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Abstract 

We have developed a font-based intelligent character segmentation and recognition 

system. Using font-characteristics of structurally similar looking font-files, this system 

aims at building a font-model to aid in the recognition of new scripts irrespective of 

glyph composition. Three feature extraction schemes have been used to demonstrate the 

importance of appropriate features for classification. The schemes have been tested on 

Latin as non-syllabic and Khmer as syllabic scripts and results are reported. Experiment 

results show the recognition accuracy can reach 92% for Khmer and 96% for Latin 

degraded image documents, both at character level. This work is a step towards 

recognition of scripts of low-density languages which typically do not warrant the 

commercial development of OCR. 
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1 Introduction 

 

There are many script-specific recognizers in the market. Such recognizers are generally 

based on some assumptions on the dataset and try to cover a wide variety of font sizes, 

script properties and request a very large collections of training samples (with ground-

truth). Unfortunately, they are often too general and can not adapt well to outliers caused 

by noise or non-traditional fonts. Our challenge is to train and build a system which can 

tune itself to any new script with a minimal set of training samples and limited user 

interaction. With the base of recognition remaining same, accuracy should be enhanced 

by using some script specific features, if needed. Despite much ongoing research on non-

Latin script recognition, most of the commercial OCRs still feature Latin script 

recognition as one of the primary objectives with high accuracies. Efforts on non-Latin 

scripts are quite segregated and continue to be tailored for specific scripts using their 

inherit features explicitly. The outcomes of such efforts are costly and do little to advance 

the field. 

Traditionally, pattern recognition techniques for character recognition have been 

divided into two major categories [1] – template-based and feature-based [2, 3]. 

Template-based approaches aim to create a probabilistic template of each character 

model from the training data. During testing, the unknown pattern is superimposed 

directly on the ideal template pattern and degree of correlation is used to decide about the 

classification. This is generally the first step towards any new script analysis and 

classification. To enhance the accuracy, template based results are often combined with 

feature-based approaches. 

Feature-based approaches extract feature vectors from training samples and aim to 

create a class-model out of all vectors of a given class. The challenge is to derive those 

features that aid in differentiating the class from other classes rather than solely 

representing that class. The feature-based approaches can be of two types, namely spatial 

domain and transform domain approaches [4, 5]. Spatial domain approaches derive 

features directly from the pixel representation of the pattern. In a transform domain 

technique, the pattern image is first transformed into another space using, for example, 
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Fourier, Cosine, Slant or Wavelet transform and useful features are derived from the 

transformed images [4]. Support Vector Machines (SVMs) have also been successful at 

recognizing various non-Latin scripts. Though SVMs are suited for binary classification 

problems, DAG-SVMs can solve a set of 2-class classification problems, hence a multi-

class problem – by choosing the maximum of the outputs of all SVMs.  

Apart from these two techniques, there is plethora of other techniques which do 

not explicitly derive features from the patterns [6, 7]. During training, after 

normalization, the system adjusts its parameters to minimize the misclassifications. The 

system, thus trained is used for classifying unknown patterns. One of the most popular 

methods in this domain is artificial neural network – which adjusts its weights from the 

training samples – and uses these weights as features during classification. Though many 

papers have been published in this domain [8, 9], the weights in neural networks can not 

be analyzed like feature vectors – thus making the process, a black-box mechanism. 

Hidden Markov Model (HMM) [10] is a non-explicit feature-based method which works 

on large number of training samples to estimate the probability parameters. It has been 

quite successful in handwriting and speech recognition. Fuzzy rules [9], Mahalanobis and 

Hausdorff distance, Evolutionary algorithms [11] are other techniques used for the 

recognition purposes. 

 The paper has been divided into six sections. Section 2 deals with the complexity 

of various scripts, our recognition system with various modules. Section 3 elaborates on 

the challenges which we faced with the system and how font-files analysis, models, 

training and testing proposed a solution. This is followed by experiments in section 5. 

Some conclusions and directions of future work are presented in section 6.  

 

2 Approach 

 

The objective is to create a generic script recognizer which can be trained using minimal 

number of document samples. Since our research is more targeted towards unexplored 

scripts like Khmer etc., easy availability of ground-truth data can not be assumed [12]. 

Due to this, many techniques like SVMs, which require a high amount of training data, 
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can not be used for training and classification. Apart from that, limited user feedback is 

also the key to system’s adaptiveness. The system contains three different functional 

components (1) Hierarchical segmentation (2) Feature Extraction (3) Classification. The 

modules are described in detail as under: 

 

2.1 Segmentation 

 

It is practically infeasible to segment out characters for complex non-Latin scripts 

for feature extraction. Hence, a limited user feedback mechanism was developed in which 

whole document ground-truth (text) is fed along with the document image. The text-

alignment is done by aligning zone, line and words in image and document text. Since 

ground-truth can be erroneous, only the best-match parts are returned. Syllabic and non-

syllabic scripts have different procedures for character alignment. Words in non-syllabic 

scripts (e.g. English) are composed of vertically separable characters whereas in syllabic 

scripts (like Khmer, Devanagari etc.) they are composed of vertically separable syllables. 

Each syllable can be further broken down into characters – a process which is very script 

specific. The system was developed for Latin as non-syllabic and Khmer as a syllabic 

script.  

 Figure 1 shows the segmentation of Khmer document in zones, lines, words, 

syllables and characters. 

 

 

 

(a) 

(b) 
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Figure 1 (a) Zone Segmentation (b) Line Segmentation (c) Word Segmentation (d) Syllable 

Segmentation (e) Character Segmentation of Khmer script 

 

For each connected component in a word, accents or separate dots are merged to form a 

character [13]. With the assumption that a character won’t be too wide or too narrow, a 

connected component satisfying the following conditions is considered a template 

candidate: 

(1) The aspect ratio falls in the range [rlow, rhigh]; 

(2) The area is larger than Amin; 

where rlow, rhigh are the predefined low and high aspect ratio thresholds respectively and 

Amin is the area threshold (derived from the data, the values were found to be 0.2, 1.0 and 

5 respectively [13]).  For each matched (aligned) character in the ground-truth text and 

document word-image, a class-template is created. However, for each word, the newly 

extracted components may leave another isolated component which can be added to the 

template set. The remaining part of the word is then rechecked and if doesn’t match any 

template above a threshold, a new template map is generated. The new templates can be 

used to find more matches, with additional templates generated by the same procedure. 

This process is iterated until no new template forms.  

 

(c) 

(d) 

(e) 
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2.2 Feature Extraction 

 

After character segmentation, each character is processed through a 

featurization routine where the best-describing or differentiating features are extracted 

out in form of a feature vector. These feature vectors are then used in training and testing. 

Three featurization routines were developed and can be used interchangeably using 

configuration files: 

 

Template initialization: Each character image is first resized to a 32-by-32 vector map. A 

probabilistic template is generated through all samples of sample class from the training 

data [12] 

 

Zernike Moments: Moment descriptors have been studied for image recognition and 

computer vision since 1960s. Teague [14] first introduced the use of Zernike moments to 

overcome the shortcomings of information redundancy present in the popular geometric 

moments. Zernike moments are a class of orthogonal moments which are rotation 

invariant and can be easily constructed to an arbitrary order. And it was shown in [15] 

that Zernike moments are effective for the optical character recognition (OCR).  

 

Directional Features: Template and Zernike moments do not utilize inherit ‘directional’ 

property of complex scripts. The relative placement of neighboring pixels is more 

important than the overall placement of pixels forming the character. On one hand where 

templates are too rigid about character’s shape and for noisy documents they can result in 

poor models for classification, Zernike moments are transform-based feature analysis 

method – which are difficult to visualize in that dimension. Directional Feature [16] 

records the relative neighboring pixel positions for each contour pixel and generates a 

feature vector using that information.  

 The character image is normalized and contour extracted. It is then resized to a 

64-by-64 mesh. This mesh is divided into 49 (7-by-7) sub-areas of 16-by-16 pixels where 

each sub-area overlaps eight pixels of adjacent sub-area (see figure 2). For each sub-area, 

a four-dimensional vector (x1, x2, x3, x4) is defined where x1, x2, x3, x4 record the 
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relative direction (vertical, horizontal, forward inclined, backward inclined) of 

neighboring pixels for each pixel in the sub-area. Hence, a 49 x 4 = 196 unit long feature 

vector is produced. Figure 2 shows the directional feature extraction process step-by-step. 

 

 

Figure 2 Directional Element Feature Extraction 

 

2.3 Classification 

 During the testing phase, after character segmentation and featurization, each 

feature vector is classified to one of the trained classes. The following methods were 

tested for classification. 

 

2.3.1 Template Matching 

 

Awarding probabilities when template pixel matches with the corresponding pixel in a 

candidate character image and penalizing otherwise, forms the core objective of template 

matching. The template which has the best match is considered to be the class of the 

character image. The candidate character image is binary, while the pixel values of the 

16 X 16 pixels 

For every pixel, look  
at its neighbors and  
maintain a record of 
Vertical, horizontal,  
two oblique lines using 

Aggregate records 
For every block 

Normalization and 
contour extraction 

Dividing into 7 X 7 blocks 
of 16 X 16 pixel 

Feature vector 
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template map g(x, y) are in a range [0,Ninst], therefore g(x,y) is first normalized. The 

similarity of a character image f(x,y) and a template gb(x,y) is defined as a weighted 

similarity as: 

 

where the weight w(x,y) is defined as: 

 

 

2.3.2 Hierarchical Classification 

 

Kanji and South-East Asian scripts have a large set of alphabets. Hence, one-stage 

discrimination doesn’t generally suffice. In this approach, two-stage classification was 

used: rough and fine classification. The aim of rough classification is to cluster similar-

looking characters into groups and then perform fine classification to extract the right 

class [16].  

 

a. City Block Distance with Deviation (CBDD) 

Let v = (v1, v2, … vn) be an n-dimensional input vector and µ = (µ1, µ2, … µn) be the 

standard vector of a category. The CBDD is defined as: 

 

where sj denotes the standard deviation of j
th

  element, and θ is a constant. 

 

b. Asymmetric Mahalanobis Distance 

For each cluster, the right class is obtained by finding the minimum asymmetric 

Mahalanobis distance from the templates in that cluster. The function is given by: 



 8 

 

where b is the bias,  is the quasi mean vector of the samples of the class m, φj is the 

eigenvector of covariance matrix of this category and  is the quasi variance. In case of a 

tie, N-nearest neighbor is called, with N = 3. 

 

3 Font-file based Intelligent Character Segmentation 

3.1 Motivation 

 

The paper has already discussed the differences in character segmentation 

approaches for Latin and non-Latin scripts. The structure of non-Latin scripts vary a lot 

from Latin scripts not only in form of character shapes but also in writing order, layout 

and word-compositions. Presence of language-specific constructs, in the domain of non-

Latin scripts, such as shirorekha (Devanagari), modifiers (South-East Asian scripts), or 

non-regular word-spacing (Arabic and Chinese) require different approaches to layout 

analysis. Character segmentation is the major challenge in Chinese and South-East Asian 

scripts like Khmer, Devanagari etc. Asian scripts though share a lot of common 

properties yet pose different complications while dealing with segmentation. For 

example, figure 3 (c) shows the word ا������ al-arabiyyah, "the Arabic [language]" in 

Arabic, in stages of rendering. The first line shows the letters as they are unprocessed, the 

result that would be given by an application without complex script rendering. In the 

second line the bidirectional display mechanism has come to play, and in the third the 

glyph shaping mechanism has rendered the letters according to context. 3 (b) shows a 

word in Devanagari where characters are combined together to form a word. A 

character’s appearance is affected by its ordering with respect to other characters, the font 

used to render the character, and the application or system environment. Additionally, 

like Burmese (figure 3(a)), in Devanagari or other Indic scripts, few characters cause a 

change in the order of the displayed characters. These features propose greater challenges 
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in segmentation of characters from word-images. While conventional vertical or 

horizontal profiling methods fail in segmenting out characters directly from words, 

character segmentation from syllables using only connected component analysis itself is a 

complex task which is highly correlated with the script characteristics.  

 

 

Figure 3 (a)  Burmese script (b) Devanagari character composition (c) Arabic Word rendering 

 

Apart from these, degraded text-documents have their own pool of recognition 

problems. Due to broken and touching characters, many times the character segmentation 

fails which in turn effects feature extraction and classification. One of the major 

components of a good recognition system is a feature-extraction module. [17] talks about 

various feature extraction methods for off-line recognition of segmented (isolated) 

characters. The choice of right feature extraction algorithm is considered to be the single 

most important factor in achieving high recognition performance. Various algorithms 

reported in the paper talks about invariance properties, reconstructability, expected 

distortions and variability of the characters. The assumption carried throughout is the 

availability of segmented isolated characters! Some of the complex problems in the field 

of syllabic character segmentation have been already enlisted. This implies that the 

benefits of good feature extraction modules (followed by classifiers or their 

combinations) can not be reaped until we have a robust generic solution to character 

segmentation problem.  

[18] talks about four methods of character segmentation. First being dissection, 

where image is decomposed into classifiable units before featurization and classification. 

This solution faces the curse of recluse! Due to its disconnectivity from the later modules, 

mauidt 

दददद    +    ◌्◌◌््◌्    + धधधध    +    ◌्◌◌््◌्    + रररर    +    ◌्◌◌््◌्    + यययय    = 

�	य�	य�	य�	य  
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the process doesn’t enjoy the benefits of feedback from those modules.   Second set of 

methods try to classify subsets of spatial features collected from a word image as a 

whole. No complex ‘dissection’ algorithm has to be built and recognition errors are 

basically due to failures in classification. Segmentation hypotheses are generated and 

choice of best hypotheses along the word, gives best recognition result. The challenge is 

this approach is to come up with minimal number of possibly correct hypotheses. The 

third set of strategies is to over-segment the word-image at some heuristics. Though these 

techniques do fairly well in handwriting domain, their fruitfulness has not yet been 

established in printed-character recognition. The fourth method recognizes an entire word 

as a unit, and is termed as holistic strategy. A major drawback of this class of methods is 

that their use is usually restricted to a predefined lexicon. 

 

 

3.2 Solution: Font-Models 

 

With the motivation of building up an intelligent generic character segmentation and 

recognition system for any complex syllabic script, font files, being the source of script-

renderings, were analyzed! Due to the unavailability of ground-truth data for less-

researched scripts, glyphs from a bunch of font-files can be used as training samples. 

Font-files have a wealth of information and possess a generative model for every 

character. They contain the following set of information for a given script font: 

• List of characters 

• Glyphs of each character 

• Font ascender 

• Font descender 

 

    For each character at a particular font size, the file contains its 

• Unicode value 

• Height 

• Width 
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• Horizontal Advance: the horizontal distance between the origins of present 

and next character in a word 

• Vertical Advance: the vertical distance between the origins of present and 

next character in a word 

• Bounding Box 

• Left Bearing: the horizontal distance between the left-end of bounding box 

and its origin 

• Right Bearing: the horizontal distance between the right-end of bounding box 

and origin 

• Rules of combination of various characters forming complex new shapes 

Many of such parameters are redundant, as they can be derived from other 

parameters. e.g.  

Right bearing = |left bearing| + horizontal_advance – width 

where width = bounding box right edge – bounding box left edge 

 

A word’s rendering takes place in the 

following manner. First character is placed 

with the given font face and size. Using the 

horizontal-advance and vertical-advance, 

origin of next character is determined. 

When the next character is printed, its left-

bearing and bounding-box top-edge 

determines where to place it with respect to 

the previous character. Figure 4 shows the 

process steps. 

 

Figure 4 shows rendering of characters in a word 

in Khmer using font-models (a) Locating first 

char (b)  Placing char into the location (c) 

Determination of Origin of next character (d) 

Determination of next char's position (e) Placing 

the second character 
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Hence, using a group of similar looking font files, glyphs can be extracted [19, 20] and 

used for training purposes. This eradicates the problem of unavailability of all characters 

in the huge alphabet of syllabic scripts with limited ground-truth. The glyphs extracted 

can substitute for missing or lesser available character classes from ground-truth. For a 

given font face and size, following information was extracted: (a) glyph of characters (to 

train them along with samples available from limited ground-truth) (b) horizontal-

advance of each character (to determine the position of next character’s origin) (c) 

bounding box location of present character (given its origin). This information is then 

used to segment characters from word-images during training using the process described 

above (figure 4). 

 Before venturing into training using font-files, a number of structurally similar 

looking font-files were processed to visually analyze the consistency in these model-

parameters for a given font-size. The figure 5 summarizes the results for three fonts of 

Devanagari script. As shown, all the fonts place each character nearly at same position, 

hence validating the consistency in these parameters. Similar analysis was done for non-

syllabic script (English) as well. 

 

 

     

Figure 5 shows locations of  3 different characters of  Devanagari script using 3 structurally similar 

Devanagari font files 

 

 

 

 

Origin 

3 different 
fonts 

3 
different 
chars 
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3.3 Training using Font files 

 

 The flowchart below describes the step-by-step process of training document 

images with sparsely available ground-truth data.  

 

Step 1, 2: A bunch of similar looking font files, resembling the text in documents under train, are entered 

along with ground-truth files.  

Step 3: Bounding box and horizontal advance properties for each character are extracted from the font files 

and averaged out.  

Step 4: The character glyphs from font files are passed through the feature extraction routines.  

Step 5: Each document image along with its corresponding ground-truth file, is passed through zone 

segmentation module and a CNode structure (containing Page � Zone � Line � Word) is created 

containing word-alignments.  

Step 6: Each word in this CNode structure is further segmented into characters using font-properties 

extracted out in step 2 and these characters are aligned with their corresponding ground-truth.  

Step 7:  For each character segmented out in the document image, feature extraction is performed and 

merged with that of its corresponding glyph from step 4. 

Step 8: System is trained using the features 

 

 

     Figure 6 Training Chart using Font Models 

Bunch of font-files entered 

Extract BBox and horizontal advance for each character 

Ground-truth files entered 

Featurize the char-glyphs from font files 

Align ground-truth data with document images (by calling CNode) 

Use Intelligent font-based character segmentation 

Featurize the segmented characters and merge char-glyph feature files 

Train the system 



 14 

3.4 Segmentation and Recognition 

 

 With the objective of grouping broken characters, segmenting conjuncts and 

touching characters, the technique of font-based intelligent character segmentation and 

recognition was developed. As discussed earlier, it falls in second category of character 

segmentation with an advantage of reducing the hypotheses by the knowledge of next 

character’s position, given the present character. This is achieved using the font-file 

parameters.  

  

Algorithm: 

 The document image file is classified into zones, lines and words. For each word, 

connected component analysis is performed. Assuming maximum N uncovered 

components can be combined together to form the next character, there can be 
N
C1 + 

N
C2 + … 

N
CN possible nodes (ηi) for next stage (typically N = 3). Given the present 

character, propositions (ρi) are made for next-character’s locations (using font-

model). Those ηi which do not overlap (with threshold τ) with any ρi, are discarded. ηi 

which overlap (with threshold τ) with any ρi are inserted into a set γ. ηi which enclose 

any ρi are inserted into a conjunct set δ. Nodes of set γ are ranked as per their 

confidences returned from the recognizer. Nodes of the conjunct set δ are given for 

conjunct-test (described later). If they pass the test, the conjunct is broken into 

possible characters using Dijkstra’s algorithm [12, 21] and individual character 

confidences are returned. Only the first character (along with its confidence) from 

every conjunct is kept in the set δ and later characters are removed. The best 

confidence character is picked from set γ and δ combined. The process is repeated for 

the uncovered connected components in next stage. In case of dead-ends (when no 

possible character location coincides with the present connected-component nodes), 

back-tracking is performed.  Figure 7 below shows the process. 
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Figure 7 Dynamic Network created during best-path search of word-recognition (using Font-models) 

 

Conjunct-test: The conjuncts form an integral part of any syllabic scripts. Many 

characters combine together to form a single shape. Without the prior knowledge of 

the script and using special modules, it has been nearly impossible to detect and split 

a conjunct into its character components. Techniques so far have relied on a crude 

method of aspect ratio threshold to determine if a character is a conjunct and needs to 

be broken down further. With font-models, an intelligent conjunct detection 

procedure has been developed. As shown in figure below, a character is passed for 

conjunct-analysis only if it encompasses the possibility of two or more characters of 

the given script under test. This position-analysis can be done only through font-

models of the script, as illustrated in figure 8. 

 

  

NC1 

  

NC2 

 

NCN 

Next Possible Char 

  Single Conjunct 

? 

Is Char Possible? – Using Font Model 

X X 

RECOGNITION 

Choose Best Solution 

Recognized Char 
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Figure 8 Conjunct Detection. Red Box shows a possible conjunct under detection. If two characters 

(blue boxes) fit in (using font-model), it is a conjunct 

 

 

4 Experiments 

4.1 Datasets 

 

Our experiments were conducted on two scripts – Latin (non-syllabic) and Khmer 

(syllabic). Two datasets of English – KTI and DOE and one Khmer dataset were used. 

KTI documents have varying amount of clarity across the pages which lead to quite good 

number of broken and touching characters (figure 9). Apart from this, the documents 

contain noise introduced during printing and scanning process. Also, the characters in 

words are skewed and not aligned perfectly with word’s bottom reference line. This 

imposes challenges for character segmentation and prediction of next-character position 

using font-models. The most resembling font is NSimSum. DOE dataset, on other hand, is 

a much cleaner dataset, with font resembling more closely to Courier New. A single 

English document had approximately 2000 characters and 330 words. Khmer dataset 

contains some documents from Cambodian Gazetteer (7 in number) and few documents 

(8 in number) scanned from other resources. These documents have dark prints and hence 

suffer badly from touching-character problem. This combined with the presence of 

numerous conjuncts in Khmer script, becomes a great dataset for evaluation of our 

Yes No 

Is Conjunct? 

 

Conjunct Connected 
Component 

Given char’s 
proposed 
Bbox 

If yes, is there another 
following char that fits 
too? 
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techniques. The closest font to the documents is of Limon S1. A single Khmer document 

had approximately 1500 characters and 100 words. 

 In dataset, randomly three to five documents were chosen for training. The idea 

was to evaluate our schemes under limited user feedback and training set – which is 

generally the case for any new script under study. The accuracy figures reported are the 

average figures of test documents (2 to 5 in number) 

4.2 Protocols for evaluation 

 The text-documents returned by the OCR system are matched against the ground-

truth data using an in-lab evaluation tool called Lamp Lab Evaluation Tool. The 

evaluation tool prints out an elaborate description of insertion, deletion and substitution 

errors in form of one-to-one, one-to-two, two-to-one, two-to-two confusions. It also 

summaries (in descending order) the most confused characters along with their 

confusions. Apart from character confusions, it also dumps word-confusion matrices in 

the similar fashion. These results were used to analyze the problems with our schemes 

and helped recovering many bugs and errors in the programs. 

 

4.3 Feature Extraction  

 The template matching and directional feature extraction results are compared 

below, both for English and Khmer documents. Weighted similarity measure (section 2) 

was used to classify templates and CBDD was used to classify directional feature set. 

 

Table 1  Compares character level accuracy results for Latin and Khmer script using Template and 

Directional features 

 

 English Khmer 

 Template 

Matching 

Directional 

Features 

Template 

Matching 

Directional 

Features 

Char 

Accuracy 

86% 93% 84% 89% 
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4.4 Character Segmentation  

 

 The following figures show the improvements in character segmentation both for 

broken and touching characters. Figure 9 (a) shows the results of segmentation using 

dissection-based technique for English KTI document, whereas (b) shows intelligent 

font-based segmentation for the same document. (c) shows the results of segmentation 

using dissection-based technique for Khmer (d) using intelligent font-based segmentation 

 

 

 

 

 

Figure 9 shows improvements of our technique over older dissection based techniques (a) shows 

Latin script character segmentation using dissection-based technique (b) shows the results using our 

technique (c) & (d) show results for Khmer script using dissection and our font-model based 

technique respectively 

 

 

 

(a) (b) 

(c) 

(d) 
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4.5 Recognition Results 

 The table below summaries the improvements gained using font-model based 

intelligent character segmentation and recognition – both for KTI English and Khmer 

dataset. Character accuracies as well as word accuracies have been reported. The 

accuracies reported are using directional feature extraction scheme and CBDD classifier. 

WOFM stands for WithOut Font Model (following dissection-based segmentation) and 

WFM stands for With Font Model 

 

Table 2 Compares char and word level accuracies for Latin and Khmer scripts using dissection 

based and font-based techniques 

 

 English Khmer 

 WOFM WFM WOFM WFM 

Char 

Accuracy 

93% 96% 89% 92% 

Word 

Accuracy 

83% 89% 38% 37% 

 

Due to much higher word-length in Khmer, the word-accuracies plummet as compared to 

English. 

 

5 Conclusion and Future Work 

The paper presented a novel technique to intelligently segment and recognize characters 

in complex syllabic scripts, using font-models. It also emphasized the importance of a 

good feature extraction module (directional features over template or Zernike moments). 

These techniques not only enhanced degraded text-recognition results, but also obviated 

the need of a large number of training documents. An intelligent conjunct-detection 

scheme was also proposed which is more intuitive than aspect ratio. These techniques do 

not differentiate syllabic or non-syllabic approaches for segmentation and hence carry out 

direct character segmentation from words even for syllabic scripts. It aims for word-

based recognition and hence is ready for language-models. 

 This technique however is slower than dissection-based segmentation and 

recognition, as it inculcates best possible recognition results analysis at every step of 
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word-recognition. Also, it is susceptible to mis-recognitions if the font-size of a character 

changes abruptly within a single word. This is because the model works on a self-

learning font-size model for each word and currently can not handle big aberrations in 

character font-sizes within a single word.  

The next step towards improvement of recognition is a right combination of 

classifiers. Bootstrapping mechanism to re-learn or update training files during 

recognition will boost the recognition rate.  
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