
December 10, 2007

RE-TARGETABLE OCR WITH INTELLIGENT

CHARACTER SEGMENTATION

MUDIT AGRAWAL

 2

Re-targetable OCR with intelligent character segmentation

Mudit Agrawal
Language and Media Processing Laboratory

Institute of Advanced Computer Studies

University of Maryland

College Park, MD 20742
mudit@umiacs.umd.edu

Abstract

We have developed a font-based intelligent character segmentation and recognition

system. Using font-characteristics of structurally similar looking font-files, this system

aims at building a font-model to aid in the recognition of new scripts irrespective of

glyph composition. Three feature extraction schemes have been used to demonstrate the

importance of appropriate features for classification. The schemes have been tested on

Latin as non-syllabic and Khmer as syllabic scripts and results are reported. Experiment

results show the recognition accuracy can reach 92% for Khmer and 96% for Latin

degraded image documents, both at character level. This work is a step towards

recognition of scripts of low-density languages which typically do not warrant the

commercial development of OCR.

Keywords: OCR, Feature extraction, Intelligent Character segmentation,

Generalized character recognition, Font based recognition

 i

TABLE OF CONTENTS

List of Figures ii

List of Tables iii

1 INTRODUCTION ...1

2 APPROACH...2

2.1 SEGMENTATION ... 3

2.2 FEATURE EXTRACTION .. 5

2.3 CLASSIFICATION .. 6

2.3.1 Template Matching ... 6

2.3.2 Hierarchical Classification .. 7

3 FONT-FILE BASED INTELLIGENT CHARACTER SEGMENTATION8

3.1 MOTIVATION.. 8

3.2 SOLUTION: FONT-MODELS... 10

3.3 TRAINING USING FONT FILES.. 13

3.4 SEGMENTATION AND RECOGNITION... 14

4 EXPERIMENTS ..16

4.1 DATASETS .. 16

4.2 PROTOCOLS FOR EVALUATION ... 17

4.3 FEATURE EXTRACTION .. 17

4.4 CHARACTER SEGMENTATION ... 18

4.5 RECOGNITION RESULTS ... 19

5 CONCLUSION AND FUTURE WORK ...19

 ii

List of Figures

Figure 1 (a) Zone Segmentation (b) Line Segmentation (c) Word Segmentation (d) Syllable

Segmentation (e) Character Segmentation .. 4

Figure 2 Directional Element Feature Extraction... 6

Figure 3 (a) Burmese script (b) Devanagari character composition (c) Arabic Word rendering .. 9

Figure 4 shows rendering of characters in a word in Khmer using font-models (a) Locating first

char (b) Placing char into the location (c) Determination of Origin of next character (d)

Determination of next char's position (e) Placing the second character.. 11

Figure 5 shows locations of 3 different characters of Devanagari script using 3 structurally

similar Devanagari font files ... 12

Figure 6 Training Chart using Font Models ... 13

Figure 7 Dynamic Network created during best-path search of word-recognition (using Font-

models) .. 15

Figure 8 Conjunct Detection. Red Box shows a possible conjunct under detection. If two

characters (blue boxes) fit in (using font-model), it is a conjunct ... 16

Figure 9 shows improvements of our technique over older dissection based techniques (a) shows

Latin script character segmetation using dissection-based technique (b) shows the results using

our technique (c) & (d) show results for Khmer script using dissection and our font-model based

technique respectively ... 18

 iii

List of Tables

Table 1 Compares character level accuracy results for Latin and Khmer script using Template

and Directional features... 17

Table 2 Compares char and word level accuracies for Latin and Khmer scripts using dissection

based and font-based techniques ... 19

 1

1 Introduction

There are many script-specific recognizers in the market. Such recognizers are generally

based on some assumptions on the dataset and try to cover a wide variety of font sizes,

script properties and request a very large collections of training samples (with ground-

truth). Unfortunately, they are often too general and can not adapt well to outliers caused

by noise or non-traditional fonts. Our challenge is to train and build a system which can

tune itself to any new script with a minimal set of training samples and limited user

interaction. With the base of recognition remaining same, accuracy should be enhanced

by using some script specific features, if needed. Despite much ongoing research on non-

Latin script recognition, most of the commercial OCRs still feature Latin script

recognition as one of the primary objectives with high accuracies. Efforts on non-Latin

scripts are quite segregated and continue to be tailored for specific scripts using their

inherit features explicitly. The outcomes of such efforts are costly and do little to advance

the field.

Traditionally, pattern recognition techniques for character recognition have been

divided into two major categories [1] – template-based and feature-based [2, 3].

Template-based approaches aim to create a probabilistic template of each character

model from the training data. During testing, the unknown pattern is superimposed

directly on the ideal template pattern and degree of correlation is used to decide about the

classification. This is generally the first step towards any new script analysis and

classification. To enhance the accuracy, template based results are often combined with

feature-based approaches.

Feature-based approaches extract feature vectors from training samples and aim to

create a class-model out of all vectors of a given class. The challenge is to derive those

features that aid in differentiating the class from other classes rather than solely

representing that class. The feature-based approaches can be of two types, namely spatial

domain and transform domain approaches [4, 5]. Spatial domain approaches derive

features directly from the pixel representation of the pattern. In a transform domain

technique, the pattern image is first transformed into another space using, for example,

 2

Fourier, Cosine, Slant or Wavelet transform and useful features are derived from the

transformed images [4]. Support Vector Machines (SVMs) have also been successful at

recognizing various non-Latin scripts. Though SVMs are suited for binary classification

problems, DAG-SVMs can solve a set of 2-class classification problems, hence a multi-

class problem – by choosing the maximum of the outputs of all SVMs.

Apart from these two techniques, there is plethora of other techniques which do

not explicitly derive features from the patterns [6, 7]. During training, after

normalization, the system adjusts its parameters to minimize the misclassifications. The

system, thus trained is used for classifying unknown patterns. One of the most popular

methods in this domain is artificial neural network – which adjusts its weights from the

training samples – and uses these weights as features during classification. Though many

papers have been published in this domain [8, 9], the weights in neural networks can not

be analyzed like feature vectors – thus making the process, a black-box mechanism.

Hidden Markov Model (HMM) [10] is a non-explicit feature-based method which works

on large number of training samples to estimate the probability parameters. It has been

quite successful in handwriting and speech recognition. Fuzzy rules [9], Mahalanobis and

Hausdorff distance, Evolutionary algorithms [11] are other techniques used for the

recognition purposes.

 The paper has been divided into six sections. Section 2 deals with the complexity

of various scripts, our recognition system with various modules. Section 3 elaborates on

the challenges which we faced with the system and how font-files analysis, models,

training and testing proposed a solution. This is followed by experiments in section 5.

Some conclusions and directions of future work are presented in section 6.

2 Approach

The objective is to create a generic script recognizer which can be trained using minimal

number of document samples. Since our research is more targeted towards unexplored

scripts like Khmer etc., easy availability of ground-truth data can not be assumed [12].

Due to this, many techniques like SVMs, which require a high amount of training data,

 3

can not be used for training and classification. Apart from that, limited user feedback is

also the key to system’s adaptiveness. The system contains three different functional

components (1) Hierarchical segmentation (2) Feature Extraction (3) Classification. The

modules are described in detail as under:

2.1 Segmentation

It is practically infeasible to segment out characters for complex non-Latin scripts

for feature extraction. Hence, a limited user feedback mechanism was developed in which

whole document ground-truth (text) is fed along with the document image. The text-

alignment is done by aligning zone, line and words in image and document text. Since

ground-truth can be erroneous, only the best-match parts are returned. Syllabic and non-

syllabic scripts have different procedures for character alignment. Words in non-syllabic

scripts (e.g. English) are composed of vertically separable characters whereas in syllabic

scripts (like Khmer, Devanagari etc.) they are composed of vertically separable syllables.

Each syllable can be further broken down into characters – a process which is very script

specific. The system was developed for Latin as non-syllabic and Khmer as a syllabic

script.

 Figure 1 shows the segmentation of Khmer document in zones, lines, words,

syllables and characters.

(a)

(b)

 4

Figure 1 (a) Zone Segmentation (b) Line Segmentation (c) Word Segmentation (d) Syllable

Segmentation (e) Character Segmentation of Khmer script

For each connected component in a word, accents or separate dots are merged to form a

character [13]. With the assumption that a character won’t be too wide or too narrow, a

connected component satisfying the following conditions is considered a template

candidate:

(1) The aspect ratio falls in the range [rlow, rhigh];

(2) The area is larger than Amin;

where rlow, rhigh are the predefined low and high aspect ratio thresholds respectively and

Amin is the area threshold (derived from the data, the values were found to be 0.2, 1.0 and

5 respectively [13]). For each matched (aligned) character in the ground-truth text and

document word-image, a class-template is created. However, for each word, the newly

extracted components may leave another isolated component which can be added to the

template set. The remaining part of the word is then rechecked and if doesn’t match any

template above a threshold, a new template map is generated. The new templates can be

used to find more matches, with additional templates generated by the same procedure.

This process is iterated until no new template forms.

(c)

(d)

(e)

 5

2.2 Feature Extraction

After character segmentation, each character is processed through a

featurization routine where the best-describing or differentiating features are extracted

out in form of a feature vector. These feature vectors are then used in training and testing.

Three featurization routines were developed and can be used interchangeably using

configuration files:

Template initialization: Each character image is first resized to a 32-by-32 vector map. A

probabilistic template is generated through all samples of sample class from the training

data [12]

Zernike Moments: Moment descriptors have been studied for image recognition and

computer vision since 1960s. Teague [14] first introduced the use of Zernike moments to

overcome the shortcomings of information redundancy present in the popular geometric

moments. Zernike moments are a class of orthogonal moments which are rotation

invariant and can be easily constructed to an arbitrary order. And it was shown in [15]

that Zernike moments are effective for the optical character recognition (OCR).

Directional Features: Template and Zernike moments do not utilize inherit ‘directional’

property of complex scripts. The relative placement of neighboring pixels is more

important than the overall placement of pixels forming the character. On one hand where

templates are too rigid about character’s shape and for noisy documents they can result in

poor models for classification, Zernike moments are transform-based feature analysis

method – which are difficult to visualize in that dimension. Directional Feature [16]

records the relative neighboring pixel positions for each contour pixel and generates a

feature vector using that information.

 The character image is normalized and contour extracted. It is then resized to a

64-by-64 mesh. This mesh is divided into 49 (7-by-7) sub-areas of 16-by-16 pixels where

each sub-area overlaps eight pixels of adjacent sub-area (see figure 2). For each sub-area,

a four-dimensional vector (x1, x2, x3, x4) is defined where x1, x2, x3, x4 record the

 6

relative direction (vertical, horizontal, forward inclined, backward inclined) of

neighboring pixels for each pixel in the sub-area. Hence, a 49 x 4 = 196 unit long feature

vector is produced. Figure 2 shows the directional feature extraction process step-by-step.

Figure 2 Directional Element Feature Extraction

2.3 Classification

 During the testing phase, after character segmentation and featurization, each

feature vector is classified to one of the trained classes. The following methods were

tested for classification.

2.3.1 Template Matching

Awarding probabilities when template pixel matches with the corresponding pixel in a

candidate character image and penalizing otherwise, forms the core objective of template

matching. The template which has the best match is considered to be the class of the

character image. The candidate character image is binary, while the pixel values of the

16 X 16 pixels

For every pixel, look
at its neighbors and
maintain a record of
Vertical, horizontal,
two oblique lines using

Aggregate records
For every block

Normalization and
contour extraction

Dividing into 7 X 7 blocks
of 16 X 16 pixel

Feature vector

 7

template map g(x, y) are in a range [0,Ninst], therefore g(x,y) is first normalized. The

similarity of a character image f(x,y) and a template gb(x,y) is defined as a weighted

similarity as:

where the weight w(x,y) is defined as:

2.3.2 Hierarchical Classification

Kanji and South-East Asian scripts have a large set of alphabets. Hence, one-stage

discrimination doesn’t generally suffice. In this approach, two-stage classification was

used: rough and fine classification. The aim of rough classification is to cluster similar-

looking characters into groups and then perform fine classification to extract the right

class [16].

a. City Block Distance with Deviation (CBDD)

Let v = (v1, v2, … vn) be an n-dimensional input vector and µ = (µ1, µ2, … µn) be the

standard vector of a category. The CBDD is defined as:

where sj denotes the standard deviation of j
th

 element, and θ is a constant.

b. Asymmetric Mahalanobis Distance

For each cluster, the right class is obtained by finding the minimum asymmetric

Mahalanobis distance from the templates in that cluster. The function is given by:

 8

where b is the bias, is the quasi mean vector of the samples of the class m, φj is the

eigenvector of covariance matrix of this category and is the quasi variance. In case of a

tie, N-nearest neighbor is called, with N = 3.

3 Font-file based Intelligent Character Segmentation

3.1 Motivation

The paper has already discussed the differences in character segmentation

approaches for Latin and non-Latin scripts. The structure of non-Latin scripts vary a lot

from Latin scripts not only in form of character shapes but also in writing order, layout

and word-compositions. Presence of language-specific constructs, in the domain of non-

Latin scripts, such as shirorekha (Devanagari), modifiers (South-East Asian scripts), or

non-regular word-spacing (Arabic and Chinese) require different approaches to layout

analysis. Character segmentation is the major challenge in Chinese and South-East Asian

scripts like Khmer, Devanagari etc. Asian scripts though share a lot of common

properties yet pose different complications while dealing with segmentation. For

example, figure 3 (c) shows the word ا������ al-arabiyyah, "the Arabic [language]" in

Arabic, in stages of rendering. The first line shows the letters as they are unprocessed, the

result that would be given by an application without complex script rendering. In the

second line the bidirectional display mechanism has come to play, and in the third the

glyph shaping mechanism has rendered the letters according to context. 3 (b) shows a

word in Devanagari where characters are combined together to form a word. A

character’s appearance is affected by its ordering with respect to other characters, the font

used to render the character, and the application or system environment. Additionally,

like Burmese (figure 3(a)), in Devanagari or other Indic scripts, few characters cause a

change in the order of the displayed characters. These features propose greater challenges

 9

in segmentation of characters from word-images. While conventional vertical or

horizontal profiling methods fail in segmenting out characters directly from words,

character segmentation from syllables using only connected component analysis itself is a

complex task which is highly correlated with the script characteristics.

Figure 3 (a) Burmese script (b) Devanagari character composition (c) Arabic Word rendering

Apart from these, degraded text-documents have their own pool of recognition

problems. Due to broken and touching characters, many times the character segmentation

fails which in turn effects feature extraction and classification. One of the major

components of a good recognition system is a feature-extraction module. [17] talks about

various feature extraction methods for off-line recognition of segmented (isolated)

characters. The choice of right feature extraction algorithm is considered to be the single

most important factor in achieving high recognition performance. Various algorithms

reported in the paper talks about invariance properties, reconstructability, expected

distortions and variability of the characters. The assumption carried throughout is the

availability of segmented isolated characters! Some of the complex problems in the field

of syllabic character segmentation have been already enlisted. This implies that the

benefits of good feature extraction modules (followed by classifiers or their

combinations) can not be reaped until we have a robust generic solution to character

segmentation problem.

[18] talks about four methods of character segmentation. First being dissection,

where image is decomposed into classifiable units before featurization and classification.

This solution faces the curse of recluse! Due to its disconnectivity from the later modules,

mauidt

दददद + ◌्◌◌््◌् + धधधध + ◌्◌◌््◌् + रररर + ◌्◌◌््◌् + यययय =

�	य�	य�	य�	य

 10

the process doesn’t enjoy the benefits of feedback from those modules. Second set of

methods try to classify subsets of spatial features collected from a word image as a

whole. No complex ‘dissection’ algorithm has to be built and recognition errors are

basically due to failures in classification. Segmentation hypotheses are generated and

choice of best hypotheses along the word, gives best recognition result. The challenge is

this approach is to come up with minimal number of possibly correct hypotheses. The

third set of strategies is to over-segment the word-image at some heuristics. Though these

techniques do fairly well in handwriting domain, their fruitfulness has not yet been

established in printed-character recognition. The fourth method recognizes an entire word

as a unit, and is termed as holistic strategy. A major drawback of this class of methods is

that their use is usually restricted to a predefined lexicon.

3.2 Solution: Font-Models

With the motivation of building up an intelligent generic character segmentation and

recognition system for any complex syllabic script, font files, being the source of script-

renderings, were analyzed! Due to the unavailability of ground-truth data for less-

researched scripts, glyphs from a bunch of font-files can be used as training samples.

Font-files have a wealth of information and possess a generative model for every

character. They contain the following set of information for a given script font:

• List of characters

• Glyphs of each character

• Font ascender

• Font descender

 For each character at a particular font size, the file contains its

• Unicode value

• Height

• Width

 11

• Horizontal Advance: the horizontal distance between the origins of present

and next character in a word

• Vertical Advance: the vertical distance between the origins of present and

next character in a word

• Bounding Box

• Left Bearing: the horizontal distance between the left-end of bounding box

and its origin

• Right Bearing: the horizontal distance between the right-end of bounding box

and origin

• Rules of combination of various characters forming complex new shapes

Many of such parameters are redundant, as they can be derived from other

parameters. e.g.

Right bearing = |left bearing| + horizontal_advance – width

where width = bounding box right edge – bounding box left edge

A word’s rendering takes place in the

following manner. First character is placed

with the given font face and size. Using the

horizontal-advance and vertical-advance,

origin of next character is determined.

When the next character is printed, its left-

bearing and bounding-box top-edge

determines where to place it with respect to

the previous character. Figure 4 shows the

process steps.

Figure 4 shows rendering of characters in a word

in Khmer using font-models (a) Locating first

char (b) Placing char into the location (c)

Determination of Origin of next character (d)

Determination of next char's position (e) Placing

the second character

 12

Hence, using a group of similar looking font files, glyphs can be extracted [19, 20] and

used for training purposes. This eradicates the problem of unavailability of all characters

in the huge alphabet of syllabic scripts with limited ground-truth. The glyphs extracted

can substitute for missing or lesser available character classes from ground-truth. For a

given font face and size, following information was extracted: (a) glyph of characters (to

train them along with samples available from limited ground-truth) (b) horizontal-

advance of each character (to determine the position of next character’s origin) (c)

bounding box location of present character (given its origin). This information is then

used to segment characters from word-images during training using the process described

above (figure 4).

 Before venturing into training using font-files, a number of structurally similar

looking font-files were processed to visually analyze the consistency in these model-

parameters for a given font-size. The figure 5 summarizes the results for three fonts of

Devanagari script. As shown, all the fonts place each character nearly at same position,

hence validating the consistency in these parameters. Similar analysis was done for non-

syllabic script (English) as well.

Figure 5 shows locations of 3 different characters of Devanagari script using 3 structurally similar

Devanagari font files

Origin

3 different
fonts

3
different
chars

 13

3.3 Training using Font files

 The flowchart below describes the step-by-step process of training document

images with sparsely available ground-truth data.

Step 1, 2: A bunch of similar looking font files, resembling the text in documents under train, are entered

along with ground-truth files.

Step 3: Bounding box and horizontal advance properties for each character are extracted from the font files

and averaged out.

Step 4: The character glyphs from font files are passed through the feature extraction routines.

Step 5: Each document image along with its corresponding ground-truth file, is passed through zone

segmentation module and a CNode structure (containing Page � Zone � Line � Word) is created

containing word-alignments.

Step 6: Each word in this CNode structure is further segmented into characters using font-properties

extracted out in step 2 and these characters are aligned with their corresponding ground-truth.

Step 7: For each character segmented out in the document image, feature extraction is performed and

merged with that of its corresponding glyph from step 4.

Step 8: System is trained using the features

 Figure 6 Training Chart using Font Models

Bunch of font-files entered

Extract BBox and horizontal advance for each character

Ground-truth files entered

Featurize the char-glyphs from font files

Align ground-truth data with document images (by calling CNode)

Use Intelligent font-based character segmentation

Featurize the segmented characters and merge char-glyph feature files

Train the system

 14

3.4 Segmentation and Recognition

 With the objective of grouping broken characters, segmenting conjuncts and

touching characters, the technique of font-based intelligent character segmentation and

recognition was developed. As discussed earlier, it falls in second category of character

segmentation with an advantage of reducing the hypotheses by the knowledge of next

character’s position, given the present character. This is achieved using the font-file

parameters.

Algorithm:

 The document image file is classified into zones, lines and words. For each word,

connected component analysis is performed. Assuming maximum N uncovered

components can be combined together to form the next character, there can be
N
C1 +

N
C2 + …

N
CN possible nodes (ηi) for next stage (typically N = 3). Given the present

character, propositions (ρi) are made for next-character’s locations (using font-

model). Those ηi which do not overlap (with threshold τ) with any ρi, are discarded. ηi

which overlap (with threshold τ) with any ρi are inserted into a set γ. ηi which enclose

any ρi are inserted into a conjunct set δ. Nodes of set γ are ranked as per their

confidences returned from the recognizer. Nodes of the conjunct set δ are given for

conjunct-test (described later). If they pass the test, the conjunct is broken into

possible characters using Dijkstra’s algorithm [12, 21] and individual character

confidences are returned. Only the first character (along with its confidence) from

every conjunct is kept in the set δ and later characters are removed. The best

confidence character is picked from set γ and δ combined. The process is repeated for

the uncovered connected components in next stage. In case of dead-ends (when no

possible character location coincides with the present connected-component nodes),

back-tracking is performed. Figure 7 below shows the process.

 15

Figure 7 Dynamic Network created during best-path search of word-recognition (using Font-models)

Conjunct-test: The conjuncts form an integral part of any syllabic scripts. Many

characters combine together to form a single shape. Without the prior knowledge of

the script and using special modules, it has been nearly impossible to detect and split

a conjunct into its character components. Techniques so far have relied on a crude

method of aspect ratio threshold to determine if a character is a conjunct and needs to

be broken down further. With font-models, an intelligent conjunct detection

procedure has been developed. As shown in figure below, a character is passed for

conjunct-analysis only if it encompasses the possibility of two or more characters of

the given script under test. This position-analysis can be done only through font-

models of the script, as illustrated in figure 8.

NC1

NC2

NCN

Next Possible Char

 Single Conjunct

?

Is Char Possible? – Using Font Model

X X

RECOGNITION

Choose Best Solution

Recognized Char

 16

Figure 8 Conjunct Detection. Red Box shows a possible conjunct under detection. If two characters

(blue boxes) fit in (using font-model), it is a conjunct

4 Experiments

4.1 Datasets

Our experiments were conducted on two scripts – Latin (non-syllabic) and Khmer

(syllabic). Two datasets of English – KTI and DOE and one Khmer dataset were used.

KTI documents have varying amount of clarity across the pages which lead to quite good

number of broken and touching characters (figure 9). Apart from this, the documents

contain noise introduced during printing and scanning process. Also, the characters in

words are skewed and not aligned perfectly with word’s bottom reference line. This

imposes challenges for character segmentation and prediction of next-character position

using font-models. The most resembling font is NSimSum. DOE dataset, on other hand, is

a much cleaner dataset, with font resembling more closely to Courier New. A single

English document had approximately 2000 characters and 330 words. Khmer dataset

contains some documents from Cambodian Gazetteer (7 in number) and few documents

(8 in number) scanned from other resources. These documents have dark prints and hence

suffer badly from touching-character problem. This combined with the presence of

numerous conjuncts in Khmer script, becomes a great dataset for evaluation of our

Yes No

Is Conjunct?

Conjunct Connected
Component

Given char’s
proposed
Bbox

If yes, is there another
following char that fits
too?

 17

techniques. The closest font to the documents is of Limon S1. A single Khmer document

had approximately 1500 characters and 100 words.

 In dataset, randomly three to five documents were chosen for training. The idea

was to evaluate our schemes under limited user feedback and training set – which is

generally the case for any new script under study. The accuracy figures reported are the

average figures of test documents (2 to 5 in number)

4.2 Protocols for evaluation

 The text-documents returned by the OCR system are matched against the ground-

truth data using an in-lab evaluation tool called Lamp Lab Evaluation Tool. The

evaluation tool prints out an elaborate description of insertion, deletion and substitution

errors in form of one-to-one, one-to-two, two-to-one, two-to-two confusions. It also

summaries (in descending order) the most confused characters along with their

confusions. Apart from character confusions, it also dumps word-confusion matrices in

the similar fashion. These results were used to analyze the problems with our schemes

and helped recovering many bugs and errors in the programs.

4.3 Feature Extraction

 The template matching and directional feature extraction results are compared

below, both for English and Khmer documents. Weighted similarity measure (section 2)

was used to classify templates and CBDD was used to classify directional feature set.

Table 1 Compares character level accuracy results for Latin and Khmer script using Template and

Directional features

 English Khmer

 Template

Matching

Directional

Features

Template

Matching

Directional

Features

Char

Accuracy

86% 93% 84% 89%

 18

4.4 Character Segmentation

 The following figures show the improvements in character segmentation both for

broken and touching characters. Figure 9 (a) shows the results of segmentation using

dissection-based technique for English KTI document, whereas (b) shows intelligent

font-based segmentation for the same document. (c) shows the results of segmentation

using dissection-based technique for Khmer (d) using intelligent font-based segmentation

Figure 9 shows improvements of our technique over older dissection based techniques (a) shows

Latin script character segmentation using dissection-based technique (b) shows the results using our

technique (c) & (d) show results for Khmer script using dissection and our font-model based

technique respectively

(a) (b)

(c)

(d)

 19

4.5 Recognition Results

 The table below summaries the improvements gained using font-model based

intelligent character segmentation and recognition – both for KTI English and Khmer

dataset. Character accuracies as well as word accuracies have been reported. The

accuracies reported are using directional feature extraction scheme and CBDD classifier.

WOFM stands for WithOut Font Model (following dissection-based segmentation) and

WFM stands for With Font Model

Table 2 Compares char and word level accuracies for Latin and Khmer scripts using dissection

based and font-based techniques

 English Khmer

 WOFM WFM WOFM WFM

Char

Accuracy

93% 96% 89% 92%

Word

Accuracy

83% 89% 38% 37%

Due to much higher word-length in Khmer, the word-accuracies plummet as compared to

English.

5 Conclusion and Future Work

The paper presented a novel technique to intelligently segment and recognize characters

in complex syllabic scripts, using font-models. It also emphasized the importance of a

good feature extraction module (directional features over template or Zernike moments).

These techniques not only enhanced degraded text-recognition results, but also obviated

the need of a large number of training documents. An intelligent conjunct-detection

scheme was also proposed which is more intuitive than aspect ratio. These techniques do

not differentiate syllabic or non-syllabic approaches for segmentation and hence carry out

direct character segmentation from words even for syllabic scripts. It aims for word-

based recognition and hence is ready for language-models.

 This technique however is slower than dissection-based segmentation and

recognition, as it inculcates best possible recognition results analysis at every step of

 20

word-recognition. Also, it is susceptible to mis-recognitions if the font-size of a character

changes abruptly within a single word. This is because the model works on a self-

learning font-size model for each word and currently can not handle big aberrations in

character font-sizes within a single word.

The next step towards improvement of recognition is a right combination of

classifiers. Bootstrapping mechanism to re-learn or update training files during

recognition will boost the recognition rate.

References

1. U. Pal, B.B. Chauduri, Indian script character recognition: a survey, Pattern

Recognition, Vol. 37, 2004.

2. L. O’ Gorman and R. Kasturi. Document Image Analysis, IEEE Computer

Society Press, Los Alamitos, CA (1995)

3. Y. Suen, M. Berthod and S. Mori, Automatic recognition of hand-printed

character—the state of art. Proc. IEEE 68 (1980), pp. 469–487.

4. G.H. Granlund, Fourier pre-processing for hand-printed character recognition.

IEEE Trans. Comput. C21 (1972), pp. 195–201.

5. S.A. Mahmoud, Arabic character recognition using Fourier descriptors and

character contour encoding. Pattern Recognition 27 (1994), pp. 815–824.

6. C. Choisy and A. Belaid, Cross-learning in analytic word recognition without

segmentation. Int. J. Document Anal. Recognition 4 (2002), pp. 281–289

7. R. Plamondon and S.N. Srihari, On-line and off-line handwritten recognition: a

comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), pp. 62–

84.

8. U. Bhattacharya, T.K. Das, A. Datta, S.K. Parui and B.B. Chaudhuri, A hybrid

scheme for handprinted numeral recognition based on a self-organizing network

and MLP classifiers. Int. J. Pattern Recognition Artif. Intell. 16 (2002), pp. 845–

864

9. Y. Chi and H. Yan, Handwritten numeral recognition using self-organizing maps

and fuzzy rules. Pattern Recognition 28 (1995), pp. 56–66.

10. A.S. Britto, R. Sabourin, F. Bortolozzi and C.Y. Suen, The recognition of

handwritten numerals strings using a two-stage HMM based method. Int. J.

Document Anal. Recognition 4 (2003), pp. 102–117.

 21

11. D. Stefano, A.D. Cioppa, A. Marcelli, Handwritten numeral recognition by means

of Evolutionary Algorithms, Proceedings of the Fifth International Conference on

Document Analysis and Recognition, 1999, pp. 804–807

12. H. Ma and D. Doermann, Adaptive OCR with Limited User Feedback, 8th Int’l

Conf. Document Analysis and Recognition (ICDAR), 2005, pp 814-818

13. H. Ma and D. Doermann, Adaptive Hindi OCR Using Generalized Hausdorff

Image Comparison, ACM Transactions on Asian Language Information

Processing, Vol. 26, No. 2, 2003, pp198-213

14. M. Teague. Image analysis via the general theory of moments. Journal of the

Optical Society of America, 70(8):920–930, 1979

15. A. Khotanzad and Y. H. Hong. Invariant image recognition by Zernike moments.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):489–497,

1990.

16. Nei Kato, Masato Suzuki, Shin'ichiro Omachi, Hirotomo Aso, Yoshiaki Nemoto,

A Handwritten Character Recognition System Using Directional Element Feature

and Asymmetric Mahalanobis Distance, IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 21, no. 3, pp. 258-262, Mar., 1999

17. D. Trier, A. K. Jain, and T. Taxt, Feature extraction methods for character

recognition - a survey, Pattern Recognition, vol. 29, no. 4, pp. 641-662, Apr.

1996.

18. G. Casey and E.Lecolinet, A Survey of Methods and Strategies in Character

Segmentation, IEEE on pattern Analysis and machine intelligence, vol. 18, 1996.

19. G.E. Kopec and P.A. Chou, Document Image Decoding Using Markov Source

Models, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6,

pp. 602-617, June 1994.

20. A.C. Kam and G.E. Kopec, Document Image Decoding by Heuristic Search,

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 945-

950, Sept. 1996.

21. http://en.wikipedia.org/wiki/Dijkstra's_algorithm

22. http://unicode.org/book/ch09.pdf

