GUI Interaction Testing: Incorporating Event
Context

Xun Yuan, Member, IEEE, Myra B. Cohen, Member, IEEE, and Atif M Memon, Member, IEEE

Abstract—Graphical user interfaces (GUIs), due to their event driven nature, present an enormous and potentially unbounded way for
users to interact with software. During testing it is important to “adequately cover” this interaction space. In this paper, we develop a
new family of coverage criteria for GUI testing grounded in combinatorial interaction testing. The key motivation of using combinatorial
techniques is that they enable us to incorporate “context” into the criteria in terms of event combinations, sequence length, and by
including all possible positions for each event. Our new criteria range in both efficiency (measured by the size of the test suite) and
effectiveness (the ability of the test suites to detect faults). In a case study on eight applications, we automatically generate test
cases and systematically explore the impact of context, as captured by our new criteria. Our study shows that by increasing the event
combinations tested and by controlling the relative positions of events defined by the new criteria, we can detect a large number of
faults that were undetectable by earlier techniques.

Index Terms—GUI testing, automated testing, model-based testing, combinatorial interaction testing, GUITAR testing system.

O

1 INTRODUCTION based testing [9], [10]. In this paper we restrict our stufly o

. - . . event context to GUIs, but believe that our techniques may be
An important characteristic of graphical user interfadgsl(s) relevant to these other domains.

is that their behavior is tightly integrated with the con- We use the termGUI testingto mean that a GUI-based
text of_the|r usage. As users invoke seque_ncesevzxénts software application is tested solely by performing segesn
(e.g, ClickonCancelButtoniTypeInTexton GUI widgets(e.g, of events on GUI widgets; and the correctness of the software

Canc(;al EEUt .t OIrI]’ Texttr]Box), thtg un?erlylngz hsoft(\j/\llare "€ is determined by examining only the state of the GUI widgets.
spon _s(y_plca y Via the execution of avent handier €.g. Although this type of testing interacts only with the GUI
an ActionListener) in one of several ways. This may 'nCIUdejﬁterface, the types of faults uncovered are varied. Inmece

change to the software state, which may impact the executwgrk’ Brookset al. [11] characterized thousands of real faults

of subsequefnt even(;s. Hencet, m |texrtlleﬁtabllshed tby the detected via GUI testing and showed that a large proportion
sequence of preceding events, in wWhich an even eXeCUlSaults detected are in the underlying business logic ef th
may have an impact ohow it executes. As Mathur notes

17 th : | tion bet s i ft alpplication, rather than in the GUI code itself.
[1], there is a close connection between events in a softwal “The following example, obtained from our analysis of the

system and its states. This context-sensitive and stmdb_aJava open source prograft,eeM nd [12], helps to illustrate
execution behavior of GUI events creates problems fomgsti some real context related issues in a fielded GUI applicalion
each event needs to be tested in multiple contexts. Curr%g program there are four events we will cidh, s, cs, e}

model-based GUI testing techniques either test only a $Ubﬁ?at correspond toSetNodeToCloydNewChildNode New-

of event sequences by restricting the sequence to length : : :
or length three [2], [3] or use a random method [4], r(’jlth%'a({}entNodeUndo}. The execution of either of the following

ih ¢ i o test | > -event test sequenceses, es, e3> OF <eg,eq,es3> throws
an a systematc one, 1o test longer sequences [21, meané'ﬁgArraylndexOutOfBoundexception that should have been
that they can only consider a limited context.

found and fixed during testing. There are several intergstin

IThe problerz]m of everllt <|:ontex]:[and S(éft_ware teﬂsvt\;ng IS al%ints to note. First, the combinatione,, e3> triggers the
relevant to the general class of event-driven software (ED ult only whene; provides contextife., a cloud node) for

[5] (sometimes termed as reactive software [6]-[8]), ofalhi 5 14 happen. Hence, theder of the sequence of events is

GUls are a sub-class, as well as to any testing techniqie, 1anti e if we test<es,, es, 1>, the fault is not detected.

that generates sequence-based test cases, such as in Staé?e'cond, there is a difference between whether or not the

events are tested consecutively. White, eo, e3> triggers
e X. Yuan has completed her Ph.D. and is currenti$aftware Engineer in the fault, insertinge, at strategic points in the sequence,

Testat Google Kirkland.
E-mail: xyuan@cs.umd.edu e.g, <eip,es,eq,e3> causes the fault to go undetected. In

e M. B. Cohen is with the Department of Computer Science anihgegng, this example, having event, interrupt this sequence masks

Unive_qsity Of(gebraskla -d Lincoln, Lincoln, NE USA. the fault; however, sometimes such an insertion may cause a

E-mail: myra@cse.uni.eau H

e A. M Memon is with the Department of Computer Science, Usityeof preVIOUSW undetected fault to be eXposed' S_uppose We_ had
Maryland, College Park, MD 20742. used shorter (length two) sequences for testing, (somstime
E-mail: atif@cs.umd.edu called smoke test§3]). If we test <es, e3> the fault will be

missed. But if we test this sub-sequence within a sequence of

events greater than length two, then we still have the pitiggib that the CIT based technique was able to detect previously-
of detecting this fault becausees, 1, e3> contains the added undetected faults at a reasonable cost.
context ofe;. In this paper we explore these ideas more thoroughly. We
Finally the absolute position of the event within the sepresent a family of context-aware GUI interaction testing
quence affects fault detection. If the event sequeneg es> Criteria that use abstract event combinations, consider se
begins the test case (as the first two events of this sequesrece)juence length, and all possible positions of events witazhe
have no chance of detecting it. However, if it appears somgequence. We begin with a new model for events, that is an
where later, then a sequence such<as,...,es, e3> may abstraction of the EFG, system interaction event S@IES).
detect this fault as well (unless."” containse, immediately We then use key concepts from CIT [16], [17] to help describe
aftere;, with no subsequent,). Similar test sequence specificour new criteria. Our motivation for using CIT as a starting
faults have been highlighted elsewhere [2]. point is that the coverage of a set of sequence-based test cas
One method of modeling a GUI for testing creates a repréan be described and computed in terms of the 2-, 3-, 4-, or
sentation of events within windows (or components) called 4-way relationships that are maintained between GUI events
event-flow-grap{EFG). Much like how a control-flow graphin all possible combinations aflocations in the sequences.
(CFG) encodes all possible execution paths in a program, @Hr new GUI model, SIES, enables us to generate test cases
EFG representall possible sequences of evetist can be usingcovering arrayq17] (see Section 2). We note, however,
executed on the GUI. Coverage criteria based on the Efi@t the strict definition of CIT may be unnecessary for GUI
have provided a notion of coverage of a GUI's event spat@sting and explore variations that are more cost effechive
for functional correctness [13]. However, these criteiaer that provide less coverage. We define a family of criteridiwit
sequences of events bounded by a specific length, which ¥@g&ying degrees of GUI interaction coverage.
essentially sub-paths through an EFG; they have the flavoWe then embark on the first comprehensive study of event
of path coverage[14] in the traditional CFG sense. It isinteraction coverage that considers context of eventsimith
usually only possible to satisfy these criteria fength two test sequences. We present a large case study on eight well-
event sequence coveragecause the number of sub-pathgtudied applications to evaluate the effectiveness oftttiisria
grows exponentially with length. Hence, these criteriajsas On fault detection and test suite size.
the case with CFG path coverage, are useful from a theoreticl he results of our study show that by increasing event com-
perspective; they have limited practical significance. bination strength and controlling starting and ending {pmss
Since there are a large number of events that do not inter@E€Vents, our test cases are able to detect a large number of
with the business logic of the GUI application, such as tho&ults, not detected by exhaustive test suites of shoe.t&sts
responsible for opening and closing windows, a refinemefgrease is directly reflected in increased percentagegesfte
of the EFG was developed called ament-interaction graph Strength coverage in our new criteria. Moreover, although t
(EIG) [2]. In an EIG events are modeled that do not pertafffronger of our new criteria require larger suites than the
to the structural nature of the GUI (opening, closing windpwWeaker criteria, these suites also detect additionaldaililhe
etc.) but that, instead, interact with the underlying agtlon, SPecific contributions of this work include:
called system interaction events [2]. We refer to testintyon « New coverage criteria that consider event combination
these events a8UI interaction testing strength, sequence length, and all possible starting and
These observations motivate a more complete examination €ending positions for each event.
of context-informed interaction testing in GUIs. To incorpte ~ « An abstraction of the stateful GUI domain that allows us

context we must first address the following limitations ofth ~ to recast the GUI test-case generation problem as one of
current techniques. combinatorial interaction testing.

1) We lack GUI modeling methods that abstract the system® Evaluation qf the neyv criteria via a large case study.
interaction events in such a way that we can captureThe next section provides related work on test sequences,
context in long event sequences. some background on GUI testing, and an overview of combi-

2) We lack a systematic exploration of the impact ghatorial interaction testing. Section 3 describes the néw C
context-aware GUI interaction testing on fault detectioff@sed adequacy criteria. Sections 4 through 6 present the

3) We lack test adequacy criteria that sufficiently captudesign of the case study, its results, and limitations. lijina
this new model of event sequences and that considegction 7 concludes with a discussion of future work.

(i) event positions within test cases, (ii) whether certain
events are consecutive or not, and (iii) test case length. BACKGROUND AND RELATED WORK

In a recent short paper [15], we explored ideas fro primary problem for GUI testing is that the length of the
combinatorial interaction testindor CIT) [16], to study a event sequence invoked by the user is often unbounded. There
new automated technique to generate long test cases for Galis an enormous number of possible permutations of these
systematically sampled at a particular coverage stremgtare events which in turn means the context for testing is very
a higherstrengthindicates that we are systematically testingarge; testing all possible sequences a user may invoke is
more unique combinations of events. To facilitate this weot possible. Instead, current GUI testing attempts toedriv
developed a new abstraction of GUI system-interactiontsverthe software into different states by generating sequethags
A preliminary feasibility study on one application showedepresent a sample of the entire state space.

Suppose, for example, that a user can invoke any of tbascusses prior work on GUI testing and then casts prior work
following events on a drawing canvas in any ordécopy, on combinatorial interaction testing in GUI terms.
paste resize rotate9Q color, erasg. The sequencerotate90,
color, copy, paste may behave differently than the sequenc 1 GUI Testin
<rotate90, color, paste, copybecause execution of the evenf” 9
handler code forcopy and paste may differ, e.g, different A large body of research on software testing for GUIs exists
values of variables may be read/written, different braschgl3], [25]-[31] and many GUI testing techniques have been
or paths may be executed. This relatively small set of everfteoposed; some have been implemented as tools and adopted
leads to 36 unique length-two sequences, over 7,500 unidue practitioners. All of these techniques automate some as-
length-five sequences, and more than 60 million unique kengpect(s) of GUI testing including model creation (for model-
ten sequences. During the execution of these sequences,b@ged testing), test-case generation, test oracle angdtist
software may, in principle, transition through millions ofexecution, and regression testing. Although the natureyged
different states. of test cases may vary with different techniques, all of them
Recent research has demonstrated that (1) GUI eveexplore the GUI's state space via sequences of GUI events.
interact in complex ways; a GUI's response to an eventSemi-automated unit testing tools suchJ&CUnit, Abbot
may vary depending on the context established by precedifgunderandJemmy Modul¢32] are used to manually create
events and their execution order [2], (2) GUI-event coveraginit GUI test cases, which are then automatically executed.
is statistically related to the likelihood of detecting teém Assertions are inserted in the test cases to determine @heth
kinds of faults [18], (3) long test sequences are able tocletéhe classes/methods in the unit under test function cdyrect
faults missed by short ones, even when the latter are systdvtere advanced tools called capture/replay tools “captare”
atically generated [19], and (4) events that interact diyec user session as a test case, which can later be “replayed”
with the underlying program business logic, as opposed adtomatically on the GUI [33]. Again, test creation is manua
opening/closing menus/windows, are more likely to triggeand the tools facilitate only the execution of test cases. Jdrt
faults [2]. This suggests that we need systematic coveragfethe GUI state space explored by these test cases depends
criteria for GUI testing that considers these issues. largely on the experience and knowledge of the testers and th
There has been no prior work (other than in [15]) defininguality of the user sessions.
coverage criteria for GUI test sequences based on combinaModel-based techniques have been used to automate certain
torial interaction testing. However, several researchierge aspects of GUI testing. For example, manually creatide
developed and studied criteria for test sequences in otimeachinemodels [25], [27] have been used to generate test
domains, although context has not been their explicit faonus cases. The nature and fault-detection effectiveness @frgead
terms of event permutations and positions. Dangtlal. [20] test cases depend largely on the definition of “GUI states.”
define and compare a number of coverage criteria, for obje€ther work on GUI testing has focused graph models to
oriented software, based on method sequencing constramisimize manual work. The most successful graph models that
for a class. The constraints impose restrictions on methbeve been used for GUI test-case generation include EFGs and
behaviors and are derived from specifications of a classir ThEIGs [3]. The nodes in these graphs represent GUI events;
goal is to execute sequences of instance methods that @glges represent different types of relationships betweéns p
obtained from the sequencing constraints and evaluate thafi events.
results for correctness. Similarly, Faroetal. [21] develop ~ An EFG models all possible event sequences that may be
new coverage criteria based on colored Petri net models amecuted on a GUI. It is a directed graph that contains nodes
used them for automatic generation of test sequences. Tliege for each event in the GUI) and edges that represent
convert UML 2.0 activity diagrams, which are a behaviora relationship between events. An edge from nedeto
type of UML diagram, into a colored Petri net. They defineaode n, means that the event represented /by may be
two types of structural coverage criteria for activity-gliam performedmmediately aftethe event represented hy.. This
based models, namely sequential and concurrent coverageelationship is calledf ol | ows. Note that a state-machine
Several other researchers have relied on existing convemadel that is equivalent to this graph can also be constluete
tional criteria for test sequences. For example, Inkumsiahthe state would capture the possible events that can betexiecu
al. [22] use branch coverage to evaluate test cases, whaf the GUI at any instant; transitions cause state changes
are method sequences for object-oriented programs. Siynilawhenever the number and type of available events change.
Gallagher and Offutt [23] use classical graph coverageriait The EFG is represented by two sets: (1) a set of nddes
on data flow graphs for integration testing of object-omeht representing events in the GUI and (2) aEeif ordered pairs
software that uses components that are developed by differé,, e,), where{e,, e, } C N, representing the directed edges
vendors, in different languages, where the implementationthe EFG;(e,, e,) € E iff ¢, f ol | ows e,. An important
sources are not all available. Gargantnial. [24] use sim- property of a GUI's EFG is that it can be constructed semi-
ilar graph criteria on abstract-state machines to evaltiee automatically using a reverse engineering technique dalle
adequacy of test cases generated from a model checker. GUI Ripping[3]. A GUI Ripperautomatically traverses a GUI
The work presented in this paper is unique in that iinder test and extracts the hierarchical structure of thé GU
builds upon the foundation laid by combinatorial interanti and events that may be performed on the GUI. The result of
testing [16], and applies this to GUI testing. This sectiastfi this process is the EFG.

Events{ClearCanvas, DrawCircle, Refresh}
EIG nodes, on the other hand, do not represent events to

. . CoveringArray : CA(9;2,4,3)
open or close menus, or open windows. The result is a more

. ClearCanvas| ClearCanvas | ClearCanvas| ClearCanvas
compact, and hence more efﬂqent, GUI model. Ap EFG can CloarCanvasl Refresh Refresh | DrawCircle
be automatically transformed into an EIG by using graph- ClearCanvas| DrawCircle | DrawCircle | Refresh
rewriting rules (details presented in [2]). DrawCircle | ClearCanvas | Refresh | Refresh

Figure 1 presents a GUI that consists of four evem, DrawCircle | DrawCircle | ClearCanvas| DrawCircle
Copy, PasteandEdit. Figure 1(b) shows the GUI's EFG; the DrawCircle | Refresh DrawCircle | ClearCanvas
four nodes represent the four events; the edges represent th Refresh | ClearCanvas | DrawCircle | DrawCircle

. . . . Refresh Refresh ClearCanvas| Refresh
f ol | ows relationships. For example, in this EFG, the event 4
Refresh DrawCircle Refresh ClearCanvas

Copyf ol | ows Edit, represented by a directed edge from the

node labelecEdit to Copy.

1.<ClearCanvas, ClearCanvas>|
2.<ClearCanvas, DrawCircle>

. . LN 3.<ClearCanvas, Refresh>
@ @ @ @ 4.<DrawCircle, DrawCircle>
5.<DrawCircle, Refresh>
\ ' . / 6.<DrawCircle, ClearCanvas>
7.<Refresh, Refresh>
‘ @ 8.<Refresh, ClearCanvas>
' " 9.<Refresh, DrawCircle>
(b) (©)

Fig. 2. Covering Array and Smoke Tests

(@)
Fig. 1. (a) A Simple GUI, (b) its EFG, and (c) EIG.

generate long event sequences. Although we did not have
a notion of test adequacy, our test cases were useful — a
feasibility study on one subject application showed that th
new technique was able to detect faults that were previously
fundetected. Our current work formalizes the notion of using
combinatorial interaction testing by defining adequactecia

that capture context.

Figure 1(c) shows the corresponding EIG. Note that the El
does not contain th&dit event. In fact, the graph-rewriting
rule used to obtain this EIG was to (1) del&dit because it
is a menu-open event, (2) for all remaining eveniseplace
each edgée,, Edit) with edge(e,, e,)) for each occurrence o
edge(Edit, e,), and (3) for alle,, delete all edgesEdit, e,)
and store the mapping:;, — (Edit,e,)” for use during test
execution. The GUI's EIG is fully connected with three nodes
representing the three events. 2.2 Combinatorial Interaction Testing

The basic motivation of using a graph model to represefife pasis for combinatorial interaction testing is@vering
a GL_JI is that gre_lph—traversal algorithms (with weII-knowrérray' A covering array (written a§'A(N; t, k, v)) is anN x k
run-time complexities) may be used to “walk” the graphyrray ony symbols with the property that every x ¢ sub-
enumerating the events along the visited nodes, thereby 98Ray contains all ordered subsets of sizef the v symbols
erating test cases. A technique to generate test cases, eqddastonce [17]. In other words, any subset ©Eolumns
corresponding to an EIG edge has been developed; these {shis array will contain allt-combinations of the symbols.
cases are callesimoke testg3]. Two examples of such lengthyye yse this definition of a covering array to define the GUI
two smoke test cases for our example of Figure 1(C) afgent sequencésSuppose we want to test sequences of length
<Copy, Cut> and <Cut, Paste>. There are a total of nine ¢4, and each location in this sequence can contain exactly
such tests — one for each EIG edge. Because EIG nodesyi@ of three eventsijearCanvas, DrawCircle, Refrejlas is
not represent events to open/close menus or open windowsewn in Figure 2. Testing all combinations of these seqenc
other events (in this casedif) needed to reach the EIG eqyires 81 test cases. We can instead sample this system,
events are automatically generated at execution time USiABluding all sequences of shorter size, perhaps two. Weeinod
the mapplngqcut — (Edit, Cut), Paste — (Edit, Paste), hjg sequence as @A(N;2,4,3) (top portion of Figure 2).
Copy — (Edit,Copy)} stored earlier, yielding an exe-tpg grengthof our sample is determined by For instance
cutable test case [3]. The two test cases will “expand” {g¢ sets=2 in the example and include all pairs of events
<Edit, Copy, Edit, Cut> and <Edit, Cut, Edit, Paste>. between all four locations. If we examine any two columns

Based on these graph models, a class of coverage critgjiane covering array, we will find all nine combinations of
called event-based criteridnas been defined [13]. These crigyent sequences at least once. In this example there are 54

teria use events and event sequences to specify a measurg,ght sequences of length two which consider the sequence
GUI test adequacy. ASUI components defined as the basic|gcation. This can be compared with testiogly the nine
unit of testing. The GUI is represented by its componenf§ent sequences which would be used in our prior generation

and their interactions. Two types of criteria are defined: (%echnique for smoke tests (see bottom portion of Figure 2).
intra-component criteria for events within a component and

(2) inter-component criteria for events across componentsi. A more general definition for a covering array exists, tHaes not

However, these criteria did not account for context, seqeergssume a single, but instead allows each location in the array to have a

| th d iti f ts i test different number of symbols. This type of array is not neagsdor our
ength, and posiuon of events In a test case. problem, since we will always have the same number of everésach of the

In more recent work [15], we used covering arrays t® positions.

The number of test cases required for theay property, is o | e —— event-2sequences
N. In our example, we generate(84(9;2,4,3), i.e, a9 x 4 B e] e
array on the3 events with the property that evefiyx 2 sub- o o et e <), (e3)>
array contains all ordered subsets of sizef the 3 eventsat o s el |t fe |t | <CuD(a>
leastonce. Since the primary cost of running the test case is the ke I R I
setup cost, we cover many more event sequences for almostth (a) 2-cover B I I
same cost as our smoke tests. In general we cannot guarante B I
that the size ofV will be the same as the shorter sequence, N
but it will grow logarithmically ink rather than exponentially | |e]e |
as does number of all possible sequences of lehdttH]. ol e] e

Covering arrays have been used extensively to test input | e e <e) E5)>
parameters of programs [16], [34], [35] as well as to test ,

. . . (b) All possible event-2-sequences
system configurations [36]-[38]. Other uses qf coveringyarr for event-2-tuple (e1,62)
sampling have been suggested, such as testing software proc
uct line families [39] and databases [40]. A special type of R e e B
a covering array, (an orthogonal array) developed fromrLati e el Il W
squares, has been previously used to define GUI tests by Whitt & |e|eje e
[31]; however this work used covering arrays in a stateless (c) Three Length 5 Test Sequences

manner, to define subsets of the input parameter combirsation

Bryce et al. used covering arrays to test a flight guidancgig- 3. Event coverage and Event-position coverage
system also modeled with state variables [41]; however onl

event sequences of length one were considered. In this,pape o)

we use covering arrays to sample long event sequences, wH&SItion (e1,1). Similarly, for e, in the same sequence, the

events must consider state (determined by location in segue€Vent position iges, 2).
and all prior events). Given a sequencg of lengthk, we now extend the event-

position concept to a vector.

Definition: An event-t-sequences a vector of event-
3 EVENT COVERAGE TEST ADEQUACY positionsof length¢, <(e;, p1), (e;,p2), ..., (én,pt)>, Where
This section presents a family of event coverage adequdcy> ¢, 1 < p, <k forall z, 1 <z <t, p1 <p2 < .. <ps
criteria created to capture our notion of interaction cager ande;, e;,...e, € E.
The strongest criterion (described last) is derived diydobm In Figure 3(b), <(e1,1),(e2,2)> in the first row and
a covering array, while the other criteria are relaxatiofthis <(e1, 1), (e2,3)> in the second row are botlevent-2-
sampling technique. They are meant to capture specific tymequencesNote that the definition includes the same events
of context manifested by consecutive and interrupting tsenin different positions; hence it is perfectly reasonabldéve

We begin by defining event-tuples and event-positions #i(e1,1), (e1,2)> in a sequence i&; appears in position$
a sequence. Assume we have a set of evéhtand each and2. A single lengthk-sequenceS, with & > t has (’;)
event can occupy any locatignin the sequencé of length event-t-sequencaesithin it.

k. Our first definition does not assume a specific position (or As theFr eeM nd example in Section 1 illustrates, for GUI
context) within a sequence of the events, but rather definefault detection, it is important to distinguish between reve
combination of events that occur in order somewhere withgequences in which certain events srgquiredto appear con-
the sequence. secutively versus allowing other events to appear in betwee

Definition: An event-t-tuple(e;, e;,...,e;) is an ordered thereby establishing a different context of execution. W/ n
tuple of sizet of events fromE. A set of events gives rise allow for this distinction, leading to two different condepf
to |E|* event-t-tuplesi.e., all possible permutations of eventstest adequacy.

The example shown in Figure 3 labels two eventainde, Definition: An event-consecutive-t-sequenisean event-
(other events are not labeled). There are four posghént- t-sequence<(e;, p1), (e;,p2), ..., (ex, pr)> such thatp, =
2-tuplesfor these two events ey, e1), (e1,€e2), (e2,e1), and py—1 + 1, forall 1 <z <t.

(e2, e2) shown in Figure 3(a). In a sequence of length 5, shown That is, the events in aevent-consecutive-t-sequermast
in Figure 3(b), thesevent-2-tuplesan occur with and without be in adjacent positions. In 3(b), we have shown the expan-
other events between them and in any location in the sequersien of all possible positions for thevent-2-tupleeq,ez) in

To account for context, we need to associate positionsmvitt length 5 sequence. Thevent-consecutive-2-sequenees
a sequence to specific events. The next few definitions allslvown in the highlighted rows.
for context. We can use these definitions to develop our first notion of

Definition: An event-positiorin a lengthk sequences is event coverage adequacy. The coverage is tied to both thé eve
an ordered paire,p), where evente € E is at positionp combination strength, as well as the length of the sequence
(1<p<k). k. Context comes from the notion of position in the sequence.

In the first row of the table seen in Figure 3(b), we see Definition: A test suite ist-coveradequate if it executes all
evente; in position 1 of the sequence; therefore this is evenpossibleevent-t-tuplegall possible permutations of events) in

the form of anevent-consecutive-t-sequeratdeast once. testing contextsi.e., testing from all possible starting states.
Examining the set of three length 5 test sequences in FigUreere are(’;) x |E|' possibleevent-t-sequenceaghich means
3(c), we see that all fouevent-2-tuplesippear in the form of that the same set advent-t-tuplexan be tested from many
an event-consecutive-2-sequerateleast once. For example,different positions. This is not captured in our adequacfaso
the first test sequence covétes, ez), (e2, e1) and(ez, e2); the To define this criteria we use a covering array from tradaion
second coversey, e1). This set of test sequences has 100%IT and extend it to the notion of sequences defined above.
2-cover adequacy. If we generate only length-2 sequencesDefinition: A test suite with test cases of length is
(which in fact are our smoke tests), then for 10@%over t-k-covering array adequate whert < k& and it contains
adequacy, we need the four sequences shown in Figure 3é#).possibleevent-t-sequencest least once. Covering array
Whenevert==k, a t-cover adequate test suite is equivalenadequacy is not defined when=Fk since this is an exhaustive
to an exhaustive enumeration of sequences of leigtin enumeration of all possible event permutatidns.
general, longer, carefully chosen sequences should alotw u A 2-5-covering arrayfor the events in Figure 3(a) requires
achieve better coverage using fewer sequences. that we include all of the possible combinationsesfent-2-
Going back to ourFreeM nd example of Section 1, sequencesThere are 40 combinations that must be covered in
a 3-<cover adequate suite for this application would cona length 5 sequence for this set of 2 events.

tain all possibleevent-3-tuplesin the form of anevent- |fwe examine the test sequences in Figure 3(c), although we
consecutive-3-sequenciacluding the exception-causing se-have 100% adequacy for Z-cover, the 2-5-covering array
guences<er, ez, e3> and <es, ez, e1>. adequacy is only 70% (28 of the 4&vent-2-sequenceme

We now consider event sequences that are not consecutigered). For instance, tewent-2-sequence(e;, 2), (ez, 4)>
Given a sequencé of length k, wherek > ¢, if we have seen in row six of Figure 3(b), is missing from the set of test
at least oneevent-t-sequenceontained within it that is non- sequences.

consecutivei(e. there is at least onevent-positionnterrupt- So far we have measured adequacy fo2, but we can
ing this sequence), we call this @vent-non-consecutive-t-easily extend this td=3,4,..., etc. The3-cover adequacy for
sequence Figure 3(c) is 87.5%. We are missing ament-consecutive-

Definition: An event-non-consecutive-t-sequeni® an 3-sequenceor the event-3-tuple(e;, e1,e1). The 3*-cover
event-t-sequence (e;, p1), (¢, p2), ---(€n, pt)>, Wherep, < s also missing arevent-non-consecutive-3-sequerioe the
p2 < ... < pt, such that at least one interv@ah —p1), ..., (p: — event-3-tuple(es, e1, ¢1). Together they provide 87.5% ade-

Pi-1) i_S greater than 1. quacy for the3*-cover The 3-5-covering arrayadequacy is

In Figure 3(b), the non-shaded rows represevent-non- much lower. Only 30event-3-sequencese covered (out of
consecutive-2-sequencies the event-2-tupldes, e2). 80) for an adequacy of 37.5%.

This brings us to our next adequacy coverage metric. Our adequacy criteria have a clear subsumption relatipnshi

Definition: A test suite istT-cover adequate if it exe- when & > 2. The t-k-Covering arraysubsumes all other

cutes all possiblevent-t-tuplesn the form of anevent-non- adequacy criteria, while the-coversubsumes botht-cover
consecutive-t-sequeneg least once. Adequacy is zero whend ¢-coveradequacy.

t==k.
In Figure 3(b), there are 6 possibd®ent-non-consecutive-
2-sequence® choose from for each of thevent-2-tuplesTo 4 CASE STUDY

sansfy a2+—cover, we need to select only one of each. Fofye now describe a case study to systematically explore the
Instance in rows 2 3 and 4, we have a smgient-z-tuple effectiveness of our new adequacy criteria on event context
represented by d|ff_erenevent-non-cqnsecunve-z-sequen_ce:i;he overall research question that we aim to answerls: “
Only one of these is needed to satisfy coverage..ln FigYitsre a correlation between the defined coverage-adequate
3(c), the three test sequences covereaent-2-tuplesn an . test criteria and fault detectiori?To answer this question we
event-non-consecutive-2-sequerateleast once; therefore it begin with a characterization of test suites using the gish

has 100°/o2+-cov_eradequacy. . coverage criteria defined:-k-covering array adequate test
We can combine these two coverage metrics to get a thEQverage. Our characterization first examines fault dietect

notion (?f. adequacy. o T and then quantifies the coverage of subsumed adequacy within
Definition: A test suite ist"-cover adequate if it is both these test suites. We then examine how specific test suites

t-coveradequate and’- coveradequate for a common set Ofdeveloped for each of the adequacy criteria perform with

eventsk. . . respect to fault detection.
A 2*-cover for Figure 3(a) requires at least &vent-t-

sequence$4 event-consecutive-2-sequenedsl 4event-non-
consecutive-2-sequenge$Ve have 100%®2-cover adequacy, 4.1 Study Setup
but 0% 2" -coveradequacy (recall that by definition this is
whent==k). Therefore we have only 50% -coveradequacy.
However, Figure 3(c) has both 100%cover and 2™ -cover
adequacy as well as 100%6-coveradequacy.

If we want to consider context mpre completely for teSting! 2. This differs from the traditional definition of a coveriagray [17] where
then the length ofS when k > ¢, dictates a stronger set oft < k.

%Ve selected two different sets of subjects for our study.
The first set consists of four application¥er pPai nt,
Ter pPresent, Ter pSpr eadSheet, and Ter pWor d of

the Ter pOf f i ce suite developed at the University of Mary-this study is the completion of the first three steps through
land® We have usedTer pOf fice in numerous experi- test-case generation. To achieve our new coverage critegia
ments before, and are very familiar with its code and funaeed to control permutations of events and their positioos;
tionality, which is very important as Step 2 of the studgring arrays provide the strongest coverage criteria. Hewe
procedure will show. To minimize threats to external vahey also provide some unique challenges that need careful
lidity, our second set consists of four open source GUinodeling and preparation.
based applicationsCf{ osswor dSage 0. 3.5, FreeM nd When combining events, one must consider that GUI events
0.8.0,GanttProject 2.0.1,JM5N 0.9.9b2) down- have strict structural constrainte.g, the eventPrinterProp-
loaded from SourceForge. These applications have also beeties in the Print window can be executed only after
used in our previous experiments [42]; details of why thegre Pri nt window is open) and complex GUI-state-based
were chosen have been presented therein. dependenciese(g, execution of one event results in a GUI
For theTer pOf f i ce applications, a GUI fault is defined state in which another event is enabled/disabled); oneatann
as a mismatch, detected by a test oracle, between an “idesithply concatenate different events together to obtaimglsi
(or expected) and actual GUI state. Hence, to detect faaltsexecutable test case — certain events may be unavailable or
description of ideal GUI execution state is needed. We d@veldisabled. Our study procedure explicity models and adds
the test oracle from a “golden” version of the subject applstate-based constraints that reduce the need for structura
cation and use the oracle to test otli@ult-seeded versions ordering relationships between GUI events. The first step in
of the application. An automated tool executes each eventtite study models and creates the system interaction event se
each test case on the golden version, and captures the GSIES) to be used as the basis for the covering array algorith
state (widgets, properties, and values) automatically $iggu The second step generates the test cases for our study. The
the Java Swing API. The state information is then convededthird step takes the output of the covering arrays and cesver
a sequence daissert Equal s(X, Y) statements, wher¥ them into executable tests. The fourth and fifth step run our
is the extracted value of a widget's propeityis a placeholder tests, detect faults and capture coverage while the lapt ste
that is instantiated with the corresponding value extchfitem analyzes our results for the various coverage criterialdpee
the fault-seeded version. The methasiser t Equal s() re- in Section 3. Details for each step are described next.
turnsTRUE if its two parameters are equal, otherwis&L SE. Step 1. Prepare the GUI model for Covering Arrays:
The test cases are also executed on each fault-seedednvensichis step we use our reverse engineering ©bll Ripper
(one fault per version). The results of theser t Equal s() to create the event-interaction graph (EIG) model. Detaiils
are recorded. If, after an eveatin a test caseé executes on the GUI Ripperhave been described in earlier reported work
fault seeded versiof;, even oneasser t Equal s() method [3]. Here, it is sufficient to know that thRipperautomatically
returnsFAL SE, thent is said to have “detected the fault.” traverses the GUI structure of the program under study; the
The number of seeded faults relevant to this study seeds@put is the EIG. The most important property of EIGs for
in Ter pPai nt, Ter pPresent , Ter pSpr eadSheet , and this work is that the EIG may not contain all the events in
Ter pWor d, are 116, 126, 114, and 71, respectively. the GUI; some events are abstracted away; we will revisit the
In the Sour ceFor ge application set we rely onaturally impact of this property in Step 4.
occurringfaults. Here, the application is said to have passed awe next group the events by functionality. The events within
test case if it did notrash(terminate unexpectedly or throw aneach group constitute the events for a single model that are
uncaught exception) during the test case’s executionretie ysed to generate test sequences. Events that are not eshtain
it failed. Such crashes may be detected automatically by Hyghin the same group will not be tested together. However,
script used to execute the test cases. Due to their popularne event may be a part of multiple groups. This part of
these applications have undergone quality assurance ebef@iir process is currently done manually. Domain knowledge is
release. To further eliminate “obvious” bugs, we used dcstatequired to determine which events are likely to be incluited
analysis tool calledrindBugs[43] on these applications; aftersimilar functionality. Future work is to automate this pess
the study, we verified that none of our reported bugs wefgrough the use of historical data on similar domains. The
detected by FindBugs. output is a model that lists the specific event groups as sell a
We generate and execute smoke tests using the EIG-bagRdnumber of events per group. The groups and their number
algorithm for all subjects; the faults detected by thesedases of events (#Events(v)) are shown for each of our application
are labeled “smoke faults” and no longer used in this stugly Table 1: note that because groups may be overlapping, the
(they are not included in the seeded fault numbers mentiong@tal” column is not the sum of events in the groups shown

above). — the Total column shows the numberuwfiqueevents in the
groups?
4.2 Study Procedure Once the event graphs and groups have been identified, it

. . . o specify constraints on events such that the
The study is conducted in six steps on each subject ap;mln:atis necessary to specify

.) nerated event sequences are executable. This is ngcessar
independently, as described next. The most complex partgogcause some events may not run without a set of prior set-

3. Detailed specifications, requirements documents, sourode
CVS history, bug reports, and developers’ names are aleiladt 4. Complete experimental results can be found at
http://ww. cs. und. edu/ users/atif/ TerpOificel. http://ww. cs. und. edu/ users/ atif/tse09/.

[Groups T 1T T 2 [3] 4 T 5T 6 [7 T 8 T 9 Tota

TerpPant | Tool | Image cnpboanT Tayer | Fle tual abstract event sequenc®VriteInTable, ComputeAverage,
Di ipti Mgt. Setti Ops. Manip. | Ops. H H H
devens) |27 | 3 [1 6 5= WriteInTable, Undo, Inpu_tFunct|0n, Count, InputFunction
TerpPresent _ ComputeSum, ComputeMin, ComputeSufrom the 2-way
Description View | Format| Text Shape |Conten|ClipboardWindows Tools A .
FEvenisy) | 14 | 20 | 81 | 13 | 14 | 11 | 7 | 10 17 covering array for Group 2 ofrer pSpr eadSheet . First,

T raon | om™ | Fuoetion] =" "™ | carre] rapace the constraints from Step 2 are used to increase the tes$ case
FEvensy) | 14 | 12 | 4 12 1815 %] chances of executing to completion, by ensuring that none of
TerpWord Table [DocumerftContent|ins. Image Font [ClipboardWindow|[Searchinfianag R . !
zzscruz;i(o; | Stle | [Properiefsetings d‘f syle | Pluaqin‘ - the events are disabled. In this example sequence, we know

vents(v, . - . a n .

CrosswordSagd Manage| Solve [Open anfPreferen thatUndowill remain disabled unless it is preceded with spe-
D ipti C Word S Setti H'H . H
T T S e B = .C|f|c.events, hence evef@opyis msgrted befor&ndo, result-
FreeMind | Map | Formai| EGt |Clipboarq File | Node | Tools ing in the expanded sequened/NriteInTable, ComputeAver-
Description Ops. Node Ops. | Ops.| Ops. . .

#Evenis(v) | 11 | 18 | 16 | 10 | 23 | 17 | 10 9] age, WriteInTable, CopyJndo, InputFunction, Count, Input-
Forrmeer | ™M™] o 1™ oraon] " prosenic Function, ComputeSum, ComputeMin, ComputeSukiow-
#EJVJQ‘NSW) B] 12 [7] 2] &1 ever, certain parts of the sequence are still not execytbdle
Description | Logon | View | Tools | Settings|Report example, the subsequenedVritelnTable, ComputeAverage
#Events 4 15 18 18 8 63 . .
vensty) cannot be executed; eve@@omputeAveragés not available
- TABLE 1 o in the GUI after eventWritelnTable has been executed.
Event Grouping in Subject Applications Additional events are needed to “drive” the GUI so that

ComputeAveragébecomes available. Hence, in the second
stage of expansion, some events that were abstracted away
in Step 1, are now re-inserted to “reach” other events; these

reaching events are obtained automatically [2]. The full
up events, or must occur only after another event has begn g y 12] y

. . . expanded sequence i9WritelnTable, Function(MenuCom-
fired. For instance, iMer pSpr eadSheet , the Undo event : e ———
requires that one of the ever@sit, Paste PasteSpecialClear puteAverage, WritelnTable, Edit(Menufopy, Edit(Menu)

occurs first; otherwiseJndo remains disabled; we will use Undo, InputFunction, Function(Menu)Count, InputFunc-

o) . tiop, Function(Menu) ComputeSum, Function(Menufom-
these constraints in Step 4. This ends the modeling stage OEeM—in, Function(Meny) ComputeSum, where events

: pu
our test case generation.) Function(Menu) and Edit(Menu) correspond to “click-on-
Step 2. Generate Covering Arrays We generate-10-

| _ - Function-menu” and “click-on-Edit-menu”, respectively.
covering arraysfor our test cases; i.e., strengthcovering Step 4. Execute Test Case&€ach application is launched

arrays with 10 colt_;mng Thlere are thr_ee inputs to this step;Af5 state in which most of the events are enabled — in all
the process. The f|_rst is which determines the Iength o_f OUrcases, this requires loading a previously saved applitatio
abstract sequencese|, those that may need the insertion ofjje Because we need 1,257,619 test runs, we use a cluster
other events to become executable). In this stuebl0 for o 40 machines to speed up execution; all are Pentium 4
all our subjects. This was chosen heuristically as the 18hg& gsHz Dual-CPUs with 1GB memory, running Red Hat
feasible size for overall success with our test harness. T@ﬁterprise Linux version 2.6.9-11. The total time used is 9
second is the number of abstract events per locatiomith qavs per machine. Data is collected via our automated oracle
a list of thev abstract events that are to be tested. This COM@Syetermine test cases that detect faults; this forms the er
from the previous step. The third is the strength of the @elsir.qnor (Later analysis of the error reports confirmed that t
covering array/. Using these parameters, a covering array {§its detected by the smoke tests were subsumed by the
generated using one of the known covering array ge”erati@&/ering-array-based tests.)
algorithms; simulated annealing [17]. Step 5. Compute CoverageThe input to this step is the
The covering array containd rows consisting of abstract set of test cases, and the last successfully executeddacati
events. In this study, we generate covering arrays for cof- the sequence. This data is analyzed against all of our
secutive successive strengths starting=&, until our arrays coverage criteria. We calculate the adequacy up through the
reach sizes larger than 20,000 test sequences. This numier executed sequence in a test case. Our denominator is
was chosen due to resource limitations. The sizes of th@ge number of required-tuples and their associatelent-
covering arrays and the number of test cases generated g&itionsfor the particular adequacy criterion being measured.
group is shown in Section 5, Tables 4 and 5. The strengthBe results of this computation are discussed in Section 5.
of covering arrays in our subjects ranges fréaR to t=8. Step 6. Analyzing Test Adequate SuitesOur final step is
(Two groups ofTer p\or d had only three events allowing Usto analyze our data for the various coverage criteria d@eglo
to increase to 8.) The majority of our groups are not testegh Section 3. We use a greedy technique for this process.
beyond:=4. These covering arrays, each row corresponding$ince ourt¢-10-covering array contains the highest possible
an abstract event sequence, are then passed to the next pb@aérage, we use these test cases as our starting point. For
for translation into executable tests. each group and each strength that finds at least one fault,
Step 3. Generate Executable Test§ he abstract event se-we find a subset of test cases from its corresponding covering
guences from Step 2 are expanded in this step to generate exeay that will satisfy the maximum coverage for each of the
cutable test cases. The expansion process is done in twesstagdequacy criteria, one row at a time. We begin by selecting
We will explain these stages via an example. Consider an actest case (randomly from among the best when there is

a tie) that gives us the highest coverage for the adequak$ Threats to Validity

criteria desired. We then select the test case that hastesia \ye haye tried to reduce threats to validity of our study but
increase in cumulative coverage. We continue adding t@8SCags yith all experiments there are limitations to the resthits

until we have reached the maximum coverage obtainable {Q{n pe inferred. We discuss the main threats here. The first
that criterion in our covering array. For instance if we argyreat that we identify is the threat to generalization of ou
interested in a-cover adequat_e test suite and the originglesyits. Four of our subjects (tier pOf f i ce applications)
2-10-covering arrayfor that subject/group was 95%cover \yere written by students in a University setting. We believe
adequate, we select test cases until we reach 95% covergggyever that these are realistic GUI applications and tiaegh
We note that we do not restrict the test cases to those which gkan used in many other studies. To reduce this threat, we
length 10. Although most of the selected test cases are leng{le selected four open source applications as well. Anothe
1_0, it is possible that ones which did not run to Co_mplet'ofhreat is that we have run only a single covering array for
(i.e., have a shorter length) are selected by the algori¥iten ¢4ch strength of each group, but we have generated each one
this provides the largest increase in coverage. To obtain QHgependently of the others and believe that the generadisre
t*-cover suites we take a set union (eliminating duplicateg)e siill valid. Given the large resources required to run al
of the corresponding-coverandt*-covertest suites. This is of these tests suites we do not believe that we could have

an upper bound on the size of the suites, since we may B&formed such a broad study and run multiple covering array
able to remove duplicate coverage, but we are guaranteed,{Q,ch strength as well.

have c_omplete* coverage by doing this. To co_mpute the fault the second threat we address is that of internal validity.
detection of each coverage adequate test suite we anazeAf} of our testing is performed in an automated fashion and
fault matrices from the covering array test execution runs. \ye se many programs to analyze the resulting data. We have
validated our programs and have hand analyzed subsets of the
4.3 Practical Limitations of Study Procedure data to confirm the results obtained are accurate. We hase cro

_ . checked our adequacy of suites using more than one program.
As is the case for conventional software, where there are INFinally it is possible that we have selected the wrong

feasible paths in programs, we may have infeasible seqeenggyics (construct validity) for study, but we believe thatlt
in our test cases. These infeasible sequences cause sOMgaQlction, coverage and test suite size are important caetri

our test cases to not run to completion. Similar problem&hay, - impact test suite effectiveness and are a reasonabliegt
been noted in other state-based testing domains [9]. Hc'We\fﬁ)int for evaluation.

we do not know which event sequences are infeasilgeori.
The impact of this situation on test adequacy is expecte@to b
similar to that of adequacy for statement or branch coverage CHARACTERIZATION OF GENERATED TEST

in a program. We can only cover 100 percent of thasible SUITES
sequences. In this work we do not attempt to repair infeasibty snswer our research question we begin with a charac-
sequences, but leave that as a future avenue to pursue. fhgation of the covering array test suite developed irpSte
parts of the test cases that did not execute is recorded; We |, this section we quantify the fault detection of our
use .this information to characterize our test cases in thé NBovering array test suites which represents the maximum
section. possible fault detection. We then quantify the various adey

In this study, we devised several domain-specific modeliRgjteria within each test suite. In the next section we exami
steps to reduce the generation of those event sequences {f@lffectiveness of the different adequacy criteria teites
execute infeasible paths. Many of these steps are done Maileloped in Step 6. We examine this with respect to both

ally. First, we manually group events together by functlitna 5,1t detection and the size of the test suites.
Second, we manually identify constraints on events such tha

the generated event sequences are likely to be executable. W i

consider this manual effort to be a serious limitation of out-l Overall Fault Detection

test-case generation techniques. We will pursue thisdimit Since all subjects were tested prior to this study with smoke
in future work. tests, any fault found in this study isew and considered
undetectable by them. Table 2 shows the detailed fault data
for each subject offer pOf fi ce for the highest adequacy
criterion, t-10-covering arrays In this table each row is a test
For our study the independent variables are the coveremste labeledI'C'A,—,,, whereT'C'A stands for the covering
criteria described in the previous sectidfl,0-covering array array test suite anéen is the strength of the covering array
adequate test suites;cover, t-cover and t*-cover test for testing. The columns of this table are the different gou
suites. We use a single-10-covering array for each sub- tested in each application. A dash in a cell means that we
ject/group/strength, but we generate five test suites fon @& did not have a test suite at that strength. The totals shown fo
the other coverage-adequate test suites. We do this to @edeach test suite and each group represent theuaiglefaults

the likelihood that a random choice of test case impacts dimund. The columns and rows cannot simply be added since
results. The dependent variables are the covered pereenthgre is overlap in fault detection for both the test suited a
for each criterion defined, fault detection and test suite.si for the groups; some groups share events and faulty code.

4.4 Independent and Dependent Variables

. Groups
Test Suit 112[3[4] 5|p6|7| 59 Total
Ter pPai nt
TCA—2|69(3{5[0[0|-1[-] - |-] 76
TCA=3|-1-{8[0[0|-[-] - [-] 8
TCA=a|-1-{-|-15|-1]-] - [-] 5
Total [69[3]8[0[5]-]-] - [-] 82
Ter pPresent
TCAi—2| 11| 0| 0[10]44|0| 94 |-| 105
TCA;—3| 5|5 -|0[10]50{0{114{-| 119
TCA=4|-1-{-|-1-]-10] - [-] O
Total |55/ 0| 0{10[50{0|114(-| 119
Ter pSpr eadShee
TCA—2|17(1{2|9[1]|9]-| - |-| 35
TCA—3|19(1| 2 |35/ 1|10[-| - |-| 65
TCA=4|-1|-12|-11]9]-] - |-] 12
TCA—s5|-|-|2]|-]-|12]-] - |-] 11
Total [19(1]| 2 (35| 1 |11]-| - |-| 66
Ter pWor d
TCA—2| 01|16/ 00| 00| O [0 17
TCA—=3|1(-{39/0[0|0([0] O [0] 39
TCAi—4|-1-{-|0]-]0[0] - [O] O
TCA—s|-1-{-|-1-]-10] - [0] O
TCA=s|-1|-|-|-1-]-10] - [0] O
TCAw—7|-1|-]-|-1- ol - 0] O
TCA—g|-1|-|-|-1-]-10] - [0] O
Total [1{1|39{0|0|0[0| O |O] 40
TABLE 2

Ter pOf f i ce Covering Array
Test Suite Fault Detection

. Groups
Test Suit 1|2|3|4|§|6|7 Total
Cr osswor dSage
TCA¢—2|0]|0[0|O]-|-][-] O
TCA¢—30|0[0|O[-|-[-|] O
TCA¢—4|-]0[0[-]-|-]-] O
TCAi=5|-]1-10]-{-]-|-] O
Total [0[0{0|O[-{-]|-| O
FreeM nd
TCA;=2|0{0|1|1]|0|1|0] 3
TCA:=3|0]0{2|1]-|3|0] 4
Total |[0[0(2]|1[0|3|0| 4
Gant t Proj ect
TCA.=2|0{1]|0|0|0|O[-| 1
TCA=33]1]2]2]0]-[-] 7
TCAi=4[-]-]-]-10]-[-] O
Total [3|1[2][2[0[0]-] 7
JMVSN
TCA.=20[0]O]O[O]-[-] O
TCA.=3|0[0[O]O[O]-[-] O
TCAi=4|0[-]-]-10]-[-] O
TCAi=50]-]-]-]-]-]-] O
Total [O]O[O[O[O[-]-] O
TABLE 3

Sour ceFor ge Covering Array
Test Suite Fault Detection

10

[1t=5

100 - ft=4
mt=3
80 mt=2
40
0 il |

+ cov *

Number of Faults Detected

+ cov * + cov * + cov *

TerpPaint TerpPresent TerpSpreadSheet TerpWord
Test Suites

Fig. 4. Cumulative Fault Coverage:
(TerpOifice)

7 mt=3
6 =2
5 |

cov * CA

Number of Faults Detected
- N w £

o

+ +cov*CA+cov*CA+cov*

CrosswordSage FreeMind GanttProject JMSN
Test Suites
Fig. 5. Cumulative Fault Coverage:

(Sour ceFor ge)

show similar results for a total of 66 (out of 114) and 40
(out of 71) new faults respectively. lher pWor d we found
new faults only in a small number of groups (1-3) but the
trends for those groups hold. Although an increase in cogeri
array strength usually increased the number of faults we did
see some exceptions. For instance;Ter pSpr eadsheet ,
Group 6, we found 10 faults whe3; however, fort=4, we
found only 9 of the 10 previously found faults. We attribute
this to chance; a specific longer sequence needed to detect
this fault happened to appear in the lower strength tese.suit
Figure 4 shows the cumulative fault coverage across allggou
by covering array strength for thieer pOf f i ce applications.
The last column for each subject is thd0-covering array
fault detection, labeled CA. The other columns represeat th
other adequacy criteria and are discussed later.

In the Sour ceFor ge applications we found new faults as
well, but not as many as were found in ther pOffice
applications. This is expected since they azal faults and
only detected by crashes, rather than seeded ones detected
by oracles. Table 3 shows the results for each of these

IntheTer pOf f i ce applications we detected a large numapplications. InCr osswor dSage and JVMSN no new faults

ber of faults that were previously undetectedTkr pPai nt

were found, but ifFr eeM nd we uncovered 4 new faults and

we found a total of 82 (out of 116) new faults across alh Gantt Proj ect we detected 7. Once again, the strength
groups. InTer pPr esent we uncovered 119 (out of 126) newof the test suite seems to correlate with the ability to find ne
faults. As we increased our strength of testing, the numberfaults. For instance irGantt Pr oj ect we found no new

faults detected usually increased within individual greugpor
instance we found 5 new faults in Group 3Tr pPai nt at

faults in Group 1 wheri=2 but found 3 new faults whet=3.
Figure 5 shows the cumulative fault coverage for all of the

t=2 and 8 faults at=3. Ter pSpr eadSheet andTer pWword Sour ceFor ge applications.

00 g1 1 WL e N LW R e rmL W - lrm SRS
90 -
T =0
g 70
_g'; 60
< 50
€t
8 =0
B
S 20
10
o MNINNII nimiimLE AINIIRIIRIDRINRIDBINRINRINRIE IHEN NN N
t=2 t=3 t=4 t=5 | t=6 t=2 | t=3 t=4 =5 t=6 t=2 t=3 t=4 =5 t=6 t=2 t=3 t=4 t=5 t=6|| t=2 t=3 t=4 t=2 t=3 | t=4
G6:TCAt=2 G6:TCAt=3 G6:TCAt=4 G6:TCAt=5 GL:TCAt=2 G1:TCAt=3
(a) Ter pSpr eadSheet Group 6 and Group 1
100
90
T =0
S 7
-q:; 60
< 50
‘é]
e 30
2 2
10
0
t= =3 =4 =2 =3 t= =2 t=3 =4 t=2 =3 t=
GL:TCAt=2 GL:TCAt=3 GB:TCAt=2 GB:TCAt=3
(b) Ter pPresent Group 1 and Group 8
100
90
E 80
= 70
_g'; 60
< 50
t
g =0
2 20
10
0 [[l
= =3 =4 t=2 =3 t=4 =2 t=3 =4 t=2 t=3 t=
G3:TCAt=2 G3:TCAt=3 GB:TCAt=2 G6:TCAt=3
(c) Freeni nd Group 3 and Group 6
100
90
T 80
S 70
§ 6o
2 so
T a0
Q
o 30
S 2
: n
[1] = o e
t=2 | t=3 | t=4 | t=5 t=2 t=3 t=4 t=5 t=2 | t=3 | t=0 | t=5 || t=2 t=3 t=4 t=2 =3 | t=4
G5:TCAt=2 G5:TCAt=3 G5:TCAt=4 G2:TCAt=2 G2:TCAt=3

(d) Gant t Proj ect Group 5 and Group 2

Fig. 6. Adequacy of Covering Array Test Suites

12

5.2 Adequacy of Test Suites obtained within our original test suites, but it does notvile

Th ¢ h L | h & us information about the relative strength of fault detacfor
e next part of our characterization analyzes the covenige, , ., criteria. We examine that next.

our test suites based on the context based adequacy criteria

developed in Section 3. We have seen that more faults are

found in higher strength covering arrays, but in some cases @ FAULT DETECTION RESULTS

find that increasing strength does not improve fault detactiwe can see from the characterization of our test suites that

at all or only does so slightly. To obtain more insight intesth (¢ + 1)* andt¢ + 1-cover is often higher than the associated

we examine the adequacy of the covering array test suites¢-10-coveringarray adequacy which means they are easier to
Figure 6 shows data for twder pOf fi ce applications satisfy and may be potentially useful for testing. But we do

and twoSour ceFor ge applications. In each graph we havenot yet know if these test suites are effective at findingt&ul

selected two groups to show. We see similar trends in the othée now analyze the fault detection by each of the adequacy

applications/groups. We measure the adequacy tpltavhere criteria from the test suites derived in Step 6, and thenudisc

t is the highest strength test suite in a group. For instanseme of the specific faults detected by our test cases.

Ter pSpr eadSheet Group 6 (Figure 6(a)) was tested up to

t=5, therefore we show coverage up througit . In Group 6.1 Fault Detection and Adequacy Criteria

1 (right portion of the same graph) we tested up+8 so we)
show coverage up t=4. On thex- axi s we list thet*-cover Figures 7 and 8 show the average fault detection by coverage

(4), t-cover (cov), t*-cover (x), followed by thet-k-covering criteria_ for_some of our subjects. For example, the uppir-le
array (C'A) adequacy, for each, while on they- axi s we graph in Figure 7 shows the results fber pvor d, Group 3.
show the percent adequacy. Each of the delineated regions'¢¥§ Y-axis shows the average number of faults detectedsacros
thex- axi s represents a singlel0-covering arraytest suite, all five samples; the x-axis shows the criteria for each gmfen
labeled as @:TCAt=y wherez stands for the group number | "€ 9raph clearly shows th&3 coverage outperforms its2
andy stands for the strength of testing; G2:TCAt=2 ig=2 counterparts. It also confirms thdt-coveradequate test suites
array for Group 2. ' have the lowest fault detection while thel0-covering array
We see that even in the case where we had many tg’g\rs the highest fault detectiott.-coveris the next strongest
cases fail and out-k-covering arrayadequacy is quite low, criteria while, t-cover falls in-between the others.
we have a high percentage of-cover and t*-cover cover-
|
O+
M cov

TerpWord TerpPaint

Ter pPr esent (Figure 6(b)) In the3-10-covering arrayswe
see that in both groups (second and last regions of this yrapt
our 4-10-covering arrayadequacy is very low (less than 20%),
but we have 100% "-cover adequacy in the same arrays.
We see lowet-cover adequacy and a mid-range forcover
adequacy. This is not as obvious as the other results, as it |
a stronger criterion thetrcover, but sincet*-coveradequacy
containstt-cover adequacy within it, and this has reached @3 64
100% the overall adequacy is not as low as th@wver. If

we examine the2-10-covering arraysfor both groups (first
and third regions of the same graph) we have less than 5%
4-10-covering arrayadequacy but more than 60%-cover
adequacy. Once again thié-cover coverage is between the
tT-coverandt-coveradequacy.

In Figure 6(c), FreeM nd and Figure 6(d)
Gantt Proj ect, we see that the groups had slightly
different overall adequacies, but the general trends age th
same as that of th@er pOf fi ce applications. Figure 6(d)
shows results foGant t Pr oj ect . In this subject, Group 2
has an overall low adequacy, only reaching 58%coverage
and less than 20%-10-covering arrayadequacy.

In general we can see that th&-cover coverage is the
highest, followed byt*-cover, followed by ¢-cover This
makes sense since there are combinatorially more oppor
nities to cover arevent-non-consecutive-t-sequerthan an
event-consecutive-t-sequerioea fixed length test sequence.
It also suggests that the weakest test criteria (the eafsiest
cover) ist*-cover, while the strongest is the-10-covering
array. This provides us with a characterization of the adequa€y9-

35
30
25 -

O+

[|
20 I
15 N cov
a1 s
:
[m N 'mN

ECA

age. For instance if we examine the adequacy tfet for
D*

ORrR N WSO N®
I .)

Lmom |MCA

Average Faults Detected
Average Faults Detected

TerpPresent

o+
W cov
D*

mCA

Average Faults Detected

35
30
25
20
15
10

O+
M cov
5 1 BEE

0 | Lmm L = |ECA

Average Faults Detected

~

Fault Detection by Coverage Criteria (TerpOffice)

13

The other graphs (includingr eeM nd in Figure 8) show Group [Strengtfl {"-cover | t-cover | ©*-cover | 1-10-CA
more or less similar trends. This is consistent with our ex- Ter pPai nt

pectations for the adequacy criteria. In some cases we aee th|[Group 1 2 [19.0/43.8]33.0/123.438.0/161.8 69/1055
using a medium strength criterigcover or t*-coverprovides Group 4 t=2 | 3.4/73.6]4.0/208.6 4.0/273.4] 4/1783
almost the same fault detection as usingl#-covering array |Group 3 =2 | 1.4/8.8 | 2.4/22.6| 2.8/28.8] 5/171

(Ter pPresent Group 5, Ter pSpr eadsheet Group 1, 2 6.8/40.2 8.0/255.8 8.0/291.§) 8/2870

. . G 5.0/22.0| 5.0/81.4| 5.0/84.2| 5/3428

Ter pPai nt Group 4 (whent=3) andFr eemi nd Group 3 roup Ter pPresent
and 6). We examine the tradeof_f of _size below. G T 7=2 [0.0/13.0] 0.2/33.6] 0.2/45.4] 1/280
We see some small anomalies in the graphs where the“"°UP ‘——=3170.0/74.4] 1.4/494.4| 1.4/562.0] 5/5064
tT-cover adequate test suites find more faults than the Group 2 t=2 | 0.0/24.8| 0.0/66.8 | 0.0/89.8| 1/578

(t+1)*-coveradequate suites. This includ&er pPr esent =3 10.2/207.6/4.0/1428.64.0/1621.2 5/19214
t=2 1.6/14.4| 5.0/36.4| 5.2/45.8| 10/280

Group 6 and and~reeM nd, Group 3. We also see an |Group 5—=5— 57357 110.0/555.210.0/623) T0/5964
inversion for¢-10-covering arraysbetweent=3 and¢=4 for =2 T 13.0/801 6.4/21.0 | 16.4/28.0 447171
Ter pSpr eadSheet, Group 6. These may be due to the |CTOUP &—=3—57738 1136 2/239.037.4/274.050/2870
greedy method we used to select the test suites. Upon ex t=2 | 18.8/6.4| 31.6/17.0] 38.6/22.6| 94/144
amining some of the + 1 test suites we have found a single t=3 [53.8/28.8/97.6/181.899.6/209.2114/213
test case that is shared between several of the test suites f Ter pSpr eadSheet

P . t=2 | 15.6/12.6| 15.8/33.8| 16.4/44.2| 17/280
the lower coverage criteria that finds a large number of $ault |Group 1 18,0775 0119 0/498 $19.0/568 8 19/5064

1.0/9.6 | 1.0/25.4| 1.0/34.2| 1/206
1.07/48.8| 1.0/313.6| 1.0/358.2] 1/3749
2.0/20 | 2.026 | 2.0/44 2/25
2.0/3.0 | 2.0/11.2] 2.0/13.8| 2/131
2.0/7.4] 2.0/49.4] 2.0/56.6| 2/639
2.0/23.812.0/222.8] 2.07244.0] 2/2777
4.4/14.0| 6.4/30.8| 6.4/39.2| 9/206
10.2/64.4]25.6/352.626.8/392.8 35/3749
1.0/5.0 | 1.0/11.8| 1.0/16.0| 1/92
1.0/16.0| 1.0/94.41.0/109.2] 1/1081
1.0/83.0] 1.0/814.6| 1.0/891.2] 1/11454
5.0/2.0 | 5.4/4.8 | 5.8/6.0 9/37
8.2/4.2 | 8.4/22.8] 8.8/26.4| 10/263
9.0/16.6]9.0/127.6] 9.0/142.6] 9/1613
9.0/75.419.0/727.8] 9.0/794.8| 11/8977
Figures 4 and 5, presented earlier, provide cumulative faul Ter pWord
coverage across groups for each of the adequacy criter&. Th|Group 1 0.4/81.0] 1.0/535.0) 1.0/607.0] 1/5964
data is consistent with the individual group coverage. Group 2 11406?147'40 140/21/12"21 140/22/23'2 ﬂsl/gg;
The !ast pa_rt qf our analysis examines the test suite si;e ofGroup 15 67112 016 8/750 717 6/351 03971094
the various criteria. Tables 4 and 5 show data for our suhject
In these tables we show each subject, each group and the . TABLE 4 . o
average fault detection and test suite size for each coeerag TerpOffice: Average Fault Detection / Test Suite Size
criteria at each strength. For instanceTiar pPai nt we can
see that thé'-covertest suite for=2 in Group 1 contains only
43.8 test cases on average, while th@ver contains almost

(Group

Group 2

FreeMind

Group
O+

1
08 - W cov
mmﬂnn =
% mCA
t=2 t=3 t=2 t=3

Average Faults Detected
[=]
o

t=2 t=3 ‘

Group §

G3 G4

G6 ‘

Fig. 8. Fault Detection by Coverage Criteria (Fr eeM nd) Group

1 n
Ol B W N B W N W N U1 B W N W N W)

| k| o] o | oF| o] o | | R | o+ o oF| o o o[o

~
11

|
AL
N N

~
11

4 times as many (123.4). While the least expensive criterion [Group [Strengthié T-cover] t-cover | ¢ -cover [i-10-CA

to satisfy ist*-cover, we also lose effectiveness. In this same FreeM nd

subject/group, we see that thie-coveronly detected 19 faults Group t=2 |1.0/26.0] 1.0/54.2] 1.0/60.2| 1/363

on average while thé-cover detected 33. One interesting tf3 0.4/166.2 2.0/833.4] 2.0/879.8 2/10942

observation is that thé*-cover suites find more faults than Group i;g 8&3/167'00 Oog/llffo 85/11295.04 11/2114;3

the t-cover in some cases. For instance Tier pPr esent , =2 T1.0/28.6] 1.0/6581 1.0/76.0 /412

Group 8, we see this trend for both for2 andt=3. We find Group &—=3—11.0/187.43.0/1020.63.0/1077.63/11168

on average 38.6 vs. 31.6 faults &2 when comparing*- Gantt Proj ect

cover and t-cover and 99.6 vs. 97.6 fot=3. This suggests |Group 1 izg 31-%//12628-06 %(;3//6335.08 31-%/2%246 31//52%%4

+. % ; - ; = .0/22.0| 0.8/34. .0/40.
tsr:t\;tof %Jl\jﬁ;amdt cover adequate test suites find different |Group 2 e BT L i e e,
L Group 3§ t=3 | 1.0/40.8| 1.4/205.8| 1.4/214.6| 2/4851

In the Sour ceFor ge applications (Table 5) the fault |Group4 =3 |[2.0/31.8] 1.6/208.0] 2.0/230.2] 2/3749

detection differences are not as dramatic. In fact, in
Gant t Proj ect, Group 1, whent=2 we find the same 3 TABLE 5]])
faults usingt*-coverfor an average of 169 test cases, as weaour ceFor ge: Average Fault Detection / Test Suite Size
do for the2-10-covering arraywhich has almost 6,000 test

cases. Only a couple of groups show weaker fault detection

14

using tT-cover We see only a minor improvement usig impose a significant performance overhead on the underlying
10-covering arrayadequacy ovet-cover leading us to the Java Virtual Machine. During the execution of the exception
conclusion that for these subjects the weaker test criteeig causing sequence; loads and sets user focus on a “resource
be a better choice since they are almost as effective fortrae.” The event handler fakewTaskcreates arask object
fraction of the cost. and then updates a “task tree.” In doing so, it invokes the
set Edi ti ngTask() method to update the current editing
task in the task tree, where it creates a némeePat h
for the currently selected task. The user focus in the task
To better understand the role of context on fault detectih atree is on the new task. A secomkbwTaskevent performed
adequacy, we analyzed the faults that were detected only ifore the previous updates (being handled by a different
the covering array test cases. This section provides dedéil thread) are complete fails to switch focus to the newly faime
our analysis and findings. tree node; invocation of thget Sel ect edTaskNode()
FreeMind: As mentioned in Section 1, inFreeM nd method fromset Edi ti ngTask() returns null, throwing a
0. 8. 0, initially launched with an existing mindmap, con-NullPointerExceptioron subsequent accesses to this object’s
taining at least one node, loaded from a file, events fields.
SetNodeToCloyde,: NewChildNode and e3: NewParentN- This example highlights the need for incorporating timing
odg executed in a sequence (either asi,ez,e3> or information in our GUI test cases — this is a subject for fatur
<eg, e1,e3>) result in anArraylndexOutOfBoundsExceptionwork. It also shows how combining certain events together is
(in line 124 of ConvexHul | .java). Detection of this absolutely needed to detect certain faults. If these eveands
fault requires the execution of at least these three evenist been executed consecutively, the fault would have been
in a specific order, without certain interleaving eventse Thmissed.
exception is thrown when the code attempts a Graham sCmtpPaint: In Ter pPai nt, one set of faults (86, 87,
to calculate the convex hull (in methodloGr ahan() in 88) was detected by several test cases in our covering
ConvexHul I . cal cul at eHul I)when painting a currently array sample. These faults are all found in the handler
selected cloud node’s view during the creation of its nefgr the eventSelectEraserToolwhich corresponds to the
parent. Hencee; is needed to change the existing node'tethoder aser Act i onPer f or med() . The faults incor-
view to cloud. Evene; is needed to ensure that the currentlyectly change an “=="to an “I="in three different conditien
selected node is a child node; event is then performed in this handler to checkurZoom a property that will decide
on this selected node, which attempts to repaint the meat type of cursor is to be used for the eraser tool. If
and update the MapView. During the repainting, it invokesurZoom == zoom2 for example, the eraser cursor's size
the pai nt Chi | dren() method, which in turn invokes the will be set to one size, but wheourZoom == zoom1 it
pai nt G ouds() method. In this method, during painting,will be set to a different size. When the condition results
an incorrect value of a variabl® used to index an array are incorrectly returned, and the eraser tool is used,reifte
throws the exception. Hence, the exception is thrown onlgsults will occur. One of the test cases from the covering
when creating a parent for a currently selected child node d@nray sample in Group 1 which detects this fault contains
a mindmap that also contains a cloud node. the following abstractevent sequencesTextTool, LineTool,

If another event €.g, Undo, CloseMap CreateNewMap FillwithColor, SelectDoubleZoom, EraserTool, FillWitblor,
etc.) occurs somewhere in the exception-causing sequitrece LineTool, MoveMouselnCanvas, ShowToolBar, Ellipse¥ool
new event may cause any number of changes to the GUI'SUpon examining the code, we realized that detection re-
state, preventing the fault from being detected — the chitplires more than three events. First the test case must reach
node may no longer be selected (if the root node is selectegiife faulty statements in the code. Two events are needed for
it may no longer exist (if the child node is deleted or théhis: 1) SelectAZoomTodl There are four possibilities which
previous operation is undone), the map may be closed (or@respond twooml zoom2 zoom3 zoom4for curZoomin
Closeevent), and so on. the code.); 2SelectEraserToolThe order of these two events

This fault is detected by thé=2 and¢=3 test suites for can not be changed. Simply reaching this code is not enough
FreeM nd Group 3. The fact that the=3 suite detected it is for detection however. The faulty behavior needs to shoglfits
not surprising. However, the=2 also detected it is interesting.in the GUI for detection by our GUI-based test oracle. In
Because all our test cases are of length 10, this suite ath@® case, an image is needed where HraserToolcan be
covers some 3-way interactions, as evident by the G3;IGA applied, and the wrong eraser will wipe out a different pért o
section in Figure 6(c), one of them leading to the exceptionhe image. By checking the resulting image on the canvas, one
GanttProject: In GanttProject 2.0.1, events e;: can detectthe fault. Here, at least two more events are deede
NewResource (event ImportResource also works here), that is, one for setting up an image and the other for using the
es: NewTask and e3: NewTask executed in a sequenceeraser toolFillWithColor andMoveMouselnCanvaa our test
<e1,es, e3> result in aNullPointerException(Line 460 of case). Therefore, the shortest sequence that can detefautti
Gantt Tree. j ava) for certain large projects. The excepwould be a length four sequence. In our experiments, the GUI
tion is thrown only when a seconNewTaskevent is fired is started with no image (a white canvas). In the detectisg te
before Gantt Proj ect has completely handled the firstcase theFillwWithColor event fills the empty canvas with the
NewTaskevent; this only happens for large projects thatefault color, which is black. After performing th&raserTool

6.2 Analysis of Faults Detected

15

event, it moves the mouse on the canvas with the eraser tatd,not necessarily reflect the position or policy of NSF, ONR,
then, a black area will be removed (turns white). As the typeOSR or DARPA.

(therefore the size) of eraser is incorrectly set by thet faluk

resulting image is different from the expected one and the t

case detects the fault.

7 CONCLUSIONS AND FUTURE WORK

This paper presented a new family of test adequacy criteria f
GUI testing. The new criteria are unique in that they aIIov[\é]
for “context” in GUI test cases in terms of event combina-
tion strength, sequence length, and all possible positions
each event. A case study on eight applications showed tl[lﬂt

increasing event combination strength and controllingtisig

and ending positions of events helps to detect a large number
of previously undetected faults. We abstracted our eveatesp (5]
into a new model, a system interaction event set, that does
not have strict ordering constraints, so that we could Eyer
ideas from CIT for sampling. We then relaxed the CIT criteri

to define a family of criteria with increasing coverage anstco
We believe that an important part of our future work should
examine more closely the exact cost tradeoff for the variotjﬁ,

type of criteria.

This work has raised many interesting questions that point t
future research. In fact, we consider this as a promisirjstg (8
point. We are currently examining new techniques to gererat
test cases that can systematically improve coverage, @& spe
fied by our new criteria; in this paper we used subsets of tardg
test suites rather than directly generated the test cases. T
covering array based test case generation approach pdoaidéL0]
good starting point, but unexecutable parts of test caspsest

(??EFERENCES

A. P. Mathur,Foundations of Software Testing: Fundamental Algorithms
and Techniques Pearson Education., 2008.

Q. Xie and A. M. Memon, “Using a pilot study to derive a GUlogfel
for automated testing ACM Transactions on Software Engineering and
Methodology pp. 1-35, 2008.

A. M. Memon and Q. Xie, “Studying the fault-detection eftiveness
of GUI test cases for rapidly evolving softwaréEEE Transactions on
Software Engineeringvol. 31, no. 10, pp. 884-896, 2005.

A. M. Memon and Q. Xie, “Using transient/persistent esr¢o develop
automated test oracles for event-driven software ABE '04: Proceed-
ings of the 19th IEEE international conference on Automateftware
engineering Washington, DC, USA: IEEE Computer Society, 2004,
pp. 186-195.

A. M. Memon, “Developing testing techniques for evemivdn per-
vasive computing applications,” iRroceedings of The OOPSLA 2004
workshop on Building Software for Pervasive Computing (B2B04)
Oct. 2004.

G. J. Tretmans and H. Brinksma, “TorX: Automated modaséd
testing,” in First European Conference on Model-Driven Software Engi-
neering, Nuremberg, Germanj. Hartman and K. Dussa-Ziegler, Eds.,
December 2003, pp. 31-43.

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N.mdhn,
and L. Nachmanson, “Model-based testing of object-or@meactive
systems with Spec Explorer,” iformal Methods and Testing, LNCS
4949 2008, pp. 39-76.

H. Ural and B. Yang, “A test sequence selection method dimtocol
testing,”|IEEE Transactions on Communication®l. 39, no. 4, pp. 514—
523, 1991.

A. Marchetto and P. Tonella, “Search-based testing adixAyveb ap-
plications,” in 1st International Symposium on Search Based Software
Engineering May 2009, pp. 3-12.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Genénat test
data from state-based specificationSgftware Testing, Verification and
Reliability, vol. 13, no. 1, pp. 25-53, 2003.

that our approach needs to be augmented. In some groyps, p. Brooks, B. Robinson, and A. M. Memon, “An initial claterization
the events seem to be extremely interdependent despite our of industrial graphical user interface systems,1GST 2009: Proceed-

best modeling attempts; allowable sequences requiregereci
execution orders. For such groups, we will manually comstru
state-machines, instead of automatically reverse engdeel12]
event-interaction graphs and we are exploring a dynarrﬂg
. : :]

adaptive approach through the use of evolutionary algosth

[44] to discover and repair our constraints during itelcativ[
14

generation and execution.

All of our test cases in the case study were fixed to length
10. In the future, we will vary this length and study the imipad15]

of test-case length on faults and coverage. Finally, weetily

manually partition the GUI events into groups. Future work
will study the automatic partitioning of events,g, based on [16]

how events change the GUI's state [19].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for all of

their feedback, insights and comments on this paper. TH&!
work was partially supported by the US National Science

Foundation under grants CCF-0747009, CCF-0447864, CNBj
0855139 and CNS-0855055, the Air Force Office of Scientific

Research through award FA9550-09-1-0129, the Office gf;
Naval Research grant NO0014-05-1-0421 and by the Defense
Advanced Research Projects Agency through award HR00111-
09-0031. Any opinions, findings, conclusions, or recommefi-
dations expressed in this material are those of the autimars a

ings of the 2nd IEEE International Conference on Softwarstiiig,
Verification and Validation Washington, DC, USA: IEEE Computer
Society, 2009.

“FreeMind - free mind-mapping
http://freemind.sourceforge.net.

A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage teria
for GUI testing,” in European Software Engineering Conference /
Foundations of Software Engineering (ESEC/FSE)01, pp. 256-267.

software,” 2009,

] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit testverage

and adequacy,ACM Computing Surveywol. 29, no. 4, pp. 366-427,
1997.

X. Yuan, M. Cohen, and A. M. Memon, “Covering array saimgl
of input event sequences for automated GUI testing,International
Conference on Automated Software Engineering (A3&)7, pp. 405—
408.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pattofhe'
AETG system: an approach to testing based on combinatcesia,”
IEEE Transactions on Software Engineeringl. 23, no. 7, pp. 437-444,
1997.

M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mdge, “Con-
structing test suites for interaction testing,”limternational Conference
on Software Engineering (ICSEYlay 2003, pp. 38-48.

J. Strecker and A. M. Memon, “Relationships between sagtes, faults,
and fault detection in GUI testing,” iRirst international conference on
Software Testing, Verification, and Validation (ICSZD08, pp. 12-21.
X. Yuan and A. M. Memon, “Using GUI run-time state as fbadk to
generate test cases,” international Conference on Software Engineer-
ing (ICSE) 2007, pp. 396—405.

F. J. Daniels and K. C. Tai, “Measuring the effectivenexf method
test sequences derived from sequencing constraintsTeamnology of
Object-Oriented Languages and Systems (TOQOLS)9, pp. 74-83.
U. Farooq, C. P. Lam, and H. Li, “Towards automated texjugnce
generation,” inAustralian Software Engineering Conferen@908, pp.
441-450.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]
(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

K. Inkumsah and T. Xie, “Improving structural testinfabject-oriented
programs via integrating evolutionary testing and syntbekecution,”
in Automated Software Engineering (ASEDO08, pp. 297-306.

L. Gallagher and J. Offutt, “Test sequence generation ifitegration
testing of component softwarel'he Computer Journapp. 1-16, 2007.
A. Gargantini and E. Riccobene, “ASM-based testingv&age criteria
and automatic test sequence generatidoyinal of Universal Computer
Science.vol. 7, no. 11, pp. 1050-1067, 2001.

R. K. Shehady and D. P. Siewiorek, “A method to automater interface
testing using variable finite state machines,International Symposium
on Fault -Tolerant Computing (FTCS)1997, pp. 80-88.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchic&Ul
test case generation using automated plannifgEZE Transactions on
Software Engineeringvol. 27, no. 2, pp. 144-155, 2001.

L. White and H. Almezen, “Generating test cases for Géponsibili-
ties using complete interaction sequences,niernational Symposium
on Soft ware Reliability Engineering (ISSREP00, pp. 110-121.

S. McMaster and A. M. Memon, “Call-stack coverage for IG&bt-suite
reduction,” |[EEE Transactions on Software EngineerirZp08.

Q. Xie and A. M. Memon, “Rapid “crash testing” for contiously
evolving GUI-based software applications,” limernational Conference
on Software Maintenance (ICSMJ005, pp. 473-482.

F. Belli, “Finite-state testing and analysis of gragaliuser interfaces,” in
International Symposium on Software Reliability Engimegr(ISSRE)
2001, pp. 34-43.

L. J. White, “Regression testing of GUI event interan8,” in Interna-
tional Conference on Software Maintenance (ICSM)96, pp. 350—358.

“JUnit, Testing Resources for Extreme Programming,
http://junit.org/news/extension/gui/index.htm. 3
“Mercury Interactive WinRunner,” 2003,

http://www.mercuryinteractive.com/products/winrunne

R. Brownlie, J. Prowse, and M. S. Phadke, “Robust tgstih AT&T
PMX/StarMAIL using OATS,”AT& T Technical Journalvol. 71, no. 3,
pp. 41-47, 1992.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallowsnd
A. lannino, “Applying design of experiments to softwaretieg,” in
International Conference on Software Engineering, (IGSEB97, pp.
205-215.

D. Kuhn, D. R. Wallace, and A. M. Gallo, “Software faulitéractions
and implications for software testinglEEE Transactions on Software
Engineering vol. 30, no. 6, pp. 418-421, 2004.

C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays Efficient
fault characterization in complex configuration spac&SEE Transac-
tions on Software Engineeringol. 31, no. 1, pp. 20-34, 2006.

X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-asveegression
testing: An empirical study of sampling and prioritizatiom Interna-
tional Symposium on Software Testing and Analysis (ISSJT#y) 2008,
pp. 75-85.

M. B. Cohen, M. B. Dwyer, and J.Shi, “Coverage and adeguia
software product line testing,” ilVorkshop on the Role of Architecture
for Testing and Analysis (ROSATEAuly 2006, pp. 53-63.

D. Chays, S. Dan, Y. Deng, F. I. Vokolos, P. G. Frankl, &1d. Weyuker,
“AGENDA: A test case generator for relational database iapfbns,”
Polytechnic University, Tech. Rep., 2002.

R. C. Bryce, A. Rajan, and M. P. E. Heimdahl, “Interantitesting in
model-based development: Effect on model-coverage Asia Pacific
Software Engineering Conference (ASPEZ)06, pp. 259-268.

Q. Xie and A. M. Memon, “Model-based testing of commurulriven
open-source GUI applications,” international Conference on Software
Maintenance (ICSM)2006, pp. 145-154.

D. Hovemeyer and W. Pugh, “Finding bugs is eas§iIGPLAN Not.
vol. 39, no. 12, pp. 92-106, 2004.

X. Yuan, M. Cohen, and A. M. Memon, “Towards dynamic atilap
automated test generation for graphical user interfagegirst Interna-
tional Workshop on TESTing Techniques & ExperimentatiomcBmarks
for Event-Driven Software (TESTBEDZP09, pp. 1-4.

16

Xun Yuan is a Software Engineer in Test (SET)
at Google Kirkland where she is in charge of en-
suring the quality of a web-based software prod-
uct called Website Optimizer. She completed her
PhD from the Department of Computer Science
at the University of Maryland in 2008 and MS
in Computer Science from the Institute of Soft-
ware Chinese Academy of Sciences in 2001.
Her research interests include software testing,
quality assurance, web application design, and
model-based design. In addition to her interests
in Computer Science, she also likes mathematics and literature.

Myra B. Cohen is an Assistant Professor in
the Department of Computer Science and En-
gineering at the University of Nebraska-Lincoln
where she is a member of the Laboratory for
Empirically based Software Quality Research
and Development (ESQuaReD). She received
the PhD degree in computer science from the
University of Auckland, New Zealand and the MS
degree in computer science from the University
of Vermont. She received the BS degree from
the School of Agriculture and Life Sciences,
Cornell University. She is a recipient of a National Science Foundation
Faculty Early CAREER Development Award and an Air Force Office of
Scientific Research Young Investigator Program Award. Her research
interests include testing of configurable software systems and software
product lines, combinatorial interaction testing, and search based soft-
ware engineering. She is a member of the IEEE and ACM.

Atif M Memon is an Associate Professor at the
Department of Computer Science, University of
Maryland. His research interests include pro-
gram testing, software engineering, artificial in-
telligence, plan generation, reverse engineering,
and program structures. He is the inventor of the
GUITAR system (http://guitar.sourceforge.net/)
for automated model-based GUI testing. He is
the founder of the International Workshop on
TESTing Techniques & Experimentation Bench-
marks for Event-Driven Software (TESTBEDS).
He serves on various editorial boards, including that of the Journal
of Software Testing, Verification, and Reliability. He has served on
numerous National Science Foundation panels and program commit-
tees, including ICSE, FSE, ICST, WWW, ASE, ICSM, and WCRE. He
is currently serving on a National Academy of Sciences panel as an
expert in the area of Computer Science and Information Technology, for
the Pakistan-U.S. Science and Technology Cooperative Program, spon-
sored by United States Agency for International Development (USAID).
In addition to his research and academic interests, he handcrafts fine
wood furniture.

%
il
k

