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ABSTRACT

Today’s software systems are typically composed of multiple
components, each with different versions. Software compat-
ibility testing is a quality assurance task aimed at ensuring
that multi-component based systems build and/or execute
correctly across all their versions’ combinations, or config-
urations. Because there are complex and changing interde-
pendencies between components and their versions, and be-
cause there are such a large number of configurations, it is
generally infeasible to test all potential configurations. Con-
sequently, in practice, compatibility testing examines only a
handful of default or popular configurations to detect prob-
lems; as a result costly errors can and do escape to the field.

This paper presents a new approach to compatibility test-
ing, called Rachet. We formally model the entire config-
uration space for software systems and use the model to
generate test plans to sample a portion of the space. In this
paper, we test all direct dependencies between components
and execute the test plan efficiently in parallel. We present
empirical results obtained by applying our approach to two
large-scale scientific middleware systems. The results show
that for these systems Rachet scaled well and discovered in-
compatibilities between components, and that testing only
direct dependences did not compromise test quality.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.7 [Software Engineering]: Distribu-
tion, Maintenance, and Enhancement

General Terms

Design, Experimentation

1. INTRODUCTION

When developers produce software, one of their top con-
cerns is the compatibility of their software with real field en-
vironments that are equipped with different software compo-
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nents, including multiple compilers and third-party libraries.
If the software is released with undetected incompatibilities,
it can make users spend valuable time resolving incompati-
bilities, and it may also make it difficult to rationally manage
support activities for the software.

Many tools and techniques have been created over the last
decade to reduce potential incompatibilities between soft-
ware components, and these advances are now embodied in
technologies such as interconnection standards, configura-
tion management tools, service-oriented architectures and
middleware frameworks. Despite these advances, it is still
difficult to guarantee the compatibility of the components
in a software system with the expected field environments,
for several reasons.

First, field environments for software system can be ex-
tremely heterogeneous. The expected field environments
for build and/or execute the developed software may have
multiple inter-operable components, each with multiple ver-
sions, and software system can depend on all those compo-
nents, so that in many cases it is infeasible to test all possible
field environments. Second, the individual components and
the dependencies between them can change without notice,
especially if components are developed and maintained by
separate groups of developers. Finally, developers do not
want to restrict their potential user base by forcing users to
limit their environments to only a set of supported (tested
in-house) environments.

Developers perform compatibility testing [7] to ensure that
a software system behaves (builds and functions) properly
across a broad range of heterogeneous field environments.
Compatibility testing involves selecting a set of configura-
tions (field environments), where each configuration is an
ensemble of component versions that respects known depen-
dencies. However, as described above, the large number of
possible configurations and the lack of automated testing
support have limited developers to performing compatibil-
ity testing on a set of popular configurations [16], or on
a set of configurations physically realized in field environ-
ments available over a network of machines [6]. For exam-
ple, InterComm, one of our example applications, has been
extensively tested in only three configurations, where each
configuration is a development environment for a different
operating system. This implies that often the software sys-
tem is released with nearly all of its possible configurations
untested. So costly errors can and do escape to the field.

In the previous short paper [17], we discussed the Rachet
process to perform software compatibility testing, and pre-
sented initial empirical results for the InterComm scientific
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Figure 1: An Example ACDM

middleware library [12] that incompatibilities between com-
ponents can be effectively detected by Rachet. In this paper,
we extend our previous work and describe in detail new algo-
rithms and strategies to improve the efficiency and effective-
ness of compatibility testing. To validate our approach, we
have performed experiments and simulations on two widely-
used middle libraries from the field of high-performance com-
puting. For this paper, we restrict the compatibility testing
to the build process (i.e. compilation and deployment) of
a component with other components on which it depends,
but we will extend the work to functional and performance
testing in future work.

Our approach makes several contributions, including: (1)
a formalism for modeling software system’s potential config-
uration space precisely; (2) algorithms for producing exhaus-
tive and sampled test configurations to detect incompatibil-
ities between components; (3) strategies to test configura-
tions systematically in parallel, dealing with test failures dy-
namically to allow greater coverage; (4) an implementation
that realizes the Rachet process, utilizing multiple compu-
tational resources that employ platform virtualization to en-
able the results from building lower-level components to be
reused in building multiple higher-level components; and (5)
results from empirical studies showing that the Rachet ap-
proach enables fast and effective compatibility testing across
a large configuration space.

The rest of the paper is organized as follows. We explain a
high-level overview of the steps needed to perform compati-
bility testing in Section 2. In Section 3 we describe a model
to represent the software configuration space. Our approach
to generate effective test configurations is presented in Sec-
tion 4. Section 5 presents strategies to test the configura-
tions, utilizing a large set of test resources. Section 6 outlines
the Rachet architecture and presents results from empirical
studies. Section 7 describes related work and in Section 8
we conclude with a brief discussion and future work.

2. Rachet PROCESS OVERVIEW

This section provides a high-level overview of the steps
needed to perform compatibility testing for a given software
under test (SUT) using Rachet.

1. Model software configuration space: To define the
configuration space, i.e., the ways in which the SUT may
be legitimately configured, developers identify the compo-
nents needed to build the SUT. This information can often

be obtained, at least in part, from the component providers.
Dependency relationships between components are then en-
coded as a directed acyclic graph called Component De-
pendency Graph (CDG) and constraints between compo-
nents are described as Annotations of the graph; together
they form the model called Annotated Component Depen-
dency Model (ACDM). Relationships between components
may also be encoded using other formalisms such as feature-
based [4] or rule-based models [13]. The example CDG de-
picted in Figure 1 shows dependencies for a SUT component
called A. The figure shows that A requires component D and
one of B or C (captured via an XOR node represented by +).
Components B and C require E; D requires F; and E and F
require G. Additional information such as version identifiers
for components is also specified as annotations to the CDG.
We formally describe our model in Section 3.

2. Determine coverage criteria: The above model en-
codes the configuration space for the SUT. For non-trivial
software, this space can be quite large. Developers must de-
termine which part of the space need to be tested for com-
patibility testing. For example, they may decide to test con-
figurations exhaustively, which is often infeasible. Instead,
they may choose more practical criteria that systematically
cover the space. In this paper, we propose a coverage cri-
terion that tests all combinations of each component with
other components on which it directly depends; the defini-
tion and rationale behind this criterion is further explained
in Section 3.

3. Produce test configurations and test plan: Given
the model and coverage criteria, Rachet produces test con-
figurations automatically; each configuration describes a set
of components to build and dependency information used
to build the components. Then, a test plan is synthesized
from the configurations, which specifies the schedule to build
components in the configurations.

4. Execute test plan: Rachet chooses tasks (sub configu-
rations) in the plan and distributes them to multiple execu-
tion nodes according to a plan execution strategy described
by the developers. If the goal is to determine whether a
component can be built without any error on top of other
components on which it depends, then a set of instructions
to build each component should be specified. In addition,
Rachet applies contingency plan to handle task failures dy-
namically. If testing a component in a task fails, it may
prevent testing other components in the plan depending on
it. In this case, Rachet dynamically modifies test plan so as
not to lose test coverage, by creating additional configura-
tions that try to build the components in different ways.

3. CONFIGURATION SPACE MODEL

Components, their versions, inter-component dependen-
cies, and constraints define the configuration space of an
SUT. The ACDM models the configuration space with two
components, a CDG and a set of annotations (Ann). A
CDG has two types of nodes — component nodes and re-
lation nodes; directed edges represent architectural depen-
dencies between them. For example, Figure 1 depicts an
SUT A that requires components B and D or C and D, each
of which depend in turn on other components. As shown
in the figure, inter-component dependencies are captured by
relation nodes that are labeled either “x” or “4”, which are
interpreted respectively as applying a logical AND or XOR
over the relation node’s outgoing edges.



ACDM annotations provide additional information about
components in the CDG. The first set of annotations for
this example is an ordered list of version identifiers for each
component. Each identifier represents a unique version of
the corresponding component. In Figure 1, component B
has three version identifiers: B1, B2 and Bs.

Version-specific constraints often exist between various
components in a system. For example, in Figure 1 com-
ponent C has two versions and it depends on component
E, which has 4 versions. Lets assume that component C’s
version C2 may only be compiled using E’s versions Ez and
higher. This “constraint” is written in first order logic and
appears as (ver(C) = C2) — (ver(E) > Ez). Global con-
straints may be defined over entire configurations. For in-
stance, in the case study in Section 6, we require all compo-
nents depending on a C++ compiler to use the same version
of C++ compiler in any single configuration.

We now formally define the ACDM:

DEFINITION 1. An ACDM is a pair (CDG, Ann), where
CDG is a directed acyclic graph and Ann is a set of anno-
tations.

DEFINITION 2. A CDG (Component Dependency Graph)
1s a pair (V, E), where: (1) V = CUR. C is a set of la-
beled component nodes. Component node labels are mapped
1-1 to components required to test the SUT. R is a set of
relation nodes whose labels come from the set {“” |“+-"}.
Relation nodes are interpreted as applying a logical func-
tion, AND or XOR, across their outgoing edges, and (2) E
is a set of dependency edges, with each edge connecting two
nodes. Valid edges are constrained such that no two compo-
nent nodes are connected by an edge: E = {(u,v)lu € C,v €
R} U {(u,v)lu € R,v € R} U {(u,v)|lu € R,v € C}. This
enables the relationships between components defined solely
by relation nodes.

Furthermore, valid CDGs obey the following properties:
(i) There is a single distinguished component node with no
incoming edges called top. Typically top represents the SUT.
(ii) There is a single distinguished component node with no
outgoing edges called bottom. This component is not depen-
dent on any other component. (The bottom node may rep-
resent an operating system, but that is not required.) (iii)
All other component nodes, v € {C/{top,bottom}}, have
exactly one incoming edge and one outgoing edge.

DEFINITION 3. The annotation set, Ann used in this pa-
per contains two parts: (i) For each component c € C, a set
that defines the range of elements (versions) over which c
may be instantiated. (i1) A set of constraints between compo-
nents and over configurations. The constraints are specified
using boolean operators (V, A, —, =) and relational oper-
ators (<, >, ==, <, >) between component versions; the
version numbers are used to evaluate these expressions.

Except for the bottom node, all other components in a
CDG depend on functionalities provided by other compo-
nents on any path from the node encoding the component to
the bottom node. However, many common build tools (e.g.,
GNU Autoconf and Automake [15]) assume that a successful
build of the component is influenced by other components
on which it directly depends. Hence, they check only for the
functionalities provided by components on which the com-
ponent to build depends, by generating and testing a simple
program during the build process. Definition 4 defines a set
of components on which a component directly depends.
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DEFINITION 4. In a CDG, a component c directly depends
on a set of components if there exists a path that does not
contain any other component node, from the component node
for ¢ to each component node for the components in the set.

From this definition, component A in the previous exam-
ple directly depends on B, C and D although it depends on
functionalities provided by the component B through G. Sim-
ilarly, B and C directly depends on E.

We annotate each component in a CDG with a set of rela-
tions called direct dependencies, between each version of the
component and versions of other components on which it
directly depends. A direct dependency is a tuple t = (cv, d)
where ¢, is a version v of a component c. d is the depen-
dency information used to build ¢, and is a set of versions
of components on which ¢ directly depends. When multiple
relation nodes lie on a path between a component and other
components on which it directly depends, we take into ac-
count the semantics of the nodes by applying set operations
recursively; Union for XOR nodes and Cartesian product for
AND nodes. For example, (A1,{B1,D1}) is one of 15 direct
dependencies for the component A in the previous example.

As mentioned, we restrict the application context for com-
patibility testing to error-free build of components.! In this
context, testing a direct dependency (cv,d) is to examine
the build-compatibility of ¢, with component versions in
d. However, to build ¢, with d, in advance we need to
build each component version in d as specified by one of
the direct dependencies for the component. This leads to
defining a configuration as a partially ordered set of direct
dependencies. In this paper, we totally order a configura-
tion in reverse topological order, starting from the bottom
node. For example, a configuration to test the direct depen-
dency (Alv{Bth}) above is: ((6130)7 (E3v{Gl})7 (F27{G1})7
(Bl,{Eg}), (D17{F2}), (Al,{Bl,Dl})). In the next section, we
describe methods to generate configurations.

4. PRODUCING CONFIGURATIONS

Although the configuration space for a software system
can be tested exhaustively, that may be very expensive for a
large system. For practical considerations, developers must
sample the space. In this section, we describe two methods
to generate configurations to either test the entire space or
to sample the space and cover all direct dependencies.

4.1 Exhaustive-Cover Configurations

The most straightforward way to build-test the range of
configurations in which the SUT is build-compatible is to
build it on the exhaustive set of possible configurations. To
compute an exhaustive configuration set, we start from the
bottom node of the CDG (one that does not depend on any
other components), and for each node type, do the following;:
e Component node: compute new configuration set by ex-
tending each configuration in the configuration set of its
child node (a relation node) with proper direct dependen-
cies of the component. That is, for each direct dependency
(cv,d) of the component, identify configurations from the
configuration set of the child node, where each configura-
tion contains all matched component versions specified in d.

In many Unix-based operating systems, building a compo-
nent commonly includes three steps — configuring, compiling
and deploying the component.
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Figure 2: EX-plan (top) and DD-plan (bottom) for
example model

Then, extend the configurations with (c,,d). For the bot-
tom node, return the bottom component’s versions, each is
paired with the empty set, as it has no dependences.

e AND node: compute all combinations of configurations
taken from each configuration set of its child nodes, then
combine the configurations in each combination. We en-
force two rules implicitly in computing the combinations of
configurations for an AND node. First, only one version for
each component is allowed in a configuration. That is, we
do not allow to combine configurations when each contains
a direct dependency for the component but with different
version. Second, we allow a single way to build a compo-
nent in a configuration. This means that we need to check
whether dependency information in direct dependencies for
a component are same across the configurations to combine.
¢ XOR node: the result set is simply the union of the config-
uration sets of its child nodes.

Even for the simple CDG in the Figure 1, the number of
test configurations in the exhaustive set for component A is
270. Since a CDG for a real application can be more com-
plex and contain many more components, as shown in Fig-
ure 4, the number of configurations in exhaustive cover may
be large. Taking into account the potentially long time re-
quired to build each complete configuration, for many CDGs
it would be infeasible to test all possible configurations.

4.2 Direct Dependency-Cover Configurations

Instead of testing all configurations exhaustively, we pro-
pose an approach to generate a reduced set of test config-
urations, while still maintaining test effectiveness. Our ap-
proach is based on the observation that a successful compo-
nent build is most influenced by the components on which
it directly depends, as described in Definition 4. We now
describe a method to produce a set of configurations where
direct dependencies for all components in a given CDG is
contained in at least one configuration. We say that direct
dependencies contained in a configuration are covered by the
configuration and the information on build-compatibility of
component versions encoded by each direct dependency can
be obtained by testing the configuration.

For a yet-uncovered direct dependency (cy,d), the con-
figuration under construction initially has only one element,
i.e., the direct dependency itself. Next, we need to determine
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how to build component versions in d, since the component
version ¢, must built on top of the component versions. This
is achieved by recursively selecting an appropriate direct de-
pendency for each component version in d where the selected
direct dependency encodes how to build it; the recursion
ends at the bottom node. During the selection process, the
rules explained in the previous section are applied and con-
straint are checked. We apply this selection process for the
component nodes in topological order starting at the top
component, since more direct dependencies may be covered
from multiple direct dependency sets when applied to a di-
rect dependency of components close to the top component
in the CDG, compared to those closer to a bottom.

In earlier work, when multiple direct dependencies were
available for a component version, we selected the first-fit
direct dependency [17]. This made multiple configurations
repeatedly use the same direct dependency for a component
version, although other direct dependencies for the compo-
nent version may also have been covered by the configura-
tions. This increased the number of configurations unneces-
sarily to cover uncovered direct dependencies. In this paper,
we use a heuristic that selects an wuncovered direct depen-
dency first. The example system has 58 direct dependencies;
applying the new heuristic we obtain only 19 configurations
containing 102 components to build; this is much smaller
compared to the 40 configurations containing 165 compo-
nents obtained with first-fit direct dependency selection.

4.3 Test Plan Synthesis

Generated configurations may be tested one at a time by
building each component in each configuration on a machine
according to a build order. However, the total number of
component versions that must be built may be reduced by
utilizing the fact that multiple configurations may contain
identical direct dependency sequence. For example, all con-
figurations contain the same first direct dependency that
decides how to build an operating system if only one version
of operating system is used in the model.

To reduce the number of components to build, we merge
the configurations into a single prefix tree. Initially, the tree
contains only one node, the root of the tree. For each config-
uration, nodes representing direct dependencies in the con-
figuration are in order added to the prefix tree, called a test
plan. For a node m in the tree, we use the notation n.c,
and n.d to specify the component version and dependency
information for the component. Since common prefix are
shared among configurations in the plan, the total number
of component versions to build is less than the sum of the
component versions in the configurations. Figure 2 shows
two test plans, one from the configurations produced ex-
haustively and the other from the configurations that cover
all direct dependencies of the components in the previous
example. An example configuration contained in both plans
are shaded in the figure. The exhaustive test plan contains
270 configurations, consisting of 626 component versions to
build, which is 62% less compared to 1620, the sum of com-
ponent versions in produced configurations. In the next sec-
tion, we describe our strategies to execute a test plan.

S. TEST PLAN EXECUTION

The test plan created by the process described in Section 4
may be executed in several ways. Test plan execution visits
all nodes contained in the plan, and when a node is visited



we test the build compatibility of the direct dependency it
encodes. In this section, we describe three test plan execu-
tion strategies that attempt to maximize both parallelism
and reuse of cached tasks. We also describe how to handle
component build failures during the plan execution.

5.1 Plan Execution Strategies

Executing a test plan means that for each node we must
build ¢, on top of all the component versions contained in
d. However, to test a node n, we need a machine on which
all component versions encoded by n’s ancestor nodes have
been built, since the component versions contained in n.d
may also depend on other lower-level components. There-
fore, the component versions in the sequence of direct de-
pendencies encoded by the nodes in the path from the root
of the plan to the node n must be built before testing the
build compatibility of the direct dependency encoded by n.
We call this sequence the task for the node n.

When we ezecute the task for n, all component versions
in the task must be built in a proper order, respecting all
dependencies. We use a virtual machine (VM) environment,
called VMWare, for the builds so as not to contaminate the
persistent state of a physical test resource (machine). Then,
if the task execution is successful, which means that all com-
ponent versions were built without any error, the modified
machine state has the correct state for the task and the
machine may be reused to execute tasks for n’s descendant
nodes. When we execute those tasks, we need only to build
additional components by reusing the VM state, which is en-
capsulated in the file system of the physical machine hosting
the VM. For all test plan execution algorithms we describe,
we assume that a single test server controls the plan execu-
tion and distributes tasks to multiple test clients. We also
assume that each client (a physical machine) has disk space
available to store VMs (completed tasks) for reuse.

Parallel Depth-First Strategy: The parallel depth-first
strategy is designed to maximize the reuse of locally cached
tasks at each client during the plan execution. When a client
completes executing a task for a node n and subsequently
requests a new task, the server assigns a task according to
following rules, attempting to maximize cached task reuse.

First, if the node n is a non-leaf node in the plan, the task
for one of n’s unassigned child nodes is chosen as the next
task for the client. The client will then reuse the VM state
from its previously executed task, so only have to build one
additional component (the one specified by the last direct
dependency in the new task). This is typically the least
expensive way to execute a new task.

Second, if the node n is a leaf node, tasks already stored in
the cache space of the client are utilized to assign new task.
Starting from the node for the most recently cached task,
the algorithm searches for an unassigned descendant node
in depth-first order. The nodes currently being executed by
other clients, and their subtrees in the plan, are not visited
by the search. In this case, the test client must build the
difference between the assigned task and the reused task.

Finally, if the algorithm cannot find an unassigned node
using the first or second rule, the plan is searched in depth-
first order from the root node. As for the second rule, the
nodes currently being executed, and their subtrees, are not
visited. In this case, to reduce the time to execute the as-
signed task, the test server finds the best cached task for the
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assigned task (i.e. the one with the longest matching prefix),
so the VM for the cached task must be transferred across
the network from the client that produced the cached task,
which can take a significant amount of time (a cached VM
can be large, up to 1GB or more). The difference between
the assigned task and the cached task must then be built.

For the depth-first strategy, the decision to cache a task
that has just been executed is based on the number of chil-
dren its node has in the plan. If the node has two or more
children, the task may be reused to execute tasks for the
children, so the test server requests the client to cache the
task. However, if the node has only one child, the task for
the child node is assigned to the same client by the first rule,
so there is no reason to cache the task.

Since the depth-first strategy tries to utilize locally cached
tasks, the number of locally reused tasks is maximized, min-
imizing the number of tasks that require task transfers be-
tween clients. However, the cost to build the components
in a task will be high if the difference between an assigned
task and a locally cached task is large. In addition, when a
large number of test clients are available and the test plan
does not have many nodes near the root of the plan, many
clients could be idle during the early stage of plan execution,
waiting for enough tasks to become available.

Parallel Breadth-First Strategy: The parallel breadth-
first strategy focuses on increasing task parallelism. This
strategy tries to maximize the number of tasks being exe-
cuted simultaneously, and secondarily tries to maximize the
reuse of locally cached tasks. To assign tasks in breadth-first
order, the server maintains a priority queue of plan nodes
ordered according to their depth in the plan.

At the initialization step, the algorithm initializes the pri-
ority queue by traversing the plan in breadth-first order,
adding nodes to the queue until the number of nodes exceeds
the number of test clients. When a leaf node in the plan is
traversed, it remains in the queue. On the other hand, when
a non-leaf node is traversed, it is removed from the queue
and instead its child nodes are added to the queue. That
is, we increase the number of tasks that can be executed in
parallel by assigning tasks for the child nodes.

When a task is requested by a client, the test server assigns
the first unassigned task in the queue. Then, if a task is
executed by the client successfully, the algorithm locates the
node corresponding to the task in the queue, and appends
the child nodes to the queue. To reduce the time to execute
a task, the test server always finds the best cached task to
initialize the state of the VM to execute the task, although
the cost to transfer the VM across the network may be high.

Unlike the depth-first strategy, for the breadth-first strat-
egy a completed task is cached if its corresponding node in
the plan is a non-leaf node. The rationale behind this choice
is that in many cases the tasks for the child nodes will not
be assigned to the same client. This strategy will keep all
clients busy as long as there are unassigned nodes in the
queue throughout the plan execution. Therefore, we expect
high-level of parallelism. However, we also expect increased
network cost compared to the depth-first strategy, because
of transferring many cached tasks across the network.

Hybrid Strategy: We have described costs and benefits
of the depth-first and breadth-first strategy. Although the
depth-first strategy tries to maximize the locality of reused
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tasks, during the early stage of plan execution it may not
maximize the parallelism that could be obtained by execut-
ing tasks on all available clients. On the other hand, the
breadth-first strategy may achieve high level of parallelism,
but may also increase the network cost to execute tasks.

The hybrid strategy is designed to balance both the lo-
cality of reused tasks and task parallelism throughout plan
execution, by combining the features of both strategies. As
in the breadth-first strategy, a priority queue of plan nodes
is created by traversing the test plan, and is used to in-
crease task parallelism during the early execution stages of
the plan. That is, for the initial task requests from test
clients, tasks for nodes in the queue are assigned to all avail-
able clients immediately at the beginning of plan execution.
To maximize locality for reused tasks, the first and second
rules for the depth-first strategy are subsequently applied to
assign tasks to requesting clients. If both rules fail to find
an unassigned node, the test plan is traversed in breadth-
first order from the root node to find an unassigned node.
This is based on the heuristic that a node closer to the root
node will likely have a larger subtree beneath it than nodes
deeper in the tree, which will lead to more work being made
available for a client reusing locally cached tasks.

5.2 Dynamic Failure Handling

If building a direct dependency encoded by a node n fails,
n.c, could not be built correctly on top of the component
versions contained in n.d. We say that n.c, is incompatible
with n.d, and use the failure information to guide further test
plan execution. A build failure for a direct dependency for
node n also prevents testing of all direct dependencies repre-
sented by the nodes in n’s subtree. This is because we need
a VM on which all direct dependencies of the ancestor nodes
have been built to test those direct dependencies. However,
the failure does not imply failure for all direct dependencies
affected by the failure. In this situation, instead of regarding
the direct dependencies as not able to be tested, we adjust
the test plan dynamically to test the direct dependencies in
alternate ways, if possible, by producing additional config-
urations to test them, and merging the new configurations
into the test plan. This enables the test plan execution al-
gorithms to maximize direct dependency test coverage.

Since one direct dependency can be used in multiple con-
figurations, it can appear as multiple nodes in different bran-
ches of a test plan. If one of the (identical) test plan nodes
fails, we expect the others to also fail, since direct depen-
dency testing assumes that the success of a component build
is mainly determined by the components on which it directly
depends. Thus, the test plan nodes affected by a build fail-
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ure are not confined to the descendant nodes in the subtree
of the failed node, but also include all descendant nodes in
the subtrees of the nodes encoding the same direct depen-
dency. Therefore the contingency planning algorithm must
generate new configurations to cover all the affected direct
dependencies.

To reduce the number of newly generated configurations,
we apply the algorithm described in Section 4.2 for the direct
dependencies represented by the descendant nodes under the
subtrees in a post-order tree traversal. As configurations are
produced for components in the CDG in topological order,
we expect that a direct dependency represented by a node
will be covered while generating configurations for the direct
dependencies represented by its descendant nodes.

6. EMPIRICAL STUDIES

We have developed an automated test infrastructure that
supports the Rachet process, and have performed empiri-
cal studies with two scientific middleware libraries that are
widely used in the high-performance computing community.
In this section, we describe the overall architecture of the
Rachet infrastructure and present results from the studies.

6.1 System Architecture

The Rachet infrastructure is designed in a client/server
architecture, as illustrated in Figure 3, utilizing platform
virtualization technology.

Global Coordinator (GC): The GC is the centralized test
manager that directs overall test progress, interacting with
multiple clients. It first generates configurations that satisfy
the desired coverage criteria (e.g., direct dependencies) and
also produces a test plan from the configurations, using the
algorithms described in Section 4. Then, the GC dynami-
cally controls test plan execution by dispatching tasks and
the ancillary information necessary to execute the tasks to
multiple clients, according to one of the test plan execution
strategies described in Section 5.

The GC contains a testmanager thread and a set of Ichan-
dler threads, one for each client machine. The testmanager is
responsible for creating configurations and a test plan. Dur-
ing test execution, the testmanager satisfies requests from
clients and inserts test results into a database. When a client
first requests a task, the GC creates an Ichandler thread for
the client and that Ichandler is responsible for all communi-
cation with the client.

Local Coordinator (LC): The LC controls task execution
in a test client. One LC runs on each test machine and
interacts with the GC to receive information on the tasks it
must execute and also to report execution results.

As describe previously, task execution in the current Ra-
chet design and implementation means building the compo-
nents in a task, taking into account the dependency infor-
mation needed to build each component. To do the builds,
the LC employs hardware virtualization technology. The
components are built within a virtual machine (VM), which
provides a virtualized hardware layer. This design is ad-
vantageous since the persistent state of the test machine is
never changed, so a large number of tasks can be executed
on a limited number of physical test machines. The Rachet
implementation currently uses VMware Server as its virtual-
ization technology, since it handles virtual machines reliably
and also provides a set of well-defined APIs to control the



VM. A key feature of VMware Server is that the complete
state of a VM is stored as files on the disk of the test ma-
chine, so can be saved and later reused (i.e. the VM can be
stopped and copied, and the original VM and the copy can
be restarted independently).

Virtual Machine Coordinator (VMC): The VMC is
responsible for the actual component build process in a VM.
When a VM is started by the LC, the VMC is automatically
installed in the VM and started by the LC. The VMC then
interacts with the LC to receive the build commands for
the task assigned to the LC. The instructions to build each
component are translated into appropriate shell commands
by the VMC and executed in the VM to build the required
components.

Interactions among GC, LC and VMC: The various
coordinators in the Rachet system interact with each other
to execute a test plan as follows:

1. Prepare test: The GC produces configurations and
builds a test plan. Then, it listens for LC requests.

2. Assign a test case: When a LC requests a new task, the
GC selects a task from the plan based on the desired plan ex-
ecution strategy, also employing ancillary information, such
as the VM provisioning method for the task.

8. Provision a VM: Each LC provisions a VM chosen
to execute the assigned task. If a locally cached VM is to
be reused, the cached VM is uncompressed into a directory.
However, if a VM stored in a remote machine is chosen, the
LC fetches the VM over the network and decompresses it.

4. Establish a communication channel with the VMC': The
LC starts the provisioned VM, places and launches the VMC
in the VM. The VMC automatically connects to the LC and
establishes a communication channel.

5. Build components: The LC sends instructions to the
VMC to build the components contained in the task, and
the VMC translates the instructions into a series of shell
commands and executes them on the VM.

6. Report Results and Cache VM: The LC reports the
test result to the GC. The GC stores the result and uses
it to guide further plan execution. If the task is executed
successfully, and if the GC has requested the LC to cache
the task, the LC requests a unique cache identifier from the
GC and registers the cached task with the GC. The VM is
compressed into a file and stored in the LC’s local cache.

6.2 Subject Systems

We have applied the Rachet process to two widely used
software libraries used to build high-performance computing
applications: InterComm? and PETSc?.

InterComm is a middleware library that supports cou-
pled scientific simulations by redistributing data in parallel
between data structures managed by multiple parallel pro-
grams [12]. To provide this functionality, InterComm relies
on several components including multiple C, C++ and For-
tran compilers, parallel data communication libraries, a pro-
cess management library and a structured data management
library. Each component has multiple versions and there are
complex dependencies and constraints between the compo-
nents and their versions.

2 hittp://www. cs.umd. edu/projects/hpsl/chaos/ResearchAreas
ic

3 hitp: / /www-uniz.mcs.anl.gov/petsc/petsc-as

Figure 4: CDG for InterComm and PETSc

PETSc (Portable, Extensible Toolkit for Scientific com-
putation) [2] is a collection of data structures and inter-
faces used to develop scalable high-end scientific applica-
tions. Similar to InterComm, PETSc is designed to work on
many Unix-based operating systems and depends on multi-
ple compilers and parallel data communication libraries to
provide interfaces and implementations for serial and paral-
lel applications. To enhance the performance of application
developed using PETSc, PETSc also relies on third-party
numerical libraries such as BLAS [5] and LAPACK [1], and
uses Python as deployment driver.

6.3 Experimental Setup

To perform compatibility testing for the subject systems,
we first modeled component dependencies, working directly
with the InterComm developers and carefully inspecting doc-
umentation provided by the PETSc developers. In Figure 4,
we show the component dependencies captured for Inter-
Comm and PETSc in a single CDG. The nodes specific to
PETSc are shaded in the figure. Version annotations for the
components used in the CDG are depicted in Table 1.

In addition to component versions, following constraints
are specified and must be satisfied by each configuration.
First, if multiple GNU compilers are used (gcr, gxx, gf and
gf77) in a configuration, they must have the same version
identifier. Second, only a single MPI component (i.e., lam
or mch) can be used in a configuration. Third, only one
C++ compiler, and only one of its versions can be used in a
configuration. Fourth, if both a C and a C++ compiler are
used in a configuration, they must be developed by the same
vendor. For PETSc, we applied one additional constraint:
compilers from the same vendor must be used to build the
PETSc or MPI component. With these constraints, we ob-
tained 302 and 160 direct dependencies for the components
contained in the InterComm and PETSc models.



Comp. Version Description
petsc 2.2.0 PETSc, the SUT
ic 1.5 InterComm, the SUT
python | 2.3.6, 2.5.1 Dynamic OOP language
blas 1.0 Basic linear algebra subprograms
lapack 2.0, 3.1.1 A library for linear algebra operations
ap 0.7.9 High-level array management library
pvm 3.2.6, 3.3.11, | Parallel data communication
3.4.5 component
lam 6.5.9, 7.0.6, A library for MPI (Message Passing
7.1.3 Interface) standard
mch 1.2.7 A library for MPI
gf 4.0.3, 4.1.1 GNU Fortran 95 compiler
gf77 3.3.6, 3.4.6 GNU Fortran 77 compiler
pf 6.2 PGI Fortran compiler
gxXX 3.3.6, 3.4.6, GNU C++ compiler
4.0.3, 4.1.1
pPxx 6.2 PGI C++4 compiler
mpfr 2.2.0 A C library for multiple-precision
floating-point number computations
gmp 4.2.1 A library for arbitrary precision
arithmetic computation
pc 6.2 PGI C compiler
ger 3.3.6, 3.4.6, GNU C compiler
4.0.3, 4.1.1
fc 4.0 Fedora Core Linux operating system
Table 1: Component Version Annotations for Inter-

Comm and PETSc

For each subject system, we generated two test plans. Ta-
ble 2 summarizes the number of produced configurations,
and the number of components contained in those config-
urations and in the test plan. The first test plan, called
EX-plan, was generated using the exhaustive coverage cri-
teria, and the other test plan, called DD-plan, only covers
all direct dependencies identified for the components in a
model. For example, the PETSc EX-plan has 1,184 configu-
rations, containing 14,336 components to be built. However,
the number of components in the final test plan is only 3,493,
since configurations are merged to produce the test plan.

We first conducted experiments to measure the costs and
benefits of DD-cover compared to EX-cover, and also exam-
ined the behavior of Rachet as the overall system scales. To
do that, we executed both the EX-plan and DD-plans with
4, 8, 16 and 32 client machines, using the parallel depth-first
plan execution strategy. To compare the various test plan
execution strategies, we also executed the DD-plans for both
subject systems using the parallel breadth-first and hybrid
strategies with the same range of client machines.

For all experiments, we ran the GC on a machine with
Pentium 4 2.4GHz CPU and 512MB memory, running Red
Hat Linux 2.4.21-53.EL, all LCs run on Pentium 4 2.8GHz
Dual-CPU machines with 1GB memory, all running Red Hat
Enterprise Linux version 2.6.9-11. All machines were con-
nected via Fast Ethernet. One LC runs on each machine,
and each LC runs one VM at a time to execute tasks. The
number of entries in the VM cache for each LC is set to 8,
because in previous work [17] we observed little benefit from
more cache entries for the InterComm example, and also be-
cause test plans for PETSc are smaller than test plans for In-
terComm in this scenario. In addition to these experiments
on the real system, we ran simulations using our event-based
simulator that mimics the behavior of the key Rachet com-
ponents, described in Section 6.1, to better understand the
performance characteristics of the Rachet on larger sets of
resources than we were able to use for the real experiment
(both because of limited resource availability and the time
required to perform experiments).
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System Type Cfgs | Comp.sgs | Comppian
InterComm | Ex-Cover 3552 39840 9919
InterComm | DD-Cover 158 1642 677
PETSc Ex-Cover 1184 14336 3493
PETSc DD-Cover 90 913 309

Table 2: Test Plan Statistics

6.4 Cost-benefit Assessment

As shown in Table 2, the EX-plans for both systems have
a large number of configurations compared to the DD-plans.
Since it takes up to 3 hours to build a configuration for ei-
ther InterComm or PETSc, it requires about 10,600 and
470 CPU hours to execute the InterComm EX-plan or DD-
plan, respectively, and 3,500 or 270 CPU hours for the corre-
sponding PETSc plans. With a naive plan execution strat-
egy where each configuration is always built from scratch,
with 8 machines it would still take 1,325 or 438 hours, re-
spectively for the EX-plans with perfect speedup, and 59 or
34 hours for the DD-plans. However, since our plan exe-
cution strategies reuse build effort across configurations, the
plan execution times for both plans are expected to be much
smaller than times with the naive execution strategy. In our
experiments, execution times were further shortened due to
many build failures.

The cost savings obtained by executing the DD-plans are
shown in Figure 5. With 8 machines, the InterComm EX-
plan took about 29 hours with the parallel depth-first strat-
egy, during which 461 of the 9,919 component builds (the
number of nodes in the plan) were successful and 687 failed.
All other builds could not be tested due to observed fail-
ures. For the PETSc EX-plan, about 29 hours were needed,
during which we observed 724 build successes and 407 build
failures for the 3,493 components in the plan, with the rest
not able to be tested. Compared to the EX-plans, the Inter-
Comm DD-plan took 12 hours with 275 successful compo-
nent builds, and the PETSc DD-plan took 10 hours with 216
successful builds. In our experiments, the execution times
for the EX-plans took only 2.5 — 3 times more than those
for the DD-plans, because many build failures occurred dur-
ing plan execution, especially for the components close to
the bottom node in the CDGs. Note that the difference
in execution times between the EX-plans and DD-plans de-
creases as more clients are used, since the Rachet system
always tries to best utilize the machines for plan execution
and therefore a larger plan can benefit more when many
clients are available.

The results show that Rachet was able to achieve large
performance benefits by testing only configurations cover-
ing direct dependencies, and also was able to execute the
test plans efficiently using the depth-first execution strat-
egy. However, we also need to examine the potential loss
of test effectiveness from using the the DD-plan, that only
samples a subset of the configurations that are tested by the
EX-plan. To do that, for all component build failures iden-
tified by the EX-plan, we examined the component and its
version that failed to build, and its dependency information.
We then checked whether building the same component ver-
sion failed in the same context in the DD-plan.

We found that each component build failure in the In-
terComm EX-plan exactly maps to a corresponding failure
in the DD-Plan. However, for the PETSc EX-plan, we ob-
served 8 instances where a PETSc component build failure
or success depended on the exact compilers used to build
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Figure 5: Actual plan execution times for Inter-
Comm and PETSc EX-plans and DD-plans using
depth-first plan execution strategy. The DD-plan
takes much less testing time, and Rachet scales well
as the number of available machines increases.

components on which the PETSc component depends (e.g.,
when Rachet tries to build a version of the PETSc compo-
nent with the GNU compilers on a VM, the MPICH com-
ponent might have been previously built on the machine
with the GNU compilers or with the PGI compilers.) Un-
fortunately, all those instances were reported as successful
builds during the DD-plan execution. We observed that
this happened because there were missing constraints in the
model. For these instances, the missing constraint was that
compilers from the same vendor must be used to build the
components on which the PETSc component directly de-
pends. PETSc developers might have simply assumed this
constraint. However, users do not always have complete in-
formation on the compilers used to build those components
on their system, especially if the system is managed by a
separate system administrator. Another observation for the
PETSc component is that it was never able to be built suc-
cessfully using the LAM MPI component. It seems that
some undocumented method is required to build PETSc us-
ing that MPI implementation.

For InterComm, due to many build failures of the com-
ponents in the model, we were only able to test build com-
patibility for 7 direct dependencies out of its 156 direct de-
pendencies for the InterComm component. However, they
were not the ones on which InterComm has been tested be-
fore. The results show that InterComm can be successfully
built with the combinations of PGI C/C++ compiler version
6.2, all versions of the GNU Fortran77 or GNU Fortran90
compilers, and MPICH version 1.2.7. This is a larger set of
components than what the InterComm developers had pre-
viously tested, as documented on the InterComm distribu-
tion web page. The direct dependency with GNU C/C++
compiler version 3.3.6 and with the PGI Fortran compiler
version 6.2 failed to build. The failure occurred because the
InterComm configure process reported a problem in linking
to Fortran libraries from C code. This result is interest-
ing since the InterComm web page claims that InterComm
was successfully built with GNU C/C++ version 3.2.3 and
PGI Fortran version 6.0. We reported all the results to the
InterComm developers and a bug fix for the failed direct
dependency is being investigated.
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Figure 6: InterComm and PETSc DD-plan execu-
tion times, with different plan execution strategies.
Breadth-first shows poor performance on few ma-
chines. Depth-first and hybrid show similar perfor-
mance due to many build failures.

6.5 Comparing Plan Execution Strategies

As seen in Figure 5, Rachet scales very well as the number
of machines used to run Rachet clients increases from 4 to
32. When we double the number of available machines, the
execution time decreases by almost half, up to 16 machines.
This means that Rachet can fully utilize additional resources
to maximize the number of tasks executed in parallel. How-
ever, Figure 5 shows results obtained by executing the DD
and EX plans for the subject systems using only the parallel
depth-first strategy. To analyze the performance behavior
of the different plan execution strategies, we also executed
the DD-plans for InterComm and PETSc using the other
strategies.

Figure 6 shows the combined results from both actual
and simulated plan executions with different strategies. For
both systems, we ran actual experiments with 4, 8, 16 and
32 clients. For larger numbers of clients, we ran simula-
tions to compute expected plan execution times. The data
used for the simulations, including the component build suc-
cesses/failures, the average times needed to manage VMs
and to build components, were all obtained from real exper-
iments. The simulated times were, on average, about 18%
less than the actual times for up to 32 clients.

We found that the breadth-first strategy performed worst
for most runs. As described before, with the breadth-first
strategy, Rachet tries to utilize as many machines as pos-
sible throughout the plan execution, and always reuses the
best cached virtual machine to execute each task. How-
ever, the time to transfer the VMs across the network was
a performance bottleneck, even though the clients were con-
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Figure 7: InterComm and PETSc EX-plan simu-
lated execution times with hybrid execution strat-
egy, and DD-plan with all strategies, assuming no
build failure. The hybrid strategy achieves good
task reuse locality and task parallelism.

nected via Fast Ethernet?. Breadth-first performed espe-
cially poorly with 4 machines compared to the other strate-
gies, because in many instances the best cached task for
executing a new task had already been replaced in the VM
cache before it was needed, and as a result all components
in the task had to be built. For our experiments and simula-
tions, we used a Least-Recently-Used (LRU) cache replace-
ment policy to manage the VM cache on each machine. We
also experimented with a First-In-First-Out (FIFO) cache
replacement policy, but did not see a significant performance
difference compared to LRU.

Many build failures occurred during plan executions are
responsible for the similar performance between the hybrid
and depth-first strategy in Figure 6. With a small number
of clients, the depth-first strategy can maximize the number
of tasks executing in parallel shortly after starting the plan
execution, and with many clients, build failures negate the
benefits of the hybrid strategy achieved by maximizing the
number of tasks started early in the plan execution.

The second observation is that little benefit is achieved
with more than 32 machines for all strategies, since many
machines remained idle waiting to be assigned tasks, since
all available tasks were already assigned to other machines.
Moreover, the execution times may even increase slightly
with a large number of machines, because the local cache
hit rate drops when tasks are spread across the machines,
and also because additional time is needed to transfer cached
tasks across the network, negating the benefit of greater par-

4The percentage of VM reuse to execute the InterComm and
PETSc DD-Plans was on average 53% for the breadth-first
and 80% for the depth-first and hybrid strategies.
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allel task execution. In spite of these overheads, we expect
that the hybrid strategy will achieve the best performance as
we increase the number of machines, if a test plan has fewer
failures, and therefore more work to do with task reuse.

For our final experiment, we examined how Rachet be-
haves as the number of successfully built components grows.
As previously described, many direct dependencies for com-
ponents could not be tested in the earlier experiments, be-
cause at least one of the components on which it directly
depends could not be built successfully. If developers were
to fix some of these problems, many more direct dependen-
cies would be testable, greatly increasing the effective size
of the test plan. We ran simulations to examine this sce-
nario and measured the benefit of testing only direct depen-
dencies, under the strong assumption that no build failures
occurred during plan execution. Figure 7 shows expected
execution times for the test plans for the subject systems.
Both the EX-plan and the DD-plan are executed with the
hybrid strategy, and we also applied the other strategies for
the DD-plan. We observe that the hybrid strategy balances
well both task reuse locality and task parallelism across all
numbers of clients. The hybrid strategy is competitive with
the depth-first strategy for small numbers of clients, because
it tries to maximize reuse of locally cached tasks. And the
hybrid strategy also achieves good performance for a large
number of clients, since the extra costs for caching tasks and
reusing VMs during the early parts of test plan execution are
avoided, compared to the depth-first strategy. Although the
breadth-first strategy shows good performance with 32 or
more machines, such performance relies on the availability
of a fast network connecting all client machines.

7. RELATED WORK

GridUnit/InGrid [6] is a framework that enables distribut-
ing JUnit software tests for distributed applications onto
multiple machines. The software and test suites for the soft-
ware are transmitted to a Grid of heterogeneous machines
for execution. Deployment and configuration are handled by
a system called SmartFrog [11], which uses model-based ap-
proaches to describe software configurations. The work has
a similar goal to ours, but differs in several ways. In particu-
lar, it does not support sharing across machines; all tests are
independent. Also, the system does not analyze and sample
the configuration space, but simply runs all tests given to it.

The Skoll [9] and BuildFarm [10] projects use heteroge-
neous and distributed resource to build and/or execute soft-
ware across large configuration spaces. One way in which
these efforts differs from ours is that they focus on configura-
tion spaces as defined by traditional compile- and run-time
options. Our approach is focused on configuration spaces
defined more by architectural concerns.

Techniques to test highly configurable components have
been extended to testing of software product-lines. Cohen
et al. [3] apply combinatorial interaction testing methods
to define test configurations that achieve a desired level of
coverage, and identify challenges to scaling such methods to
large, complex software product lines. Although not directly
related to our idea of sampling configuration spaces, they
too illustrate how software product line modeling notations
can be mapped onto an underlying relational model that
captures variability in the feasible product line instances.
They use the relational model as the basis for defining a
family of coverage criteria for product-line testing.



Our work is broadly related to component installation
managers that deal with dependencies between components.
Opium [14] and EDOS [8] are two example projects. Opium
makes sure a component can be installed on a client machine,
while EDOS checks for conflicting component requirements
at the distribution server. Both projects assume that com-
ponent dependencies are correctly specified by the compo-
nent distributors. Rachet differs in that we test component
compatibility over a large range of configurations in which
the components may be installed.

8. CONCLUSIONS AND FUTURE WORK

We have presented Rachet, a process, algorithms and in-
frastructure to perform compatibility testing. Our work
makes several novel contributions: a formal model for de-
scribing the configuration space of software systems; algo-
rithms for computing a set of configurations and a test plan
that test all direct dependencies for components in the model;
test plan execution strategies focused on minimizing plan ex-
ecution time, while allowing contingency management that
improves test coverage over static approaches if and when
an attempt to build a component fails; and automated in-
frastructure that executes a test plan in parallel on a set of
machines, distributing tasks to best utilize resources.

The results from our empirical studies on two large soft-
ware systems demonstrate that Rachet can detect incompat-
ibilities between components rapidly and effectively without
compromising the test quality, compared to the exhaustive
approach. We also examined the tradeoffs between plan exe-
cution strategies on different system scales, by running both
actual experiments and simulations. The results suggest
that the hybrid strategy can achieve the best performance
by attaining high locality to optimize task reuse and high
task parallelism, for both small and large system scales.

Based on these results, we plan to work on several issues.
First, we will further optimize the plan execution strate-
gies. Information on the expected cost to execute tasks
and benefits of reusing cached tasks might help Rachet to
make better decision for task assignment and reuse. Sec-
ond, we will explore new types of coverage criteria that pro-
duce fewer configurations, but still provide effective cover-
age. Third, we will investigate adding cost models into plan
execution strategies to prioritize the order in which tasks
are distributed so as to maximize the number of direct de-
pendencies for the SUT tested within a fixed time period.
Fourth, for components distributed using popular packag-
ing methods (e.g., Autoconf/Automake), we plan to explore
ways to extract dependencies automatically. Finally, we will
extend our work to include functional and performance test-
ing for a software system.
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