valid initial state
and e1 ◦ e2 ◦ . . . ◦ en is an executable event sequence.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 9

As noted earlier, if performed manually (using capture/replay tools), test-case
generation is extremely labor intensive. With the event-flow model, numerous
graph-traversal techniques may be used to automate it. A straightforward way
to generate test cases is to start from a known initial state S0 of the GUI and
use a graph traversal algorithm, enumerating the nodes during the traversal, on
the EFGs. If the event requires text input, e.g., for the Line Number() text-
box, then its value is read from a database, initialized by the software tester.
An executable sequence of events e1 ◦ e2 ◦ . . . ◦ en is generated as output that
serves as a GUI test case. One such sequence for the EFG of Figure 1 is <

S0, Edit ◦ Copy ◦ Edit ◦ Paste ◦ Edit ◦ GotoLine ◦ OK >.

3.3 Detecting GUI Faults & Effective Event Context

During the execution of a test case < S0, e1◦e2◦. . .◦en >, all its events are executed
one-by-one and a test oracle is used to determine if the software executed correctly
for the test case. The test oracle computes the GUI’s expected state, obtains the
GUI’s actual state, compares the two states, and determines if the actual is as
expected. In earlier work [Memon et al. 2000], we defined a test oracle to contain
oracle information that is used as the expected output and an oracle procedure
that compares the oracle information with the actual output. Intuitively, an oracle
information generator automatically derives the oracle information (expected state
sequence) S1; S2; . . . ; Sn. Likewise, the actual state A1; A2; . . . ; An is obtained from
an execution monitor. The execution monitor may use techniques such as screen
scraping and/or querying [Memon et al. 2000] to obtain the actual state of the
executing GUI. An oracle procedure then automatically compares the two states
(Si and Ai) and determines if the GUI is executing as expected.

Definition: An event ei in a test case detects a fault if the expected (Si) and
actual (Ai) states mismatched immediately after ei was executed. 2

Not all of ei’s preceding events e1◦. . .◦ei−1 in the test case contribute to the fault
being detected, suggesting that some of these events may be removed. In general,
not all events may be removed since they are necessary to establish the context in
which ei detected the fault. Hence a subsequence ej ◦ . . . ◦ ek (for 1 ≤ j ≤ (n − 1)
and (j + 1) ≤ k ≤ (n− 1)) of e1 ◦ . . . ◦ en is sufficient for ei to detect the fault. The
resulting test case would be < S0, ej ◦ . . .◦ ek ◦ ei >. Care must be taken that event
ej is applicable in the test case’s starting state S0, and ei is applicable in the state
Sk resulting from the execution of ek. This leads to the definition of the effective
event context (EEC) of an event in terms of a test case and a fault F detected by
event ei.

Definition: Given a test case < S0, e1 ◦ e2 ◦ . . . ◦ en >, the EEC of event
ei ∈ {e1, e2, . . . , en} that has detected a fault F is the pair (S0, ej ◦ . . . ◦ ek), for
1 ≤ j ≤ (n− 1) and (j + 1) ≤ k ≤ (n− 1) such that ej is applicable in S0 and ei is
applicable in Sk; ej ◦ . . . ◦ ek is a subsequence of e1 ◦ . . . ◦ en; state Sk is obtained
by applying ej ◦ . . . ◦ ek starting in S0. 2

The above definition precludes subsequences with deleted intermediate events.
Although this is not strictly required (a generalization is a subject for future work),
it does simplify the computation of the EEC. Had we allowed the deletion of inter-
mediate events, we expect the computation of the EEC to be more complex and
expensive.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

10 · Q. Xie and A. M. Memon

Note that an event may have multiple EECs. The MEEC is defined as any of
the EECs of minimum length needed to detect the fault.

Definition: Given a test case < S0, e1 ◦ e2 ◦ . . . ◦ en >, and a fault F that was
detected by an event ei ∈ {e1, e2, . . . , en}, the MEEC of ei is any of the EECs of
minimum length needed to detect the fault F . 2

It is non-trivial to predict the structure and length of MEECs for typical GUI test
cases and faults. A deeper understanding of MEECs will help to develop better test
case generation algorithms. An empirical approach is used to understand MEECs.
In particular, a pilot study of real failed GUI test cases is conducted on several GUI
applications and the MEEC for each test case is extracted and studied. The study
is described next.

4. PILOT STUDY: EMPIRICALLY UNDERSTANDING THE STRUCTURE OF MEEC

This section describes a pilot study to help understand the structure of MEECs
for GUIs. Observations from this study are used to create event-interaction graphs
(EIGs).

This study attempts to answer the following questions:

Q1:. How many event sequences is a user allowed to execute in a typical GUI-
based software application?

Q2:. Do GUI events interact? Is it sufficient to test each event once?

Q3:. When a GUI test case (i.e., consisting of a sequence of events e1, e2, e3, . . . , en)
reveals a fault at event ei,

5 what is the role of the context established by preceding
events e1, e2, e3, . . . , ei−1? Which of the preceding events are actually needed for
fault detection?

Q4:. What is the structure of the MEEC?

The following process is used to answer the above questions.

Step 1:. Take different GUI-based software subjects.

Step 2:. Artificially seed faults in them (borrowing this technique from mutation
testing); hereafter, the fault-seeded versions will be referred to as “mutants.”

Step 3:. Generate test cases; each test case is of the form < S0; e1 ◦e2 ◦ . . .◦en >,
where S0 is the state of the GUI in which the event sequence e1 ◦ e2 ◦ . . . ◦ en is
executed.

Step 4:. Execute each test case on each mutant. A mutant is killed if there is a
mismatch between the mutant’s GUI state and the original software’s GUI state.
Record the event at which the mismatch was observed.

Step 5:. For each test case < S0, e1 ◦ e2 ◦ . . . ◦ en > that killed a mutant at event
ei, 1 ≤ i ≤ n, compute the MEEC.

4.1 Step 1: Study Subjects

The study subjects are part of an open-source office suite developed at the De-
partment of Computer Science of the University of Maryland by undergraduate

5Recall that the GUI test case is executed one event at a time; a fault may be detected during
the execution of one of the events.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 11

students of the senior Software Engineering course. It is called TerpOffice6 and
includes TerpWord (a word-processor with drawing capability), TerpCalc (a sci-
entific calculator), TerpPaint (an imaging tool), and TerpSpreadSheet (a compact
spreadsheet program). Additional details of these applications have been discussed
earlier [Memon and Xie 2005]. In summary, these applications are fairly large with
complex GUIs; with the exception of TerpCalc, they are comparable in size to
Microsoft’s WordPad software.

4.2 Step 2: Fault Seeding

Fault seeding is a well-known technique used to introduce known faults into pro-
grams [Offutt and Hayes 1996; Harrold et al. 1997]. It has several applications –
in this paper, it is used to create fault-seeded versions (i.e., mutants) of the sub-
ject applications. Test cases are generated and executed simultaneously on the
mutants and the original subject application. A mutant is killed if there is a mis-
match between the original software’s GUI state and the mutant’s GUI state. The
characteristics of the test cases that were successful at killing mutants are then
studied.

Note that killing a mutant is a popular way to simulate the process of fault
detection by a test case. In a real testing scenario, a tester creates a test case
together with a description of an “expected outcome” for the software. A software
that does not execute as expected fails on the test case; otherwise it passes. By
using a “golden version” of the software and mutants, we are side-stepping the
creation of descriptions of “expected outcomes” for each test case. A mutant that
behaves exactly like the golden version on an input is observationally equivalent
to the original software; hence the input (i.e., the test case) has been unable to
“reveal the fault” that was seeded in the code to create the mutant. Note that other
researchers have shown that mutants are good representatives of actual software
faults [Andrews et al. 2005].

The number and classes of faults that were seeded in this study are identical to
those used in our earlier work [Memon and Xie 2005]. In short, we were careful to
(1) seed faults that represented “real” faults found in GUI programs, (2) spread the
faults uniformly throughout the code by computing the number of opportunities
to seed the particular class of faults, (3) avoid fault interaction, and (4) employ
multiple people to seed the faults. In all, 200 fault seeded versions of each applica-
tion were created, each seeded with exactly one fault. We adopted a history-based
approach to seed GUI faults, i.e., we observed “real” GUI faults in real applica-
tions. During the development of TerpOffice, a bug tracking tool called Bugzilla7

was used by the developers to report and track faults in the previous version of
TerpOffice while they were working to extend its functionality and developing the
subsequent version. The reported faults are an excellent representative of faults
that are introduced by developers during implementation. Some examples include
modify relational operator (>, <, >=, <=, ==, !=), negate condition statement,
modify arithmetic operator (+, -, *, /, =, ++, –, +=, -=, *=, /=), and modify
logical operator (&&, ||).

6http://www.cs.umd.edu/users/atif/TerpOffice
7http://bugs.cs.umd.edu

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

12 · Q. Xie and A. M. Memon

4.3 Step 3: Test-Case Generation

Next, the total number (by length) of event sequences that may be executed on the
subject applications was computed. The results are summarized in Figure 2. The
x-axis shows the length of the event sequence; the y-axis (logarithmic scale) shows
the number of sequences. The graph shows that the number of event sequences
grow exponentially with length of sequence. This computation answers Q1. It
would be extremely expensive to generate and execute all event sequences beyond
length > 3.

1

10

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1 2 3 4 5 6

Test Case Length

N
u

m
b

er
 o

f
E

v
en

t
S

eq
u

en
ce

s

TerpCalc TerpPaint TerpSpreadSheet TerpWord

Fig. 2. Total Number of Event Sequences

Since the total number of potential event sequences (and hence the number of
test cases) is enormous, in this study, a reasonable subset needed to be generated.
Any process that is employed may have an impact on the results of the study (note
the threats to validity in Section 6.1). Thus a process that GUI testers use in
practice, i.e., generate test cases that cover each event at least once, will be used
here to minimize threats to external validity.

An EFG-based algorithm (shown in Figure 3) was used to generate the test cases;
the EFG was represented by a function follows(Event) that returns a set of events
that may be executed after Event. For each subject application, the algorithm
started in the application’s start state S0, created a list of events that could be
executed in S0 (Line 10), and chose one event nextEvent. It continued to make the
event sequence iteratively longer by selecting another event using the follows rela-
tionship (Line 16). Whenever possible, it selected the least frequently used events
by maintaining a used integer counter with each event. The getLeastUsedEvents()
function examined these values for a set of possible subsequent events and selected
the one that had been used the smallest number of times – ties are broken by ran-
dom selection. Because our GUI test case executor encounters timing problems for
test cases longer than 50 events, we bounded the test-case length to 50 events; note
that M is the parameter used to control test-case length.

In principle, the process used in the GenerateTestSuite algorithm may waste
resources by generating test cases that are redundant, i.e., copies (which is why

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 13

TestSuite /* Returns generated test suite for a given EFG*/
ALGORITHM :: GenerateTestSuite(

N = Number of test cases needed; 1

M = Maximum length of a test case; 2

E = Set of events in the GUI; 3

S0 = Start state for all test cases.) 4

TestSuite = φ; 5

/* initialize all events “used” counter to 0 */
FORALL ei ∈ E DO 6

used(ei) = 0; 7

/* initialize test case to empty */
tc = Φ; 8

WHILE TRUE DO 9

/* get list of all initial events */
nextEventSet = events(S0); 10

WHILE TRUE DO 11

/* Get the event that has not been used much yet. */
nextEvent = getLeastUsedEvent(nextEventSet); 12

/* Add the event to the test case */
tc = Append(tc, nextEvent); 13

/* Update the used entry for the event. */
used(nextEvent) + +; 14

/* done if maximum length reached */
IF Length(tc) ≥ M THEN BREAK; 15

/* Which events can come next? */
nextEventSet = follows(nextEvent); 16

/* Is this a Termination event (has no follows) */
IF nextEventSet == φ THEN BREAK; 17

END WHILE; 18

TestSuite = Union(TestSuite, tc); 19

testCases = SizeOf(TestSuite); 20

IF testCases ≥ N THEN BREAK; 21

END WHILE; 22

RETURN TestSuite; 23

Fig. 3. Generate Test Cases from an Event-Flow Graph

we use the set Union operation in Line 19 to eliminate duplicates). However, the
space of all possible test cases for our subject applications was so large (each event’s
follows set had a large number of events) that a test case was never re-generated;
each iteration yielded a unique test case. As Figures 4 and 5 show (for a subset of
these test cases), the algorithm yielded test cases that had both good event coverage
and length distribution. Because each test case needed to be executed on 200 fault-
seeded versions, and each test case’s execution takes an average of 30 seconds, we
capped the number of test cases at 10k per application, keeping the total CPU time
around 15 days per application; in reality, the total running time was almost two
months per application due to various execution platform problems.

4.4 Step 4: Test Execution

The above algorithm was able to generate a large number of long test cases that
contained all the events in the software. A test executor executed each generated

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

14 · Q. Xie and A. M. Memon

test case automatically on the subject applications and all the mutants. It per-
formed all the events in each test case and compared the mutant’s GUI state with
the original software’s GUI state. Events were triggered on the GUI using the na-
tive OS API. The test cases executed on four machines (Pentium 4, 2.2GHz, each
with 256MB RAM) simultaneously, one application per machine.

As expected, not all test cases were successful at killing mutants. Only those
that killed at least one mutant were stored; the rest were discarded. In all, 1119
(300, 300, 282, and 237 for TerpCalc, TerpPaint, TerpSpreadSheet, and TerpWord,
respectively) test cases successfully killed at least one mutant. In all, 163 (96, 23,
11, and 33 for TerpCalc, TerpPaint, TerpSpreadSheet, and TerpWord, respectively)
mutants were killed. The longest successful test case had 50 events and the shortest
one had 1 event. Figure 4 shows the length distribution of these test cases. The
graph has four lines, one for each application. The x-axis is the length of the test
case and the y-axis is the number of test cases. As the lines show, the test cases
varied in length.

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46

Test Case Length

N
u

m
b

er
 o

f
T

es
t

C
as

es

TerpCalc TerpPaint TerpSpreadSheet TerpWord

Fig. 4. Test Case Length Freq. Distribution

Figure 5 shows the event distribution of all the test cases. The figure shows four
column graphs; the x-axis shows all the events in each application; the y-axis shows
the number of times a particular event was executed by a test case. The graphs
show that the generated test cases had good event coverage.

There were many complex interactions between the events in the subject appli-
cations. If an event ex killed a mutant My in a test case, it failed to kill My in
many other test cases. Moreover, if ex occurred in test case Ti multiple times, it
killed My at only one point. This observation showed that the context of an event
seriously affected its ability to kill a mutant. The data has been compressed into
4 plots shown in Figure 6. The x-axis in these plots represents individual events
in the GUI. The dotted line shows the number of times a particular event existed
in some test case but failed to kill a mutant. The solid line shows the number of
times the event killed a mutant. These plots show that while many events killed
one or more mutants, the same event failed to kill a mutant in many instances.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 15

TerpCalc

0

20

40

60

80

100

1 21 41 61 81

Event

N
u

m
b

e
r

o
f

T
im

e
s
 E

v
e
n

t

E
x
e
c
u

te
d

TerpPaint

0

20

40

60

80

100

1 21 41 61 81 101 121 141 161 181 201

Event

N
u

m
b

e
r

o
f

T
im

e
s

 E
v

e
n

t

E
x

e
c

u
te

d

TerpSpreadSheet

0

20

40

60

80

100

1 21 41 61 81 101 121 141

Event

N
u

m
b

e
r

o
f

T
im

e
s

 E
v

e
n

t

E
x

e
c

u
te

d

TerpWord

0

20

40

60

80

100

1 21 41 61 81 101 121

Event

N
u

m
b

e
r

o
f

T
im

e
s
 E

v
e
n

t

E
x
e
c
u

te
d

Fig. 5. Event Distribution

For example, event #120 in TerpWord killed at least one mutant in 300 test cases;
however, the same event, although it existed in 600 other test cases, failed to kill
even a single mutant. Also, note that the presented results show test cases that
killed at least one mutant; among the 10k total test cases per application, there
were many test cases that did not kill a single mutant but comprised of events that
were otherwise successful in other contexts at killing mutants. This observation
addresses Q2.

The output of this step was a set of fault matrices, one for each application.
The rows in a fault matrix represent test cases; columns represent faults; entry
(i, j) is TRUE if test case i detected fault j; otherwise it is FALSE. In our four
fault matrices, a total of 1119 rows had at least one TRUE entry. The number of
columns that had at least one TRUE entry was 96, 23, 11, and 33 for TerpCalc,
TerpPaint, TerpSpreadSheet, and TerpWord, respectively.

4.5 Step 5: Studying Predecessor Events

For a test case < S0, e1 ◦e2 ◦ . . .◦en > in which the event ex (for 1 ≤ x ≤ n) killed a
mutant M, all possible subsequences < ei ◦ . . .◦ ej > of < e1 ◦ e2 ◦ . . .◦ ex−1 > were
created keeping only those in which the first event (ei) was applicable in S0 and ex

followed the last event (ej). Test cases were then obtained by appending ex to
the chosen subsequences. Starting from the shortest of these test cases, they were
executed on the same mutant that was killed by the original test case, stopping
when one successfully killed M. The predecessor events in this (shortest) test case
form the Minimal Effective Event Context (MEEC formally defined in Section 3).

For illustration, each test case is shown as a horizontal line with 2 levels of shad-
ing. The dark band shows the MEEC.

Event that

detected the fault

Minimal effective

event context

Event context

Rest of the test case

The above shaded-horizontal-line visualization is now stacked for all test cases per

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

16 · Q. Xie and A. M. Memon

TerpPaint

0

100

200

300

400

500

1 21 41 61 81 101 121 141 161 181 201

Event ID

N
u

m
b

er
 o

f
T

es
t

C
as

es

Killed at least 1 mutant

Killed no mutant

TerpSpreadSheet

0

100

200

300

400

500

600

1 21 41 61 81 101 121 141

Event ID

N
u

m
b

er
 o

f
T

es
t

C
as

es

Killed at least 1 mutant

Killed no mutant

TerpWord

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121

Event ID

N
u

m
b

er
 o

f
T

es
t

C
as

es Killed at least 1 mutant

Killed no mutant

TerpCalc

0

100

200

300

400

500

1 21 41 61 81

Event ID

N
u

m
b

er
 o

f
T

es
t

C
as

es

Killed at least 1 mutant

Killed no mutant

Fig. 6. Events Interactions

application to summarize the results. Figure 7 shows the results for TerpCalc. The
x-axis shows the event number in the test case. The y-axis represents test case
failures. The result for TerpCalc shows that the average length of the MEEC for
TerpCalc was 2.21 events. This result showed that even though the entire test case
was long (50 events in many cases), large parts of the test case were in fact useless
for fault detection. The test cases would still be able to detect all the faults even
if all the events except those in the MEEC were ignored. Figures 8, 9, and 10
show the same results for TerpPaint, TerpSpreadSheet, and TerpWord respectively.
The average length of the MEEC was 3.57, 4.62, and 3.86 respectively. This result
answers Q3.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 17

0 10 20 30 40 50

1

301

601

901

1201

1501

1801

2101

2401

2701

Event Number

Minimal Effective Event Context Area

Average Length = 2.21

F
a
il
ed

T
es

t
C

a
se

s

Fig. 7. MEEC for TerpCalc

0 10 20 30 40 50

1

151

301

451

601

751

901

1051

Event Number

Minimal Effective Event Context Area

Average Length = 3.57

F
a
il
ed

T
es

t
C

a
se

s

Fig. 8. MEEC for TerpPaint

4.6 Structure of MEEC

The following classification of GUI events helped to further understand the structure
of MEECs:

—reachability events (denoted by a symbol R) that are used to open windows/menus.
One subset of R of interest is W, the set of events that open windows. The re-
maining events in R are used to open menus. For the example of Figure 1, R =
{Edit, Goto Line}; W = {Goto Line}. Events from class R will be shown as a
diamond, except for W that will be shown as a double-circle.

—other events that are used to manipulate the structure of the GUI include ter-
mination events (T) that close windows. In Figure 1, T = {OK, Cancel}. Each T

event will be shown as a rectangle.

—events that do not manipulate the structure of the GUI are called system-interaction
events (denoted by symbol S); for Figure 1, S = {Cut, Copy, Paste}. Each S event

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

18 · Q. Xie and A. M. Memon

0 10 20 30 40 50

1

101

201

301

401

Event Number

Minimal Effective Event Context Area

Average Length = 4.62

F
a
il
ed

T
es

t
C

a
se

s

Fig. 9. MEEC for TerpSpreadSheet

0 10 20 30 40 50

1

301

601

901

1201

1501

1801

2101

2401

2701

3001

Event Number

Minimal Effective Event Context Area

Average Length = 3.86

F
a
il
ed

T
es

t
C

a
se

s

Fig. 10. MEEC for TerpWord

will be shown as a circle.

Note that a similar classification was used in our previous work [Memon 2001].
The above event classes were then used to create an abstraction of the MEECs –
each event was replaced by one of the symbols S, T, or R, depending on its function
in the GUI. The resulting strings were then compactly represented using regular
expressions. A largely manual two-step process was used for this compaction. First,
all repetitions were compacted using the well-known “*” and “+” operators. A
large number of MEECs ended up as R*, R*S, and R*SR+. In the second step, we
examined the remaining MEECs and found that they could be represented using
R*SR*(SR*)+. The result of this compaction process yielded a total of four regular
expressions R*, R*S, R*SR+, and R*SR*(SR*)+, each of which was assigned a
“pattern ID” 1, 2, 3, and 4 respectively. The failed test cases were then partitioned
by pattern ID. The MEECs did not contain any event of class T.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 19

Pattern
ID

MEEC
Structure e x # Faults

Unique
Faults

% Unique
Faults

96
S 37 37 38.5%
W 1 1 1.0%
S 54 40 41.7%
W 1 0 0.0%

3 R*SR+ S 10 3 3.1%
4 R*SR*(SR*)+ S 42 15 15.6%

23
S 14 14 60.9%
W 6 6 26.1%
S 1 1 4.3%
T 2 2 8.7%

11
S 4 4 36.4%
T 1 1 9.1%
W 3 3 27.3%

2 R*S S 3 3 27.3%
3 R*SR+ S 2 0 0.0%

33
S 9 9 27.3%
T 4 4 12.1%
W 15 15 45.5%

2 R*S T 3 2 6.1%
S 1 1 3.0%
T 1 1 3.0%

4 R*SR*(SR*)+ S 2 1 3.0%

R*

Total Faults Detected

Total Faults Detected

R*

R*SR+

1

3

1

2

Total Faults Detected

R*

R*S

TerpCalc

TerpPaint

TerpSpreadSheet

TerpWord

1

2

1

R*

R*S

Total Faults Detected

Table I. Regular Expression Table

The result of this overall process is shown in Table I. Column MEEC Structure

of this table shows the regular expression. Column ex shows the type of event
that killed the mutant. The number of faults is shown in Column # Faults. The
numbers in # Faults are somewhat misleading because a single fault may be man-
ifested as multiple failures. Consequently, multiple test cases may detect the same
fault, causing us to count it several times for each pattern; which is why the sum of
all faults does not add to the Total Faults Detected value. This result answers
Q4.

An alternative measure, shown in the column Unique Faults, shows the number
of faults that were detected by test cases with Pattern i but not with Pattern i− 1.
This measure will be useful when developing new test case generation techniques
based on these results. The main idea of defining this measure is that it is less
expensive to generate event sequences using “Pattern i− 1” than with “Pattern i.”

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

20 · Q. Xie and A. M. Memon

Table I illustrates several important points. First many faults (38.5%) in Terp-
Calc were detected by test cases with Pattern 1, i.e., zero or more events from R

were followed by an event in S; only one fault was detected when using an event
of type W after zero or more R events. Pattern 1 was also effective in TerpPaint
(87%), TerpSpreadSheet (72.7%), and TerpWord (84.8%); event types W and T for
ex played more significant roles in these applications. Second, Pattern 2 was very
effective for TerpCalc (41.7%) when ex was an S type of event; the same pattern
was less effective for other applications. Third, Patterns 3 and 4 were not very
effective in any application, except TerpCalc.

This analysis showed that parts of test cases with well-defined structures are in
fact sufficient for fault detection in GUIs. As shown in Table I, not all mutants were
killed by our test cases. Hence we suspect that the derived set of four patterns is
incomplete. In future work, we plan to generate additional test cases, kill additional
mutants, and perhaps obtain new patterns that may help to evolve the EIG model.
Moreover, the four patterns are specific to our four subject applications, all of
which have very little back-end code; most of the application code is for GUI
manipulation. An end-user uses these “desktop” applications via simple widget
operations; the software responds fairly quickly. We expect that the patterns will
change for other application types that have large, complex, long-running back-end
code.

However, the four derived patterns provide us with a good starting point to model
potentially problematic event sequences and use the model to generate test cases
for desktop applications. We make the following observations.

—A large number of faults are detected with test cases that execute a number of
reachability events (i.e., R*), followed by either a window opening event (W) or a
system-interaction event (S); the reachability events are needed to simply “reach”
the event that killed the mutant. According to Pattern 1, it is important to test
all S, W and T events at least once. In terms of EFGs, this essentially means
that each node of type S, T, and W is covered by the test suite. We call this the
STW-event coverage criterion.

—For Pattern 2, it is important to test interactions between event pairs (S, S), (S,
T), and (S, W). In terms of EFGs, this means that the test suite should cover such
edges. We call this the STW-interaction coverage criterion.

—For Pattern 3, it is important to test specific types of paths between two S events,
and S and T events. These paths should only contain R types of events. We call
this the SS-ST-path coverage criterion.

—For Pattern 4, it is important to test paths between multiple S events, where
each path contains only R type of events. We call this the S+-path coverage

criterion.

The STW-event and STW-interaction coverage criteria may be satisfied by gen-
erating specific types of event sequences from an EFG. However, satisfying the
SS-ST-path and S+-path coverage criteria require the computation of paths be-
tween pairs of events; the event-interaction graph (EIG) will model these paths.
The next section formally describes an EIG and outlines a method to transform an
EFG to EIG.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 21

5. EVENT-INTERACTION GRAPH

As mentioned earlier, there is a correspondence between executable event sequences
and paths in an EFG. Intuitively, an event-flow path represents a sequence of events
that can be executed on the GUI. Formally, an event-flow-path is defined as follows:

Definition: There is an event-flow-path from node nx to node ny iff there exists a
(possibly empty) sequence of nodes nj ; nj+1; nj+2; . . . ; nj+k in the event-flow graph
E such that {(nx, nj), (nj+k, ny)} ⊆ edges(E) and {(nj+i, nj+i+1)for 0 ≤ i ≤
(k − 1)} ⊆ edges(E). 2

In the above definition, the function edges takes an event-flow graph as input and
returns a set of ordered-pairs, each representing an edge in the event-flow graph.
The notation < n1; n2; . . . ; nk > is used for an event-flow path. Two examples of
event-flow paths for the GUI in Figure 1 are <Copy; Edit; Goto Line; Cancel>
and <Line Number(2); OK; Edit; Copy; Edit; Paste>.

According to Patterns 3 and 4, it is important to model all paths between pairs
of two S types of events and an S event and a T event. However, these paths should
not contain intermediate T or S types of events. This leads to the definition of an
important property of paths.

Definition: An event-flow-path < n1; n2; . . . ; nk > is interaction-free iff none
of n2, . . . , nk−1 represent termination or system-interaction events. 2

For example the path <Copy; Edit; Goto Line; Cancel> is interaction-free be-
cause Edit and Goto Line are neither termination or system-interaction events.
However, <Line Number(2); OK; Edit; Copy; Edit; Paste> is not interaction free
because OK is a termination event.

Definition: A system-interaction event (and termination event) ex interacts-
with system-interaction and termination event ey iff there is at least one interaction-
free event-flow-path from the node nx (that represents ex) to the node ny (that
represents ey). 2

For example, event Cut interacts with event Copy because there is at least one
interaction-free event flow path from Cut to Copy; the path is <Cut; Edit; Paste>.
Note that an event may interact-with itself. Also note that “ex interacts-with ey”
does not necessarily imply that “ey interacts-with ex.”

The interacts-with relationship is used to create the event-interaction graph. This
graph contains nodes, one for each S and T types of events. An edge from node nx

(that represents ex) to node ny (that represents ey) means that ex interacts-with
ey.

The EIG for the EFG of Figure 1 is shown in Figure 11. Note that the number
of nodes in an EIG is smaller than in the corresponding EFG; the number of edges
may be more because each edge may potentially represent a path.

The EIG can be obtained automatically from the EFG. The simplest way to
visualize this transformation is to identify all R types of events and remove them one
by one, adjusting the edges on a per-node basis. Each deletion has the side-effect of
yielding a mapping that will be used to obtain executable test cases. Figure 12 shows
an intermediate graph for this transformation that is obtained after removing Edit.
The mapping (Edit, Cut), (Edit, Copy), (Edit, Paste), and (Edit, GotoLine) are
generated for the events Cut, Copy, Paste, and GotoLine, respectively. Subsequent
removal of GoToLine yields the EIG and mapping (GotoLine, Cancel), (GotoLine,

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

22 · Q. Xie and A. M. Memon

OK

Cancel

Cut

Copy

Paste LineNumber

Fig. 11. Event Interaction Graph

OK), (GotoLine, LineNumber), for Cancel, OK, and LineNumber, respectively.
We note that the intuition behind an EIG and interaction-free paths is similar

to that used by Weyuker and Reps for data-flow criteria [Rapps and Weyuker
1982], except at a different level of abstraction. Weyuker and Reps use a program-
flow graph (PCG) to represent execution paths in an imperative style code; they
use the notion of def-clear paths (i.e., ones that do not redefine a variable) to
define data-flow relationships. In our case, we model software at the GUI event
level of abstraction, and use interaction-free paths to capture the event-interaction
relationships.

GotoLine

OK

Cancel

LineNumber

CutCopy

Paste

Fig. 12. An Intermediate Transformation Step from EFG to EIG

We remind the reader that our original motivation for defining the EIG is to
generate test cases that satisfy the four criteria defined earlier. All the edges of an
EIG may be covered to generate event sequences for Pattern 3 discussed earlier.
An example of an event sequence obtained in this way is <Cut; Paste>. Similarly,
pairs of adjacent edges between S events may be covered for Pattern 4. An example
is <Cut; Copy; Paste>. The remaining question is how to execute the obtained
event sequences as they are missing important reachability events (recall that events
were deleted from the EFG to obtain the EIG; hence sequences generated from the
EIG will not contain reachability events). To enable execution, the mapping is used
to generate the intermediate reachability events. Using the mapping (Edit, Cut),

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 23

(Edit, Copy), and (Edit, Paste) for events Cut, Copy, and Paste, respectively, the
test cases obtained from the sequences <Cut; Paste> and <Cut; Copy; Paste> are
< S0, Edit◦Cut◦Edit◦Paste > and < S0, Edit◦Cut◦Edit◦Copy◦Edit◦Paste >,
respectively for initial state S0.

Because our derived EIG model is exactly the same as the one used in a earlier
reported study [Memon and Xie 2005], we have already evaluated some EIG-based
test cases on the same subject applications and faults used in the study of Section 4.
In that work, the EIG-based test cases had detected 128, 156, 55, and 125, for
TerpCalc, TerpPaint, TerpSpreadSheet, and TerpWord, respectively as opposed to
96, 23, 11, and 33 respectively for the test cases generated in the Pilot study.
However, this comparison is not sufficient for the current work because we have
now derived the EIG model from the same faults/applications. Hence, in the next
section, we describe a case study using four different applications and faults to
evaluate EIG-based test cases.

6. CASE STUDY: EVALUATING THE EIG-BASED TEST CASES

The test cases obtained from the EIG may be automatically executed by a “robot.”
Starting in the test case’s initial state (i.e., S0), the robot plays the test case one
event at a time. However, the test cases also need to be combined with a test oracle
to determine whether a software under test executes correctly for the input event
sequence. This case study will employ an automated test oracle that observes
software crashes, i.e., abnormal termination of the application. Hence, for this
study, a test case fails if the software crashes, otherwise it passes.

The algorithms used to obtain the EIG and test cases have been implemented in
a software tool called GUITAR (guitar.cs.umd.edu). Together with GUITAR’s
existing reverse engineering tools and test case replayer, they yield a fully automatic
software system that provides an end-to-end solution for GUI testing.

To minimize threats to external validity (others discussed in Section 6.1), this
case study is conducted on four new applications (not used in Section 4). They
have several characteristics that make them different from the TerpOffice applica-
tions. They were not developed in-house by students; rather, they were developed
by “professional” developers. Also, they are some of the most widely-used and
evolving applications available on SourceForge.net; they have extensive bug reports
and have undergone significant quality assurance before release. In fact FreeMind,
GanttProject, and JMSN have been around for 7, 4, and 5 years, respectively;
downloaded by 3,468,917, 32,341,733, and 252,133 users, respectively; have 439,
732, and 33 bug reports, respectively, of which 279, 453, and 20, respectively have
been fixed. We expected to find very few problems in these applications except in
CrosswordSage, which is relatively new.

Moreover, the original MEEC patterns were derived using mismatches between
fault-seeded versions and their faultless counterparts. Which is why a different
approach to fault detection is being used here – software crashes are used as the
basis for software faults.

Several versions of these popular Open Source Software (OSS) were downloaded
from SourceForge.net. The primary goal of this study was to evaluate the effective-
ness of the test cases obtained using the EIG model, and hence the MEEC-based

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

24 · Q. Xie and A. M. Memon

approach. The secondary goals include determining whether the test cases reveal
serious problems in fielded GUI-based software; multi-version applications are se-
lected to determine whether some of these problems persist across different versions
of the software.

More specifically, the following questions need to be answered:

RQ1:. Do popular GUI-based OSS have serious problems (crashes) that can be
detected by the EIG-generated test cases?

RQ2:. What is the nature of the problems?

RQ3:. Do these problems persist across multiple versions of the OSS?

RQ4:. What are the common causes of the problems?

Subject Applications: The following four applications with GUIs developed us-
ing Java Swing are used in this study:

1. FreeMind8, which is a premier free mind-mapping9 software written in Java.
It has an all time activity of 100%. Versions 0.0.2, 0.1.0, 0.4, 0.7.1, 0.8.0RC5 and
0.8.0 are tested.

2. GanttProject10, which is a project scheduling application written in Java
and featuring Gantt chart, resource management, calendaring, import/export (MS
Project, HTML, PDF, spreadsheets). It has an all time activity of 99.96%. Versions
1.6, 1.9.11, 1.10.3, 1.11, 1.11.1, and 2.pre1 are tested.

3. JMSN11, which is a pure Java Microsoft MSN Messenger clone, including
Instant messaging, File Send/Receive, msnlib (for developers), and additional chat
log, etc. It has an all time activity of 97.68%. Versions 0.9a, 0.9.2, 0.9.5, 0.9.7,
0.9.8b7, and 0.9.9b1 are tested.

4. CrosswordSage12, which is a tool for creating (and solving) professional
looking crosswords with powerful word suggestion capabilities. When tested, it
had an activity percentile (last week) of 98.21%. Versions 0.1, 0.2, 0.3.0, 0.3.1,
0.3.2, and 0.3.5 are tested.

The overall process (reverse engineering, EIG creation, test-case generation and
execution) executed on each version without any human intervention in 5-8 hours;
one machine per application. The reverse engineering, model creation, test case
generation steps took 2-3 minutes per application. The test cases were designed to
satisfy the STW-event, STW-interaction, and SS-ST-path coverage criteria. Cov-
erage of the S+-path coverage criterion is a subject for future research. The test
case execution took the remaining time. If needed, test case execution could be
greatly sped up by splitting up the test suite for each application across multiple
machines.

Manual setup included setting up a database for text-field values. Because the
overall study execution needed to be fully automatic, a “default” database that
contains one instance for each of the text types in the set {negative number, real
number, long file name, empty string, special characters, zero, existing file name,

8http://sourceforge.net/projects/freemind
9http://en.wikipedia.org/wiki/Mind map
10http://sourceforge.net/projects/ganttproject
11http://sourceforge.net/projects/jmsn
12http://sourceforge.net/projects/crosswordsage

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 25

Subjects
0.0.2 0.1.0 0.4 0.7.1 0.8.0RC5 0.8.0 Total
1550 1964 4118 13658 50872 52216 124378
1.6 1.9.11 1.10.3 1.11 1.11.1 2.0.pre1 Total

1240 3705 3878 4015 4015 4414 21267
0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2 Total
1015 1107 1156 1218 1591 1777 7864
0.1 0.2 0.3.0 0.3.1 0.3.2 0.3.5 Total
101 134 818 818 876 1524 4271

Total 157780
CrosswordSage

Versions

FreeMind

GanttProject

JMSN

Table II. Number of Test Cases Generated for Each Version of Each Application

Subjects
0.0.2 0.1.0 0.4 0.7.1 0.8.0RC5 0.8.0 Total

2 5 4 4 5 4 24
1.6 1.9.11 1.10.3 1.11 1.11.1 2.0.pre1 Total
3 4 3 3 3 3 19

0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2 Total
2 2 1 2 3 3 13

0.1 0.2 0.3.0 0.3.1 0.3.2 0.3.5 Total
0 0 3 3 2 5 13

Total 69
CrosswordSage

Versions

FreeMind

GanttProject

JMSN

Table III. Number of Crashes for Each Version of Each Application

non-existent file name}. Note that if a text field is encountered in the GUI (repre-
sented as an event called type-in-text), one instance for each text type is tried
in succession.

The number of test cases generated for each application version is shown in
Table II. These test cases revealed a total of 69 crashes. Note that the same crash
is counted several times if they were detected in different versions. The results are
summarized in Table III for each version of each application. This result answers
question RQ1.

To address question RQ2, all the crash logs were manually examined and the
test cases that caused the crash were identified. The analysis of the results is
summarized next. Note that version numbers are shown in parenthesis. Each listed
bug will be referred by its bug number in later discussions.
FreeMind: 1. NullPointerException when trying to open a non-existent file (0.0.2,
0.1.0);

2. FileNotFoundException when trying to save a file with a very long file name
(0.0.2, 0.1.0, 0.4);

3. NullPointerException when clicking on some buttons on the main toolbar
when no file is open (0.1.0);

4. NullPointerException when clicking on some menu items if no file is open
(0.1.0, 0.4, 0.7.1, 0.8.0RC5);

5. NullPointerException when trying to save a “blank” file (0.1.0);
6. NullPointerException when adding a new node after toggling folded node

(0.4);
7. FileNotFoundException when trying to import a non-existent file (0.4, 0.7.1,

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

26 · Q. Xie and A. M. Memon

0.8.0RC5, 0.8.0);

8. FileNotFoundException when trying to export a file with a very long file name
(0.7.1, 0.8.0RC5, 0.8.0);

9. NullPointerException when trying to split a node in “Edit a long node”
window (0.7.1, 0.8.0RC5, 0.8.0);

10. NumberFormatException when setting non-numeric input while expecting a
number in “preferences setting” window (0.8.0RC5, 0.8.0);
Gantt Project: 1. NumberFormatException when setting non-numeric inputs
while expecting a number in “New task” window (1.6);

2. FileNotFoundException when trying to open a non-existent file (1.6);
3. FileNotFoundException when trying to save a file with a very long file name

(1.6, 1.9.11, 1.10.3, 1.11, 1.11.1, 2.pre1);

4. NullPointerException after confirming any preferences setting (1.9.11);

5. NullPointerException when trying to save the content to a server (1.9.11);
6. NullPointerException when trying to import a non-existent file (1.9.11, 1.10.3,

1.11, 1.11.1, 2.pre1);

7. InterruptedException when trying to open a new window (1.10.3);
8. Runtime error when trying to send e-mail (1.11, 1.11.1, 2.pre1);

JMSN: 1. InvocationTargetException when trying to refresh the buddy list (0.9a,
0.9.2);

2. FileNotFoundException when trying to submit a bug/request report because
the submission page doesn’t exist (0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, 0.9.9b2);

3. NullPointerException when trying to check the validity of the login data (0.9.7,
0.9.8b7, 0.9.9b2);

4. SocketException and NullPointerException when stopping a socket that has
been started (0.9.8b7, 0.9.9b2);

Crossword Sage: 1. NullPointerException in Crossword Builder when trying to
delete a word (0.3.0, 0.3.1);

2. NullPointerException in Crossword Builder when trying to suggest a new
word (0.3.0, 0.3.1, 0.3.2, 0.3.5);

3. NullPointerException in Crossword Builder when trying to write a clue for a
word (0.3.0, 0.3.1, 0.3.2, 0.3.5);

4. NullPointerException when loading a new crossword file (0.3.5);
5. NullPointerException when splitting a word (0.3.5);

6. NullPointerException when publishing the crossword (0.3.5);

The above list of severe problems show that fielded GUI-based OSS have problems
that are quickly uncovered using the EIG-based testing process. In the future, we
expect to detect a larger number of faults with test cases that satisfy the S+-path
coverage criterion. This result answers question RQ2.

To answer question RQ3, the history of each bug was studied. Figure 13 gives an
overview of bug history across versions of each application. The x-axis represents
the versions; the y-axis uses the bug numbers assigned earlier. Each bug that led to
one crash is represented by a small filled circle in Figure 13; bugs that led to multiple
crashes are represented by an asterisk. If the same bug persisted across multiple
versions, the circles (and asterisks) are connected by a horizontal line. For example,
many crashes are caused by Bug#3 in FreeMind (several toolbar buttons should be

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 27

disabled if there is no file opened). Figure 13 shows that many bugs are persistent
across versions. For example, Bug#4, #7, #8, #9 and #10 in FreeMind persisted
across several versions before they were discovered and fixed. The same observation
holds for the other applications. In fact, Bug#3 in GanttProject appeared in the
first version tested (version 1.6 was chosen because it is the first version with default
language English); it exists in all versions, including the latest version. This result
answers question RQ3.

0

1

2

3

4

5

6

7

8

9

10

0.0.2 0.1.0 0.4 0.7.1 0.8.0 RC5 0.8.0

Version

B
u

g
 N

o
.

0

1

2

3

4

5

6

7

8

1.6 1.9.11 1.10.3 1.11 1.11.1 2.pre1

Version

B
u

g
 N

o
.

(a) FreeMind (b) GanttProject

0

1

2

3

4

0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2

Version

B
u

g
 N

o
.

0

1

2

3

4

5

6

0.1.0 0.2.0 0.3.0 0.3.1 0.3.2 0.3.5

Version

B
u

g
 N

o
.

(c) JMSN (d) CrosswordSage

Fig. 13. Bug History Over Versions

To answer question RQ4, the reasons for the crashes were studied. Four reasons
were identified for these crashes: (1) Invalid text input. Many crashes were detected
because the software does not check the validity and size of text input. For example,
some text boxes in GanttProject and FreeMind expect an integer input; providing a
string resulted in a crash. In some instances, a “very long” text input also resulted
in a crash, such as providing a “very long” text input as the file name while saving
such a file sometimes leads to FileNotFoundException. (2) Widget enabled when it
should be disabled. One challenge in GUI design is to identify allowable sequences
of interactions with widgets and to disallow certain sequences. Designers often
disable certain widgets in certain contexts. In these open-source applications, it is
found that several instances of widgets were enabled when they should really have

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

28 · Q. Xie and A. M. Memon

been disabled. When the tests executed the incorrectly enabled widget in an event
sequence, the software crashed. (3) Object declared but not initialized. Some of
the crashes were Java NullPointerExceptions. It turned out that as the software
was evolving, one developer, not seeing the use of an object, commented out a
part of the code, which was responsible for object initialization. Another developer
continued to use the object in another part of the code. The software crashed when
the uninitialized object was accessed. (4) Obsolete external resources. Some of the
crashes in JMSN were caused by test cases that were trying to retrieve information
from a web page that is no longer available. This result answers question RQ4.

This study showed that the abstraction of the EIG model derived from the
MEEC structure was important for the detection of these problems; exercising
interactions between certain types of events was essential. For example we encoun-
tered several bugs using test cases that were of the form of Pattern 3 of MEEC
(R*SR+): (1) Crash 4 of FreeMind was detected by the execution of < File ◦
Close ◦ Edit ◦ SetAllVisible>, where Close and Set All Visible are system-
interaction events, and File and Edit are menu-open events, (2) Crash 6 of Free-
Mind was detected by the execution of < Edit◦Node◦ToggleFolded◦Edit◦Node◦
NewNode >, where Edit and Node are menu-open events, and Toggle Folded and
New Node are system-interaction events, and (3) Crash 8 of GanttProject was de-
tected by < ClickOnAnExistingResource(GainFocus)◦Resources◦SendEmail >,
where Resources is a menu-open event and the rest are system-interaction events.
The event handlers for many of these events were distributed across many classes
of the application, making it expensive (and in many cases impossible) to detect
these problems via static analysis. Indeed, we checked these applications using the
FindBugs tool [Spacco et al. 2006], which failed to reveal these problems.

Figure 13 leads to another observation. There are fewer bugs in the first version
than in later versions. For example, there are two crash-causing bugs in Version
0.0.2 of FreeMind. Typically, the first version of an OSS is relatively simple and
is developed by a small group of core developers. This version typically undergoes
QA before its first release; hence it is reasonably stable. Versions 0.1.0 and 0.2.0
of CrosswordSage have no bugs because they are very simple. The only change
that was made from Version 0.1.0 to Version 0.2.0 was a new help document. As
the developer community grows, the application becomes more complex and prone
to bugs. For example, Bug#10 in FreeMind was first introduced when a new
“preference setting” functionality was added. Similarly, there was a new feature
added to Version 0.3.0 of Crossword Sage; this new feature introduced some bugs
that were detected. There were more features added in Version 0.3.5; bugs were
detected in the added part of code.

6.1 Threats to Validity

Because the results of this work are based on empirical studies, the overall research
should be considered keeping in mind several threats to validity. Some of these
threats have been mentioned at relevant places in the paper; this section consoli-
dates all these threats.

First the pilot study was based on four in-house Java applications that have
very little back-end code. We expect that the nature and types of patterns will
be different for other types of applications, e.g.. form-based GUIs with complex

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 29

database back-ends. The artificial seeded faults were instantiated from a dozen
classes of popular faults. While every effort was made to seed the faults fairly, the
EIG model may need to be revised for other instances and classes of faults. The
original algorithm used to generate test cases and the test oracle used to determine
mismatches resulted in mutants that could not be killed. As our test cases and
oracles improve, we may be able to derive other patterns to further evolve the EIG
model. Finally, the process used to determine the MEEC did not consider the
deletion of intermediate events. We feel that this deletion may yield more compact
MEEC structures.

Second, the case study results are also based on four applications, which also
have a fairly simple back-end. We selected applications that were not developed in
house. In the same spirit, we also used a different test oracle, one based on software
crashes rather than GUI state mismatches. In the future, we intend to improve the
test oracles to detect functionality failures beyond crashes.

7. CONCLUSIONS & FUTURE WORK

This paper addressed a fundamental problem of testing GUIs. Because GUI test
cases are sequences of events, generating long test cases can be prohibitively expen-
sive (and impossible for large GUIs). A new concept called the minimal effective
event context (MEEC) was presented and used to empirically demonstrate that for
fault detection, the MEEC is short and has a well-defined structure, which may
be represented by four compact regular expressions. This result was used to auto-
matically develop a reduced event-interaction model of the software. This model,
called an event-interaction graph (EIG), was used to generate and execute test cases
on four software applications; the regular expressions provided four test coverage
criteria, namely STW-event, STW-interaction, SS-ST-path, and S+-path coverage
criteria. These test cases were effective at revealing a large number of faults. We
showed several examples of bugs detected by test cases that were of the form of
Pattern 3 (R*SR+) of MEECs. Since SourceForge has a bug reporting/tracking tool
for each project, some bugs were reported. For example, Bug#4 in FreeMind for
version 0.8.0RC5 was reported (bug #1245216 in SourceForge13). In response to
the report, the developers fixed this bug in release 0.8.0. This showed that the bugs
found by the testing were relevant. We do however note that some software prob-
lems, such as “easter eggs” can only be detected by carefully hand-crafted event
sequences.

The regular expression model of MEEC provided a strong starting point for
this work; in the future we expect to derive additional patterns of MEECs that
will help to further refine the EIG model and obtain additional coverage criteria.
Examination of the faults that could not be detected by any of the test cases may
be used as a starting point for the work.

The structure of the MEEC was based solely on the dissection of failed test cases.
It should be noted that a successful test case may be also be manipulated (e.g.,
events deleted) so that it fails. In the future, examination of these additional test
cases may provide valuable insights into test case behavior that may be used to
further evolve test cases.

13http://sourceforge.net/tracker/index.php?func=detail &aid=1245216&group id=7118&atid=107118

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

30 · Q. Xie and A. M. Memon

The MEEC was used to develop a graph model of the GUI. In the future, the same
patterns may be used to improve other types of models such as state machines and
grammars. Data mining techniques may be used to study characteristics of MEECs
and to extract patterns of events that are effective for fault detection.

The MEEC may be used to improve regression testing. For example, instead of
storing an entire test case for regression testing, its MEEC may be extracted and
used for regression testing. This is especially useful for GUI testing because large
parts of test cases make the test case obsolete from one GUI version to another
[Memon and Soffa 2003].

All other detected bugs will be reported, especially the ones in the latest ver-
sions of all the applications. By default, all the applications were tested in one
machine configuration on Windows 2000 Professional. It is observed that altering
this “default” configuration helps to uncover more bugs. In a preliminary study,
GanttProject was tested in a new configuration with a much lower memory set-
ting than the default configuration. Bug#4 and Bug#7 surface only in this low
memory configuration. In case of Bug#4, the application tries to repaint all the
GUI windows/widgets after the preferences setting have changed; in low memory,
this causes a substantial delay for the user. Any event performed during the slow
repainting process causes an uncaught NullPointerException exception. In case of
Bug#7, the application requires additional time to open new windows; if a user
performs a new event during this time, the result is an uncaught InterruptedEx-
ception exception. In the future, a model of the system configuration will be used
to detect additional problems.

A surprising result is that some bugs existed across applications. This was due
to shared open-source GUI components. For example, Bug#2 in FreeMind and
Bug#3 in GanttProject are identical since both these applications share a FileSave
component. This component throws a FileNotFoundException when given a very
long file name, which cannot be handled by the Windows operating system. This
particular bug does not show up after Version 0.4 of FreeMind; however, the same
bug still shows up when the user tries to export a file with a very long file name. This
observation shows that OSS that use shared components must “sanitize” inputs
before passing them to the shared components. In the future, techniques will be
developed to test GUI components.

Although this research has been conducted on GUI software, it is reasonable to
expect that it has applicability to other non-GUI applications. In the near future,
we will extend it to test object-oriented applications, where a test case is a sequence
of method calls (which may be modeled as a sequence of events), objects have state,
and events have interactions.

Acknowledgments

We thank the anonymous reviewers whose comments and suggestions helped to
extend the empirical study, reshape its results, and improve the flow of the text.
This work was partially supported by the US National Science Foundation under
NSF grant CCF-0447864 and the Office of Naval Research grant N00014-05-1-0421.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 31

REFERENCES

Andrews, J. H., Briand, L. C., and Labiche, Y. 2005. Is mutation an appropriate tool for
testing experiments? In ICSE ’05: Proceedings of the 27th international conference on Software
engineering. ACM Press, New York, NY, USA, 402–411.

Auguston, M., Michael, J. B., and Shing, M.-T. 2005. Environment behavior models for sce-
nario generation and testing automation. In A-MOST ’05: Proceedings of the 1st international
workshop on Advances in model-based testing. ACM Press, New York, NY, USA, 1–6.

Bernhard, P. J. 1994. A reduced test suite for protocol conformance testing. ACM Transactions
on Software Engineering and Methodology 3, 3 (July), 201–220.

Chow, T. S. 1978. Testing software design modeled by finite-state machines. IEEE trans. on
Software Engineering SE-4, 3, 178–187.

Clarke, J. M. 1998. Automated test generation from a behavioral model. In Proceedings of
Pacific Northwest Software Quality Conference. Pnsqc/Pacific Agenda, Portland, OR.

Esmelioglu, S. and Apfelbaum, L. 1997. Automated test generation, execution, and report-
ing. In Proceedings of Pacific Northwest Software Quality Conference. Pnsqc/Pacific Agenda,
Portland, OR, 127–142.

Harrold, M. J., Offut, A. J., and Tewary, K. 1997. An approach to fault modelling and fault
seeding using the program dependence graph. Journal of Systems and Software 36, 3 (Mar.),
273–296.

Hicinbothom, J. H. and Zachary, W. W. 1993. A tool for automatically generating transcripts
of human-computer interaction. In Proceedings of the Human Factors and Ergonomics Soci-
ety 37th Annual Meeting. SPECIAL SESSIONS: Demonstrations, vol. 2. Human Factors and
Ergonomics Society, Santa Monica, CA, 1042.

Howe, A., von Mayrhauser, A., and Mraz, R. T. 1997. Test case generation as an AI planning
problem. Automated Software Engineering 4, 77–106.

Imanian, J. A. 2005. Automatic test case generation for reactive software systems based on
environment models. Ph.D. thesis, Naval Postgraduate School, Monterey, CA.

Jorgensen, P. C. and Erickson, C. 1994. Object-oriented integration testing. Commun.
ACM 37, 9, 30–38.

Kasik, D. J. and George, H. G. 1996. Toward automatic generation of novice user test scripts.
In Proceedings of the Conference on Human Factors in Computing Systems : Common Ground.
ACM Press, New York, 244–251.

Leow, W. K., Khoo, S. C., and Sun, Y. 2004. Automated generation of test programs from
closed specifications of classes and test cases. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer Society, Washington, DC, USA, 96–105.

Maurer, P. M. 1990. Generating test data with enhanced context-free grammars. IEEE Soft-
ware 7, 4 (July), 50–55.

Memon, A., Banerjee, I., and Nagarajan, A. 2003. GUI Ripping: Reverse engineering of
graphical user interfaces for testing. In WCRE ’03: Proceedings of the 10th Working Conference
on Reverse Engineering. IEEE Computer Society, Washington, DC, USA, 260–269.

Memon, A. M. 2001. A comprehensive framework for testing graphical user interfaces. Ph.D.

thesis, Department of Computer Science, University of Pittsburgh.

Memon, A. M. 2002. GUI testing: Pitfalls and process. IEEE Computer 35, 8 (Aug.), 90–91.

Memon, A. M. 2003. Advances in GUI testing. Advances in Computers, ed. by Marvin V.
Zelkowitz 58, 150–203.

Memon, A. M., Nagarajan, A., and Xie, Q. 2005. Automating regression testing for evolving
GUI software. Journal of Software Maintenance 17, 1, 27–64.

Memon, A. M., Pollack, M. E., and Soffa, M. L. 1999. Using a goal-driven approach to
generate test cases for GUIs. In ICSE ’99: Proceedings of the 21st international conference on
Software engineering. IEEE Computer Society Press, Los Alamitos, CA, USA, 257–266.

Memon, A. M., Pollack, M. E., and Soffa, M. L. 2000. Automated test oracles for GUIs.
In SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering. ACM Press, New York, NY, USA, 30–39.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

32 · Q. Xie and A. M. Memon

Memon, A. M., Pollack, M. E., and Soffa, M. L. 2001. Hierarchical GUI test case generation

using automated planning. IEEE Transactions on Software Engineering 27, 2 (Feb.), 144–155.

Memon, A. M. and Soffa, M. L. 2003. Regression testing of GUIs. In ESEC/FSE-11: Proceedings
of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM Press, New York, NY,
USA, 118–127.

Memon, A. M., Soffa, M. L., and Pollack, M. E. 2001. Coverage criteria for GUI testing.
In ESEC/FSE-9: Proceedings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of software engineering.
ACM Press, New York, NY, USA, 256–267.

Memon, A. M. and Xie, Q. 2005. Studying the fault-detection effectiveness of GUI test cases for
rapidly evolving software. IEEE Transactions on Software Engineering 31, 10 (Oct.), 884–896.

Offutt, A. J. and Hayes, J. H. 1996. A semantic model of program faults. In ISSTA ’96:
Proceedings of the 1996 ACM SIGSOFT international symposium on Software testing and
analysis. ACM Press, New York, NY, USA, 195–200.

Rapps, S. and Weyuker, E. J. 1982. Data flow analysis techniques for test data selection.
In ICSE ’82: Proceedings of the 6th international conference on Software engineering. IEEE
Computer Society Press, Los Alamitos, CA, USA, 272–278.

Scheetz, M., von Mayrhauser, A., France, R., Dahlman, E., and Howe, A. E. 1999. Gen-
erating test cases from an OO model with an ai planning system. In Proceedings of The 10th
International Symposium on Software Reliability Engineering. IEEE Computer Society, Wash-
ington, DC, USA, 250–259.

Shehady, R. K. and Siewiorek, D. P. 1997. A method to automate user interface testing using
variable finite state machines. In Proceedings of The Twenty-Seventh Annual International
Symposium on Fault-Tolerant Computing (FTCS’97). IEEE Press, Washington - Brussels -
Tokyo, 80–88.

Spacco, J., Hovemeyer, D., and Pugh, W. 2006. Tracking defect warnings across versions.
In MSR ’06: Proceedings of the 2006 international workshop on Mining software repositories.
ACM Press, New York, NY, USA, 133–136.

von Mayrhauser, A. and Crawford-Hines, S. 1993. Automated testing support for a robot
tape library. In Proceedings of The Fourth International Software Reliability Engineering Con-

ference. IEEE Computer Society, Washington, DC, USA, 6–14.

von Mayrhauser, A., Mraz, R. T., and Walls, J. 1994. Domain based regression testing.
In Proceedings of The International Conference on Software Maintenance. IEEE Computer
Society, Washington, DC, USA, 26–35.

White, L. and Almezen, H. 2000. Generating test cases for GUI responsibilities using complete
interaction sequences. In ISSRE ’00: Proceedings of the 11th International Symposium on
Software Reliability Engineering (ISSRE’00). IEEE Computer Society, Washington, DC, USA,
110.

Whittaker, J. A. 1992. Markov chain techniques for software testing and reliability analysis.
Ph.D. thesis, University of Tennessee, Knoxville, TN, USA.

Whittaker, J. A. and Thomason, M. G. 1994. A markov chain model for statistical software
testing. IEEE Trans. Softw. Eng. 20, 10, 812–824.

Woit, D. 1998. Conditional-event usage testing. In CASCON ’98: Proceedings of the 1998 con-
ference of the Centre for Advanced Studies on Collaborative research. IBM Press, Indianapolis,
Indiana, USA, 23.

Woit, D. M. 1993. Specifying operational profiles for modules. In ISSTA ’93: Proceedings of the
1993 ACM SIGSOFT international symposium on Software testing and analysis. ACM Press,
New York, NY, USA, 2–10.

Xie, Q. and Memon, A. M. 2005. Rapid ”crash testing” for continuously evolving GUI-based
software applications. In ICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05). IEEE Computer Society, Washington, DC, USA, 473–482.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

Using a Pilot Study to Derive a GUI Model for Automated Testing · 33

Xie, Q. and Memon, A. M. 2006. Automated model-based testing of community-driven open

source GUI applications. In ICSM ’06: Proceedings of the 22nd IEEE International Conference
on Software Maintenance. IEEE Computer Society, Washington, DC, USA, 145–154.

Xie, T., Marinov, D., Schulte, W., and Notkin, D. 2005. Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
05). Spinger, Berlin, 365–381.

Zeller, A. 2002. Isolating cause-effect chains from computer programs. ACM SIGSOFT Software
Engineering Notes 27, 6, 1–10.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2007.

