
Finding Chapel’s Peak: Introducing Auto-Tuning to the
Chapel Parallel Programming Language

Ray S. Chen

Department of Computer Science

University of Maryland,

College Park, MD 20742

Email: rchen@cs.umd.edu

Abstract
The benefit of automated application tuning has been the focus of numerous research projects, yet

applying this technology remains a completely manual and labor-intensive process. This paper explores

first steps towards reducing the adoption cost of auto-tuning in the context of Chapel; a parallel

programming language whose development is being led by Cray Inc. Novel information can be inferred

from Chapel’s syntax to locate likely auto-tuning parameter candidates and present them to a user for

verification. The set of accepted parameters may then be used directly by Tuna, an Active Harmony

command-line tuner whose development was motivated by this research project. To demonstrate the

immediate utility of this system, two Chapel programs are shown to be auto-tunable with little or no

internal knowledge of the program source. Finally, the groundwork for future automated auto-tuning in

Chapel is laid through the development of a performance unit-test for thread/cache optimization.

1) Introduction
Ironically, the use of current auto-tuning software and frameworks is an intensely manual process. This

is especially of true of recent advancements by Tiwari [7]. In his dissertation, he demonstrates auto-

tuning within a single function of an application by effectively merging just-in-time compilation with the

traditional feedback-directed optimization loop. A system that tunes at such a fine-grained level can

provide excellent properties, such as performance improvements within a single execution. However, a

high cost is paid during the initial incorporation of the auto-tuning framework. Few applications are

written to handle the external modification of their internal variables during execution. Without skilled

technicians and domain experts to analyze and prepare the target, it can at best be treated as a block

box to which parameters are fed.

To a certain degree, this complexity is unavoidable due to the wide scope of auto-tuning. However,

there are two conceptual tasks common to the adoption phase of every auto-tuning project. The first

involves identifying tunable parameters and bounding their possible values. The second involves

locating the regions of the source code that are affected by the chosen parameters. Command-line

parameter tuning implicitly selects the entire binary, whereas adaptive code-generation requires the

selection of specific functions or loops. The key observation is that these properties are difficult to infer

after the application has been written. Presumably, the original application developers were familiar

enough with the problem domain to identify the tunable variables and regions of their own code. The

task of automating auto-tuning would be greatly simplified had they been philanthropic enough to

annotate the source with this information.

Of course, it is unreasonable to expect all applications to be developed with auto-tuning in mind; we

must gather this information through alternate means. Fortunately, we need not abandon the original

author as a resource for auto-tuning information. If the application was written in a modern

programming language such as Chapel [1], novel information can be inferred regarding internal program

variables and their intended use. We explore the possibility of using this information to reduce the

adoption cost of auto-tuning technologies.

2) Chapel
Chapel is a parallel programming language born from Cray, Inc.’s entry in the High Productivity

Computing System program. The goal of Chapel is to improve the productivity of high-performance

computing by improving the programmability of multi-core systems and large-scale parallel computers.

High-level abstractions for data and task parallelism free users from the tedium typical of low-level

parallel programming languages while providing additional correctness and portability benefits.

Performance is also a fundamental goal; Chapel seeks to meet or exceed the performance of

programming models such as MPI.

We focus our overview of Chapel to the two features we plan to leverage for auto-tuning: its constructs

for parallelism, and its notion of configuration variables.

2.1) Task Abstraction
Chapel uses the task abstraction to represent units of parallel work. Threads are considered a system-

level concept by which Chapel executes its tasks. The distinction of tasks from threads is necessary since

the management of (POSIX) threads require interaction with the system kernel, and hence incur higher

overhead than what Chapel intends for its parallelism. Admittedly, this distinction is muddied in the

default case, where tasks are assigned to threads in a first-in-first-out manner. Once paired, a task must

run to completion before its thread will be released back to the pool of available threads. This tasking

implementation was chosen for portability and allows Chapel to execute correctly on virtually any

platform that supports threads.

To fully utilize the task abstraction, Chapel should be paired with a user-level threading library [2] such

as Qthreads [3] from Sandia National Laboratories. This allows task generation to be guided by

parallelism intrinsic to the problem-domain, whereas thread generation can be guided by hardware

resources such as physical cores or logical processor threads. An open question posed by this distinction

is the optimal thread/task ratio. The problem is likely system-dependent, and we explore answers to

that problem later in this paper.

2.2) Configuration Variables
Chapel also provides the notion of configuration variables. Semantically, these are identical to normal

variables, except that code is automatically generated for them to be overridden at load-time via

command-line parameters. This seemingly simple feature has deep implications for the auto-tuning

community. Configuration variables are implicitly designed to handle being changed from one execution

to the next, which in itself increases the likelihood of these variables as auto-tuning parameters.

Unfortunately, these variables may also alter the program’s correctness, such as problem-size

modification. These constitute false-positives, and prevent us from using this class of variable carte

blanche. However, they certainly represent a reasonable place to begin the search for candidate

parameters.

More importantly, configuration variables provide incentives for application developers to delay coding

decisions that would otherwise require undue effort to resolve optimally. This is especially true of

performance related coding decisions. Consider buffer size as an example. Most high-performance

computing (HPC) developers understand that buffer sizes have an effect on the performance of their

application. However, the determination of an optimal value is based on several factors that may not be

available at development time, such as influx versus outflow. Worse still, these values may be affected

by CPU cache or memory page sizes, which vary from system to system. With Chapel, the programmer

is free to add the “config” keyword, choose a reasonable value, and move on.

Configuration variables open a path for developers to implicitly express that better values may exist. It

is our belief that this knowledge can be leveraged by auto-tuning technology as a first step towards

fully-automatic auto-tuning. To that end, we have modified the Active Harmony framework to more

easily work with Chapel configuration variables.

3) Active Harmony
The Active Harmony framework [4] has been used to auto-tune a wide range of applications at varying

levels of granularity. The framework provides several methods for users to input a set of parameters

and associated value ranges. A search-based strategy is then used to navigate the parameter space that

would otherwise be computationally intractable to exhaustively explore. Specific parameter

configurations are directly tested by the target application and a performance result is returned to the

framework. These performance result values drive a derivative-free simplex search method such as

Parallel Rank Ordering [5] or Nelder-Mead [6] to produce new candidate parameter configurations,

which closes the traditional feedback loop common to most auto-tuning systems such as Orio [8] or

POET [9].

Several additions and modifications were required to adapt Active Harmony for use with Chapel’s

configuration variables. Firstly, a library dependency has been removed from Active Harmony to match

the portability of the Chapel compiler package. Secondly, two value-added applications have been

written and included with Active Harmony to improve the utility of the framework.

3.1) Web-based Interface
The original graphical interface for Active Harmony was written using the Tk toolkit. This provided the

benefit of a quick development cycle that integrates naturally with the search implementation written in

Tcl. However, this introduced the dependency on a sufficiently recent version of Tk on each of our

target platforms. Additionally, network latency becomes a problem if the server is launched on a

remote computer. Due to Tk’s reliance on X11 for its line protocol, the interface becomes sluggish when

displayed over a local area network, and worse for the Internet at large. Finally, the Tk interface

produces windows, where n is the number of target application nodes. This structure will

encounter scalability issues in the near future where auto-tuning is planned for super-computers with

hundreds of thousands of compute nodes or more.

Figure 1: Original Tk Interface

Thankfully, the ubiquity of web-based javascript applications presents an opportunity to bypass all of

these issues at once. Web browsers effectively provide a graphical display engine local to the user,

freeing Active Harmony to transfer minimal search progress data and a small javascript support file. As

an added benefit, the new interface is only delivered upon request, which minimizes server-side

processing and allows multiple clients to connect and view a single optimization run. To remedy

scalability issues, the new design focuses on visualizing the global parameter search space, rather than

the progress of at each local compute node. Finally, all representations of the search are available

through a single display window and summarized by a general performance timeline.

To provide this benefit without adding additional libraries, we developed and integrated a simple

HTTP/1.1 server into the communication multiplexer of the Active Harmony server. Our web server

listens for specific commands via the incoming URL to provide either the javascript application, or raw

search progress update data.

Figure 2: New Web-based Interface

3.2) Tuna: The Command-line Tuner
In attempting to tune Chapel’s configuration variables, the need for a general command-line tuning

utility becomes clear. Different applications written in Chapel are likely to produce distinct sets of

configuration variables for tuning. Active Harmony provides a client API that allows developers to build

a tuner for their specific Chapel application, but these tuners would consist of overwhelmingly

redundant code. Tuna was written to reduce future effort and facilitate the general use of auto-tuning

technology.

Tuna maintains generality by accepting a tunable variable specification within its own command line or

configuration file. The specification consists of a type, name, and value range; information required by

the Active Harmony server to generate and bound the search space. Tuna then launches the target

application in a loop, receiving candidate configurations from the server and reporting the tested

performance value back to the server at the end of each execution. A printf-style format string is

available should the target application require its input parameters in a specific format.

Tuna provides four built-in methods for measuring the performance of a target application. Wall time,

user time, or system time used by the target application can automatically be use as a metric. The final

method of performance measurement was designed with extension in mind. It involves monitoring the

target application’s output and reading a performance value from its final line. This allows virtually any

measure of performance, so long as it can be collected by an external wrapper program and printed.

Figure 3: Tuna Usage Example

The usage example in figure 3 defines two integer parameters for the Active Harmony server. One

variable, named “tile,” is permitted to be between 1 and 10, inclusive. The other variable, named

“unroll,” is permitted to be even numbers between 2 and 12, inclusive. In this example, Tuna will

launch the matrix_mult binary with server-chosen values of “tile” and “unroll” as arguments 2 and 4,

respectively. The target application will be launched 25 times, or until the search converges, whichever

occurs first. Wall time is the measure of performance, since it is otherwise unspecified.

Tuna was used extensively for the performance tests reported in this paper. However, the utility of

Tuna extends beyond the realm of Chapel and configuration variables. Any application that provides

command-line parameters related to performance is immediately available for tuning. As an example,

the GCC compiler suite provides hundreds of command-line switches to control various details of its

compilation process. Finding optimal values for these switches would normally be a daunting task but,

with Tuna, the user need only specify which switches are relevant for their optimization task and a

method to measure the resulting performance.

4) Tuning Chapel Applications
Chapel applications are at a particular advantage with regard to configuration variable auto-tuning. As

alluded to earlier, Chapel makes a distinction between application tasks and system threads. However,

the method for determining an optimal thread/task ratio is unclear, even from a theoretical standpoint.

Perhaps anticipating this dilemma, the Chapel developers provide three built-in configuration variables

to control the number of tasks and threads that a Chapel application will implicitly initiate. This

automatically makes every Chapel application an excellent candidate for auto-tuning, even if the

application developer never declares a single additional configuration variable.

It seems reasonable to believe that the optimal ratio is dependant on application factors such as the

amount of synchronous code, as well as system-level factors such as thread scheduling. To test our

hypothesis, we use Tuna to perform the same tuning tasks on four different machines. Each machine

represents a different CPU type, core count, or operating system.

Table 1: Test Platform Architecture Specifications

CPU Type Xeon E5649 POWER4 Itanium 2 Opteron 242

Core Speed 2.53 GHz 1.1 GHz 900 MHz 1.6 GHz

Cores/Threads 6/12 1/1 2/2 2/2

L1 Data Cache 32 KB 32 KB 16 KB 64 KB

L2 Cache 0.25 MB 5.60 MB 0.25 MB 1.00 MB

L3 Cache 12 MB 128 MB 24 MB N/A

System RAM 24 GB 6 GB 512 MB 4 GB

OS Linux Linux Linux Linux

Word Size 64-bit 32-bit 64-bit 32-bit

> ./tuna -i=tile,1,10,1 -i=unroll,2,12,2 –n25 matrix_mult -t % -u %

4.1) Tuning Quicksort
We begin our tuning experiments with a quicksort example provided in the source distribution of

Chapel. Without viewing the source code, one can immediately see this application provides several

configuration variables by using the “--help” switch. Chapel automatically adds a help routine to any

program it compiles which includes a listing of valid configuration variables. Even at this point, the

“thresh” variable looks interesting. A brief investigation of the code reveals this particular

implementation of quicksort allows the user to choose a maximum recursion depth before a serial

bubble sort is used as the base case.

Our test involves sorting a 64-megabyte array of double-precision floating-point random values. We use

Tuna to create a search space based on three variables: the number of threads to spawn (between 1 and

16, inclusive), the number of tasks to automatically initiate (between 1 and 256, inclusive), and the

application-specific threshold depth (between 1 and 16, inclusive). Ten runs of quicksort using default

values are used as a control, and are along with the tuning data. Default run minimum and maximum

values are represented via dashed lines, and the average is represented via a dotted line between them.

 Figure 4: Tuning Quicksort Across Multiple Platforms

W
al

l t
im

e
 P

er
 R

u
n

 (
s)

 Total Tuning Time (h:mm:ss)

In the best case, Active Harmony was able to find configurations that out-perform the default by over

300% compared to the average of our 10-run default-value performance. This is not a miracle of auto-

0

5

10

15

20

0:00:00 0:00:17 0:00:35 0:00:52 0:01:09

Xeon E5649

0

10

20

30

40

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31

POWER4

0

100

200

300

400

500

600

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48

Itanium 2

0

50

100

150

200

250

300

0:00:00 0:05:54 0:11:48 0:17:43

Opteron 242

tuning; the original application only generates one level of parallelism by default. On the one hand, it

should be no surprise that an embarrasingly parallel program runs faster in the presence of more

parallelism. On the other hand, a better default threshold value may not exist. Recall that the default

threading model of Chapel spawns a new thread for each task that is requested, and intuition suggests

spawning more threads than logical cores will result in performance-degrading overhead1. If the

number of system cores is unavailable, it becomes impossible to provide an optimal default threshold

value. It should be noted that Chapel does provide a mechanism for retrieving the number of system

cores, and this implementation could easily be re-written to take advantage of this information.

The POWER4 result also deserves investigation. As the only machine with a single core, it should be

heavily affected by additional threads being spawned. Instead, its execution times are completely

unwavering. Our only explanation is that Chapel detected the system to be non-parallel and runs

serially, no matter how many threads or tasks are requested.

Overall, Active Harmony is able to find acceptable configurations within four search steps. The search

could be further improved had the search space been tailored to the target architecture using external

knowledge such as core count; the tested search space includes the sequential non-parallel case. As a

methodology, we wished to keep the search as wide as possible to capture the generality of Active

Harmony’s simplex search method. This is an excellent result for Chapel and automated auto-tuning.

With little more than a glance at the source code, this example proved itself to be tunable with positive

results.

Table 2: Comparison of Best Quicksort Configurations

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best Default Wall time: 9.10s Wall time: 30.23s Wall time: 42.28s Wall time: 23.28s

Best Active
Harmony

Threads: 16
Tasks: 241
Threshold: 16
Wall time: 1.78s

Threads: 1
Tasks: 1
Threshold: 1
Wall time: 30.07s

Threads: 3
Tasks: 67
Threshold: 12
Wall time: 39.36s

Threads: 2
Tasks: 93
Threshold: 10
Wall time: 23.23s

4.2) Tuning HPC Challenge Benchmarks
Moving beyond toy programs, the source distribution of Chapel version 1.5 also includes

implementations of selected real-world parallel benchmarks written in Chapel. Since these programs

represent highly tuned benchmarks, they offer no configuration variables that affect performance

without affecting the problem being solved. Nevertheless, Chapel’s built-in configuration variables

provide enough leverage for tuning. We use an implementation of the STREAM benchmark from HPC

Challenge, which is a simple synthetic benchmark that measures sustainable memory bandwidth and

the corresponding computation rate for a simple vector kernel.

Again, Tuna was used to create a search space based on three variables: the number of threads to

spawn (between 1 and 16, inclusive), the number of tasks to automatically initiate (between 1 and 256,

inclusive), and the minimum task granularity (between 256 and 32768, by increments of 256). The last

1
 Our experiments corroborate this intuition, in general.

variable describes how tasks should be initiated for data parallel loops, meaning each task will be

responsible for at least this number of loop iterations. The granularity may ultimately be interesting for

cache studies, which we investigate in the section 4.3. We compare against ten runs of STREAM using

its default values. Default run minimum and maximum values are represented via dashed lines, and the

average is represented via a dotted line between them.

 Figure 5: Tuning STREAM Across Multiple Platforms

W
al

l t
im

e
 P

er
 R

u
n

 (
s)

 Total Tuning Time (h:mm:ss)

Active Harmony had greater difficulty finding optimal configurations for this real-world application

compared to our toy quicksort application. This is unsurprising; benchmark code is designed to run as

optimally as possible. Considering that STREAM is effectively a worse-case scenario, Active Harmony

still performs exceedingly well as optimal values are always found within 10 search steps.

Table 3: Comparison of Best STREAM Configurations

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best Default Wall time: 24.40s Wall time: 123.25s Wall time: 9.50s Wall time: 29.38s

Best Active
Harmony

Threads: 12
Tasks: 256
Granularity: 30464
Wall time: 1.78s

Threads: 16
Tasks: 167
Granularity: 27392
Wall time: 122.86s

Threads: 1
Tasks: 2
Granularity: 256
Wall time: 12.45s

Threads: 2
Tasks: 125
Granularity: 14848
Wall time: 29.67s

0

50

100

150

200

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31

Xeon E5649

0

50

100

150

0:00:00 0:11:23 0:22:45 0:34:08 0:45:30

POWER4

0

50

100

150

200

250

0:00:00 0:06:03 0:12:06 0:18:09

Itanium 2

0

100

200

300

400

500

0:00:00 0:07:55 0:15:50 0:23:46 0:31:41

Opteron 242

4.3) Towards Performance Unit Tests
To shed some light on the question of optimal thread/task ratio detailed in section 2.1, we developed a

simple parallel cache memory stress test in Chapel. The test consists of a data-parallel loop that iterates

over an array of word-size integers, reading the value at , and writing an incremented version of

that value into position . This high-locality memory access should be sensitive to cache size and access

patterns, as determined by task count and loop granularity.

Like the HPC Challenge benchmark, Tuna was used to create a search space based on threads, tasks, and

task granularity. For comparison, we hand-calculate a theoretically optimal configuration based on CPU

L1 cache sizes and system core count. Since the optimal task count is unclear, that decision is left to

Chapel’s default. As with previous figures, these hand-calculated optimal values are represented via

dashed lines, with the average as the dotted line between them.

 Figure 6: Optimal Parameter Search Across Multiple Platforms

W
al

l t
im

e
 P

er
 R

u
n

 (
s)

 Total Tuning Time (h:mm:ss)

Again, the POWER4 results give us pause. If our prior supposition was true, none of our tunable

parameters should have any effect on this platform. Yet, our search was able to produce configurations

that improved upon theoretically optimal results. Deeper analysis will be required to answer this

question adequately, and is beyond the scope of this paper.

0

100

200

300

400

500

0:00:00 0:07:03 0:14:07 0:21:10

Xeon E5649

0

10

20

30

40

50

0:00:00 0:05:46 0:11:31 0:17:17

POWER4

0

100

200

300

400

500

600

0:00:00 0:07:29 0:14:59 0:22:28 0:29:57

Itanium 2

0

150

300

450

600

750

0:00:00 0:07:57 0:15:54 0:23:51 0:31:48

Opteron 242

Table 4: Comparison of Best Cache Configurations

Platform Xeon E5649 POWER4 Itanium 2 Opteron 242

Best Manual
Threads: 12
Granularity: 4096
Wall time: 30.20s

Threads: 1
Granularity: 8192
Wall time: 41.26s

Threads: 2
Granularity: 2048
Wall time: 31.95s

Threads: 2
Granularity: 16384
Wall time: 39.57s

Best
Active Harmony

Threads: 16
Tasks: 256
Granularity: 27648
Wall time: 31.16s

Threads: 16
Tasks: 256
Granularity: 25600
Wall time: 38.44s

Threads: 3
Tasks: 32
Granularity: 256
Wall time: 33.08s

Threads: 2
Tasks: 256
Granularity: 16384
Wall time: 40.14s

Surprisingly, Active Harmony was able to find configurations that exceed the performance of our hand-

crafted optimal in several cases. As expected, the optimal values determined for each variable are

highly system-dependent. There are no universal values for optimal performance. We present this as

evidence that there is plenty of room for auto-tuning in the realm of performance optimization.

We envision the use of these short trials to help guide performance decisions on the target system at

run time. By developing a suite of performance “unit-tests,” developers would be free to save

optimization decisions until on-site evidence is available.

5) Augmenting Chapel
Configuration variables have proven useful in our tuning experiments, but more information is required

for the system to become fully automatic. Namely, bounding ranges for each configuration variable

were manually selected before being sent to Tuna. Again, the original developer is a likely resource for

this information but, in this case, they have no means to express it. The Chapel language as written

currently does not allow for ranges to be associated with configuration variables.

We modified the Chapel language grammar as a proof of concept to enable the association of value

ranges with configuration variables. No new keywords were required; we made use of the existing “in”

keyword and Range variable type. The range may be specified directly after the variable name, as

shown in the following example. In our implementation, these ranges are correctly parsed and stored

by the Chapel compiler.

Table 5: Augmented Chapel Examples

Original
Chapel

config var num1 = 5;
config var num2 = 5 :int(64);

Augmented
Chapel

config var num3 in 1..100 = 5;
config var num4 in 1..100 by 5 = 5; // Invalid value
config var num5 in 1..100 by 5 align 50 = 5;
config var num6 in 1..100 :int(64) = 5;
config var num7 in 1..100 by 5 : int(64) = 5; // Invalid value
config var num8 in 1..100 by 5 align 50 :int(64) = 5;

Additional code is automatically generated and run at program launch time to verify each configuration

variable. For instance, num4 and num7 of the example in table 3 provide invalid default values. These

lines will compile successfully, but will cause a fault at run-time if not overridden by the user to a valid

value such as 1, 6, or 11.

We believe the addition of a bounding range to configuration variables would be useful outside the

realm of auto-tuning because it allows for additional correctness guarantees on user input. The

association of a value range is considered optional in the grammar, so existing code maintains its

correctness. Additionally, applications will incur minimal run-time overhead, as these checks are

defined to occur once at launch time only. We intend to submit our changes to the developers of

Chapel for consideration, along with our rationale. The inclusion of our patch would greatly facilitate

the automation of auto-tuning on Chapel applications.

6) Future Work
This work stops short of fully-automatic auto-tuning within Chapel in two respects. Firstly, Active

Harmony has no means to automatically use configuration variable information; Tuna is still required to

bridge that gap. However, if the changes we propose to Chapel are accepted, all the information Active

Harmony requires for parameter space bounding will reside within the compiled application.

Optimization could then be enabled with an additional run-time command line switch. Secondly, user

intervention is required to determine which configuration variables are suitable for tuning. This is an

open problem, and will require more research for a solution.

Looking inward, this work only investigates auto-tuning at the command-line parameter level. Tiwari

successfully showed that auto-tuning can be applied to individual loops of parallel applications [7].

Since Chapel clearly delineates which portions of its code execute in parallel, the possibility of

automatically applying their loop level optimization to compiled Chapel applications should be

investigated.

Looking outward, users of the Chapel language represent a relatively small audience. However,

increasing the applicability of fully-automatic auto-tuning requires adapting it to existing languages such

as C or Fortran that do not implement configuration variables. Determining which variables may be

arbitrarily modified is an open problem, and it is unclear how far static analysis can be utilized towards

this end. As an alternative, the configuration of libraries can also widen the audience-base of fully-

automatic auto-tuning users. For example, the upcoming MPI 3.0 standard makes provisions for control

variables, which are conceptually equivalent to Chapel’s configuration variables. Adapting Active

Harmony to work with MPI’s control variables will immediately introduce fully-automatic auto-tuning to

a new audience and possibly lead to new research opportunities.

7) Conclusion and Summary
This work represents first steps towards a fully-automatic auto-tuning system. The Chapel programming

language provides an excellent base for these first steps due to its notion of configuration variables.

Encoded in the definition of such variables is the implication of mutability, specifically at program launch

time. We tested this implication on three different Chapel applications, and were successfully able to

tune these programs without modification, and with little or no familiarity with their source code.

Active Harmony was modified in two ways to support this work. Firstly, a new user interface was

written that reduces the number of dependent libraries, uses a far more efficient data protocol, allows

for multiple clients, and is provided on demand. Secondly, the Tuna command-line tuner was

introduced which allows anyone to reap the benefits of command-line auto-tuning without the need of

additional coding.

Improvements to the Chapel programming language were also implemented and will be submitted to

the developers at Cray Inc. for consideration. If approved, further gains in fully-automatic auto-tuning

may be made. In the mean time, we introduce the possibility of performance unit tests to determine

system-local optimal values.

Bibliography
[1] David Callahan, Bradford L. Chamberlain, Hans P. Zima. The Cascade High Productivity Language.

In 9th International Workshop on High-Level Parallel Programming Models and Supportive

Environments (HIPS 2004), pages 52-60. IEEE Computer Society, April 2004

[2] Kyle B. Wheeler, Richard C. Murphy, Dylan Stark, Bradford L. Chamberlain. The Chapel Tasking

Layer Over Qthreads, CUG 2011, June 2011

[3] Wheeler, K.B.; Murphy, R.C.; Thain, D., “Qthreads: An API for programming with millions of

lightweight threads,” Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, vol., no., pp.1-8, 14-18 April 2008

[4] C. Ţăpuş, I. Chung, and J. K. Hollingsworth. Active harmony: towards automated performance

tuning. In Proceedings of Supercomputing '02, pages 1-11, November 2002

[5] Ananta Tiwari, Vahid Tabatabaee, and Jeffrey K. Hollingsworth. 2009. Tuning parallel

applications in parallel. Parallel Comput. 35, 8-9 (August 2009), 475-492

[6] J. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer Journal, 7:308-

313, 1965

[7] Tiwari, A. N. (2011). Tuning parallel applications in parallel. University of Maryland, College

Park). ProQuest Dissertations and Theses

[8] Hartono and S. Ponnuswamy. Annotation-Based Empirical Performance Tuning Using Orio. In

Proceedings of the 23rd International Parallel and Distributed Processing Symposium, May 2009

[9] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET: Parameterized Optimizations for

Empirical Tuning. Proceedings of the 21st International Parallel and Distributed Processing

Symposium, pages 1-8, March 2007

