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ABSTRACT
The Web is constantly generating streams of textual infor-
mation in the form of News articles and Tweets. In order for
Information Retrieval systems to make sense of all this data
partitional clustering algorithms are used to create groups
of similar documents. Traditional clustering algorithms, like
K-means, are not well suited for stream processing where
the dataset is constantly changing as new documents are
published. In this paper we present a clustering algorithm
designed to work with streaming documents. These docu-
ments, described by their TF-IDF (term frequency - inverse
document frequency) [15] term vectors, are incrementally
generated appropriate clusters based on the cosine similar-
ity metric. We provide an efficient implementation of this
algorithm on a GPU using CUDA, that achieves speedups
of over 43X compared to its serial CPU implementation and
has the ability to cluster a document within just .01 sec-
onds after its term vector is received, even when there are
1.6 million clusters. Our implementation is capable to scale
to clustering 5.5 million documents using a single GTX 480
GPU in 16.1 hours and can easily be extended to run on a
system containing large numbers of GPUs.

Categories and Subject Descriptors
H.3.1 [Document Representation and Content Anal-

ysis]:

General Terms
Algorithms, Design, Performance

Keywords
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1. INTRODUCTION
The days where people receive the majority of their news

from just a few sources are long gone. For better or worse
the Walter Cronkite era has been replaced by a perpetual
24/7 media machine filled with pundits and daily poll statis-
tics. The Internet especially has created an explosion in the
number of available news outlets, giving each of us a stage
in the form of Blogs and Tweets. In order to stay relevant,
traditional news outlets, like the New York Times, have in-
vested heavily in maintaining an online presence. All of

these News sources are accessible as data streams where the
interested party subscribes to a feed and is notified when
the publisher releases new content. Thousands of newspa-
pers all over the world publish many thousands of articles
in a single day. The sheer volume of data creates the ne-
cessity for technology to aid humans in making sense of it
all. Our goal is to address just one particular angle of this
problem. Specifically we want to be able to take newly gen-
erated documents, as they are published, and cluster them
with other documents of similar content. While we use the
word document throughout this paper the motivation of this
work is to power the clustering of text from micro-bloggers
on Twitter in the TwitterStand [16] system. Due to the very
rapid stream of documents (tweets) that come from Twit-
ter emphasis is placed on producing an online method for
document clustering. The details on the integration of the
work described in this paper into the larger TwitterStand
system is ommitted, however, it is important to note that
the this method is the current clustering method used by
TwitterStand.

TF-IDF (term frequency-inverse document frequency) [15]
has become a popular technique in Information Retrieval to
determine the most important words of a document in a col-
lection. A term weight for a given term is proportional to
the frequency of the term in the document (e.g. TF) and
inversely proportional to the frequency of that term in the
entire document collection (e.g. IDF, how common it is).

There are a couple of variations on how exactly these
weights are computed [13, 15]. For this work we use a
weighting scheme TF-ICF [13], which is designed to work
with streaming data by approximating the commonality (IDF)
of a particular term based on a large corpora. We use the
term TF-ICF and TF-IDF interchangeably throughout the
rest of this document. It is also important to note that how
these term weights are derived, while important for clus-
ter quality, is not of much concern to the clustering process
itself since our chosen metric works with normalized term
vectors (see Equation 2).

A document, Dj, can be described by the set of its terms
ti and corresponding, term weights wi, called a term vector.

Dj = (t0, w0), (t1, w1)...(tn, wn) (1)

With corpus based IDF components, a documents term
vector is constant and remains unchanged as additional doc-
uments are streamed and added to the document collection.

Once two documents have had their term vectors com-
puted we can compute their similarity by using the cosine
metric.



Sim(D0, D1) =

P

w0,i ∗ w1,i

‖D0‖ ∗ ‖D1‖
(2)

Note that Equation 2 devolves into a simple dot product
when both D0 and D1 have normalized term vectors and
that the range of Sim = [0, 1] where 0 = no common terms
and 1 = angle between vectors is 0 (e.g. term vectors are
identical).

2. BACKGROUND
Graphics Processing Units (GPUs) have gained a lot of at-

tention recently for their relatively low-cost high-throughput
designs. A single high end GPU, like the NVIDIA Tesla
C2075, at today’s (Feb. 2012) market prices sells for about
5USD per CUDA core (448 total) and has 6GB of on card
memory. However, the SIMD architecture of these platforms
combined with little near core caches, as well as strict mem-
ory access patterns are the Achilles heel of these devices.
Great care must be taken by the developer, especially in
the case of memory bound kernels, to access data in a way
that is efficient for the device. We will only address a few of
these subtleties here as they have been extensively covered
in [1, 2, 4, 18].

CUDA programs running on the device (GPU), called ker-

nels, are launched by host processes running on the CPU.
The usual workflow is that the CPU copies some data to
the GPU, invokes a kernel, and reads the result back. More
advanced techniques are possible through the use of co-
processing. This allows a CPU to invoke a kernel and then
continue executing its program in parallel. When the CPU
needs to synchronize with the GPU, because it needs to read
a result back and wants to know the result is ready, it can
do so via a single API call.

There are many different types of memory available on
the GPU. Each has its own optimized access patterns and
latency characteristics. Global memory is by far the largest
and slowest of these memories. A typical graphics card will
have around 1-2GBs of this type of memory available for
use by a CUDA application. The most optimal access pat-
tern for global memory is when threads with consecutive
ids access consecutive words from global memory. When
this happens the memory access is coalesced, meaning that
instead of requesting a 128 byte memory segment (in the
case of 4B floats) to service the threads in a half-warp (16
threads), only 64B will be requested (1 float for each thread).
This effectively doubles the memory bandwidth of the de-
vice, which in our case is the most precious resource of all.
NVIDIA cards beyond compute capability 1.1 have relaxed
this constraint slightly by allowing coalescing to occur as
long as the 16 consecutive threads access memory from the
same 64B memory segment.

Shared memory is another type of memory on the GPU,
which is moderately sized and very low latency. It can be
shared and used to communicate between all threads in the
same thread block. The number of threads in a thread block
can be chosen at runtime up to the maximum supported by
the device, which is usually around 1024 threads. The fact
that threads can use this low latency memory to communi-
cate makes it ideal for parallel reduction operations where
all the threads try to combine their local results into a sin-
gle value based on some binary operator ( e.g. sum, max,
min). In the case where threads inside different blocks need

to communicate, global memory needs to be used.
Texture memory, which was originally designed to store

images for use in graphics applications, is also accessible
from CUDA. Texture memory because of its original de-
sign for use with images is capable of providing caching
mechanisms based on 1, 2, or 3 dimensional spatial locality.
This special texture cache is not available to data stored in
global memory and can provide valuable performance gains
for smaller datasets.

3. RELATED WORK
GPUs have been shown to provide good performance for

certain problem domains like bioinformatics [12], fluid dy-
namics, text mining [22], singular value decomposition [5],
and clustering [6, 9, 17, 19, 21, 23].

[6, 9, 19, 21] all focus on K-means based clustering in a
dense feature space. A document’s term vector in general
does not contain more than a few hundred terms even for
news articles, which are comparatively longer than Tweets.
Since the space spanned by these term vectors is the posi-
tive quadrant of a high-dimensional space (e.g. dimensions
= the number of unique tokens in the language), they are
extremely sparse. While these K-means implementations
could be modified, at the cost of some performance, to deal
with sparse feature spaces the bigger concern is in the nature
of streaming news itself.

News, as the name implies, is contemporary and as such
their contents reflect a constantly changing series of events
from the recent past. This makes traditional clustering al-
gorithms, like K-Means, ill-suited for the domain of News
articles and Tweets, because it is unclear what value of K
should be chosen.

Zhang et al [23] implement a flock of birds based clus-
tering algorithm [8] on the GPU in order to cluster doc-
uments based on their TF-IDF term vectors. They show
the feasibility of using GPUs to accelerate this task, but
do so in a way that restricts their system by the network
bandwidth between compute nodes. We show in this pa-
per that by modifying existing techniques in GPU based
Sparse Matrix Vector (SpMV ) multiplication we can imple-
ment a much simpler document clustering algorithm than
proposed in [23], while maintain high performance. We can
do this due to a 3X speedup in similarity computations com-
pared to [23]. We also achieve lower execution times using
1 GTX280 GPU for document collections less than 350K
while the flock of birds algorithm uses 16 GTX280 GPUs.
Furthermore, the proposed algorithm remains open to im-
plementations on share nothing compute clusters containing
many GPUs (see Section 6).

Our contributions apart from the clustering implementa-
tion itself is a mechanism whereby a row in a sparse matrix
stored on a GPU in column major order can be updated
without incurring prohibitively large penalties for frequent
cudaMemcpy invocations, or writing large amounts of un-
necessary bytes.

4. CLUSTERING ALGORITHM
In this paper we expand upon the work done by Teitler

et al. [17]. Here the cosine similarity metric defined by
Equation 2 serves as the foundation of the clustering algo-
rithm. When a new document D is streamed from some
source, then it is added to the most similar cluster C with



Sim(D, C) > T where T is a user chosen value in the range
[0, 1]. In the case where no such C exists then D serves as
the start of a new cluster. Furthermore, one luxury that is
granted is that a value K is chosen such that the number of
terms in any C or D is < K.

Since these streams are constantly generating new data,
being able to choose a cluster C for D without having to re-
run an entire simulation from the beginning is very desirable.
This algorithm allows us to do that, and in doing so, helps
to optimize latency where latency is defined as, the time
from when a published document enters the system to the
time it has been added to the appropriate cluster. Also
it does not require any domain knowledge for choosing the
number of partitions to generate, like K-means. This is a
two-sided blade in that this same lack of constraint means
that the amount of memory required to store the number of
resulting clusters from a document collection of size N , is
O(N) (e.g. none of the documents cluster together).

4.1 CPU Implementation
Algorithm 1 provides the pseudo code for the CPU based

implementation.

Algorithm 1 Sequential CPU Clustering Algorithm.

1: procedure ClusterDocument( )
Input: Document term vector D
Input: Set of current clusters vectors Call = C0, C1...Cn

2: Ccandidates ←⊆ Call that share a term with D
3: Cbest ← Ci in Ccandidates most similar to D
4: if Sim(D, Cbest) > T then

5: Add D to Cbest

6: else

7: Add D as new cluster Cn+1

8: end if

9: end procedure

The operation on line 2 of Algorithm 1 is achieved through
the use of a hash table index that maintains the set of
all clusters Ci..Cj that contain a given term t. A docu-
ment can determine Ccandidates using this index by hash-
ing each t in its own term vector and adding the set of re-
turned clusters to Ccandidates without duplication. Finding
Cbest among the Ccandidates involves computing the similar-
ity metric (Equation 2) between D and all C in Ccandidates

and choosing the max.
Teitler et al. [17] show that the average-case complexity of

this algorithm for N documents is O(N ∗LC ∗LD) where LC

is the average number of clusters containing a given term t

and LD is the average number of terms in a document’s term
vector. The sparseness of these feature vectors leads to 2-
3X gain in performance on the CPU when using Ccandidates

as opposed to the brute force algorithm, which is always
O(N2).

A term vector’s ti (see Equation 1), which is natively a
string, is transformed into an integer id called a termid,
unique for that term. This allows for better compression
when storing the data, as well as faster comparisons, and
easier means for stack based allocations due to its fixed size.
The penalty incurred for mapping between the termid and
its constituent string only needs to be paid once upon a doc-
ument entering the system, and whenever a user wants to
display the data in its native format. In both the CPU and
GPU implementation these mappings are maintained in an
STL container and persisted on disk. However, for the pur-

poses of clustering, there is never any need to transform a
termid back into its corresponding term.

Sim(D, C) is computed by first sorting D by increasing
termid and normalizing the term vector, this takes O(K ∗
logK). All C in Call are stored sorted and normalized along
with their corresponding pre-normalized magnitude, ‖C‖.
This comes for free in the case of D starting a new cluster.
With both C and D sorted by their termid, computing the
vector dot product, C ∗ D = O(K) [14].

Adding C+D (line 5 of Algorithm 1) is the same as vector
addition, since C is also described by a term vector. The
addition processes is outlined in detail below:

1. De-normalize C and D by multiplying by their stored
magnitudes

2. Add like terms of C and D

3. Choose top K term weights from C + D

4. Normalize and sort by termid

5. Store the result back into C

This takes O(K ∗ logK) time due to the sorting required to
choose the top K terms.

While all the sorting that is required may sound expen-
sive, it does yields better results because K is usually small,
between 20-200. So K ≪ LC ∗ LD, where the right-side of
the inequality is equivalent to the number of dot products
that need to be performed on average for a single D. With
sorted term vectors we minimize the cost of a single dot
product from O(K2) to O(K).

4.2 GPU Implementation
The majority of the computation in Algorithm 1 takes

place in the computation of the dot products between D

and all clusters in Ccandidates (line 3). However, by using
the power of the GPU we can speedup this computation by
as much as 43X. This is despite the fact that our initial GPU
implementation computes dot products between D and all
clusters, Call.

Algorithm 2 shows the pseudo code for portion of the
GPU clustering algorithm that runs on the CPU ( also known
as the host process). While the GPU is very good at com-
puting the dot products and performing local reductions,
the memory access patterns involved with performing clus-
ter updates ( e.g. D + C) are too irregular to be done ef-
ficiently on the GPU. As such we perform these operations
on the CPU in the same way as Algorithm 1.

Algorithm 2 line 8 shows when the GPU is invoked. The
GPU is responsible for performing two main functions when
a D needs to be clustered. It first computes all the simi-
larity values between D and Call. It then performs a local

reduction to find the maximum similarity value. Here local

means the maximum value in a given thread block. CUDA
threads inside a thread block (256-1024 threads) can commu-
nicate using fast near core memory called shared memory.
However, threads inside different thread blocks have no way
of synchronizing amongst each other without going to global
memory, which is 100X slower. Our GPU kernel, which is
discussed in more detail later in Algorithm 3, only performs
the reduction between threads in the same thread block. B

is then an array of thread block local maxima. In order
to find the global maximum, Cbest, the CPU must perform



Algorithm 2 GPU Clustering Algorithm Host Process.

1: procedure Host

2: C ← Load Cluster Matrix from Persistent Storage
3: Copy C to GPU in ELL
4: loop

5: D ← read/wait for new document
6: Sort(D) by termid

7: Copy D to GPU
8: B ← FindBestClusterKernel(. . .)
9: Cbest ← FindMax(B)

10: if Sim(D, Cbest) > T then

11: Add D to Cbest

12: Copy Cbest to update buffer
13: else

14: Add D as new cluster Cn+1

15: Copy D to update buffer
16: end if

17: end loop

18: end procedure

a final scan of B. The rest of the host process remains
relatively unchanged from the CPU implementation. The
update buffers on line 12 and 15 are discussed later.

We turn our attention now to the GPU kernel itself and
begin by first framing the problem by considering that Call

is a matrix where each cluster is a row and D is a column
vector. All term vectors are normalized reducing Sim(D, C)
to a dot product computation. Algorithm 1 line 3 is then
equivalent to finding max(S):

S =

2
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7
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7

7

7

5

(3)
The problem is that Q is very large (number of unique

terms) while only K or fewer of these entries will be non-
zero. This makes the problem identical to Sparse Matrix
Vector (SpMV ) multiplication.

There has been a considerable amount of research in im-
plementing SpMV using GPUs [2, 4, 7, 18]. Most of this re-
search was spurred by its application to linear solvers. While
there has been some application of SpMV outside the tra-
ditional domains [20], this is, to the best of our knowledge,
the first time it has been used to compute TF-IDF cosine
similarities. We give a brief overview of this research, as is
relevent to our algorithm, below.

Bell and Garland [2] were among the first to profile many
different types of sparse matrix formats on the GPU and
found they could achieve speedups of up to 30X compared
to optimized CPU implementation. One of these formats,
ELLPACK (ELL), stores at most MAXnzr number of non-
zero entries per row. Each of these rows is allocated exactly
MAXnzr entries of space regardless of the actual number of
non-zeroes and 1 GPU thread is assigned to each row. A
sparse matrix encoded in ELL is described by a data matrix
and an indices matrix, both with dimensions R x MAXnzr

where R is the number of rows. Figure 1 gives an example
of a matrix, A, stored in ELL.

Digitally the ELL indices and data matrices are stored as
two 1D arrays, like a key-value pair defined by two associa-
tive arrays. In order for the memory accesses to these arrays
to be coalesced by the GPU, they are stored in column-major
order, shown below for matrix A:

A =

2

6

6

4

1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

3

7

7

5

data =

2

6

6

4

1 7 ∗
2 8 ∗
5 3 9
6 4 ∗

3

7

7

5

indices =

2

6

6

4

0 1 ∗
1 2 ∗
0 2 3
1 3 ∗

3

7

7

5

Figure 1: Example of matrix A stored in ELL

data =
ˆ

1 2 5 6 7 8 3 4 ∗ ∗ 9 ∗
˜

indices =
ˆ

0 1 0 1 1 2 2 3 ∗ ∗ 3 ∗
˜

While ELL has the largest potential for speedup, it is
marred by several limitations. Namely that each row is allo-
cated MAXnzr space. SpMV kernels are known to be mem-

ory bound kernels, because each matrix entry is involved in
just 1 floating point operation [2]. As a consequence ELL’s
performance becomes highly susceptible to the distribution
of non-zeroes per row. This is because the effectiveness of
the compression depends on the variability of non-zero terms
in the rows. As the variability between rows becomes too
large, the compression becomes less effective leading to sub-
optimal pruning of the non-zero data, which will eventually
find its way into the SpMV multiplication.

Choi et al [7] optimize ELL by partitioning A into a set of
rows and storing each partition in a separate ELL matrix.
This format known as Blocked ELLPACK (BELLPACK)
showed up to a 1.5X speedup on average over ELLPACK for
single-precision values. The added performance comes from
performing row-permutations before the partition phase to
group rows with similar numbers of non-zeroes into the same
partition, in affect increasing the compression.

Vazquez et al [18] proposed a GPU implementation known
as ELL-T, which was based on the ELLPACK-R storage
format. ELLPACK-R differs from ELLPACK in that there
is an added array rl, which stores the row length of a row.
Continuing the example from Figure 1 then:

rl =
ˆ

2 2 3 2
˜

ELL-R allows the GPU kernel to move an if statement
from the inner loop to the outer loop, which helps avoid
branch divergence in the kernel. ELL-T expanded on ELL-
R by assigning T threads to compute the value for one row.
The partial values would be summed together by a reduction
operation in the GPU’s shared memory. Vazquez et al [18]
showed performance improvements for matrices with a large
row length, where T was set fairly low T ≤ 16. Another op-
timization used by Vazquez is that of forcing the alignment
property for the ELL encoding.

This alignment property is critical in ensuring optimal
memory access to the indices and data arrays. On the GPU
when threads access consecutive words of memory then the
request is coalesced, meaning that if 16 threads request 16
consecutive float values, instead of the GPU issuing a re-
quest for 128 bytes of memory, the request will be coa-
lesced into a single 64 byte request. This coalescing can



only be achieved if the threads begin their access on an
aligned memory boundary. In the case of single-precision
floats this means the first thread’s request must lay on a 64-
byte word boundary. This alignment must be maintained for
all MAXnzr values of the row (stored in column-major). To
achieve the proper alignment padding is inserted between the
last row’s value for a particular column and the first row’s
value for the next column. The positions where padding
would be inserted into A are noted with an ’ ’ below:

data =
ˆ

1 2 5 6 7 8 3 4 ∗ ∗ 9 ∗
˜

indices =
ˆ

0 1 0 1 1 2 2 3 ∗ ∗ 3 ∗
˜

Different GPUs can have different alignment requirements
but assume a 64B boundary, where each float is 4 bytes,
then in the example above ’ ’ would expand to 12 arbitrary
float values. While this is counterproductive to the issue of
compression, it exhibits better memory behavior because all
MAXnzr memory requests for a row are coalesced. Note
that we do not need to pad the end of the arrays since the
only goal is to ensure that each MAXnzr column starts on
a 64B boundary. Since no more elements will be read after
the last set it is safe to omit the padding from the end.

For the purposes of our TF-IDF document clustering we
already choose a K, which serves as the maximum num-
ber of terms in the term vector. This K is usually slightly
less than the mean number of terms in the collections (20 -
200). Even if a cluster, when it is created, does not contain
K terms, after additional documents join the cluster it will
quickly reach K. This is of course a function of T which
dictates how similar any joining D will be. Choosing appro-
priate values for K eliminates the need for more advanced
permutation schemes like BELLPACK. Based on work by
Vazquez et al [18] we also choose not to use ELL-T since
the width of our matrices, K, is not very large. As such, we
choose the basic ELL along with the additional alignment
constraint as the basis for our GPU kernel.

There are two main shortcomings to the current state of
GPU SpMV when applied to our problem domain and they
are shared by the non-ELL formats:

1. They assume the vector V is dense

2. Updating a row is prohibitively expensive

Shortcoming 1 can be solved by either performing a bi-
nary search on V or using the method used in our CPU
implementation [14]. Both methods require V to be sorted
by their keys (termid in TF-IDF) and both pose challenges
for the GPU as they are prone to branch divergence. Zhang
et al [23] faced a similar problem for their similarity kernel
and found binary search to be superior. We found empiri-
cally that when V is stored in the GPU’s texture memory,
the performance differences are minimal. We end up choos-
ing Rieck’s [14] method because it offers a thread warp the
opportunity to exit the inner loop of the multiplication early
if all threads in the warp find max(Vkey) < t, where t is the
current key in the SpM that is being searched for in V.

Shortcoming 2 is a much more serious problem. Since the
cluster matrix is stored in column-major order updating a
single row needs 2 ∗ K invocations of cudaMemcpy (e.g.
K data elements and K termid elements). When performed
this way, 40% of the execution time of the application is

Algorithm 3

1: procedure FindBestClusterKernel( )
Input: numRows - number of clusters
Input: K - number of non-zeros
Input: padding - padding between columns
Input: indices - Indicies of ELL encoded cluster matrix
Input: data - Data of ELL encoded cluster matrix
Input: updId - update row id
Input: updV - term vector for updated row
Input: D - term vector of document
Input: out - Output buffer

2: shared← Initialize shared memory
3: rowId← blockDim.x ∗ blockIdx.x + threadIdx.x
4: dot← 0.0
5: vidx← 0 // Starting index to search for next term in D
6: off ← numRows + padding
7:
8: if rowId < numRows then

9: // Does my warp contain the updating row?
10: if any( rowId == updId ) then

11: for n← 0 . . . K do

12: if rowId == updId then

13: // Update Cluster
14: indices[off∗n+rowId]← updV.term id[n]
15: data[off ∗ n + rowId]← updV.weight[n]
16: end if

17: col← indices[off ∗ n + row]
18: dot+ = data[off ∗ n + row]*Seek(D, vidx, col)
19: end for

20: else

21: // My warp doesn’t have the updater
22: for n← 0 . . . K AND vidx 6= K do

23: col← indices[off ∗ n + row]
24: dot+ = data[off ∗ n + row]*Seek(D,vidx,col)
25: end for

26: end if

27: end if

28:
29: shared[rowId]← dot
30: ... shared mem reduction, store max dot in shared[0] ...
31:
32: // Write result to output buffer
33: if shared[0] == dot then

34: out[blockIdx.x].id← atomicExch(rowId)
35: out[blockIdx.x].sim← atomicExch(dot)
36: end if

37: end procedure

spent writing row updates to the GPU. Alternatively 2 cu-

daMemcpy invocations can be made pushing both matrices
back onto the device in their entirety. Due to the size of the
cluster indices and data matrices this is also very inefficient
and yields worse results for even moderately sized matrices
(200,000 x K entries).

In order to reduce the number of cudaMemcpy invoca-
tions without writing lots of unnecessary bytes, we reserve
a buffer with 1 row worth of memory on the GPU to store
the updated cluster in row-major order. We further allocate
an equivalent amount of space on the host using cudaHost-

Malloc, which pins the allocated memory so that it cannot
be paged out. Since K is not very large, we argue that pin-
ning 2 ∗K integers and floats is acceptable. When a cluster
needs to be created or updated, then we push it through this
pinned memory to the GPU. The buffer only needs to be 1
row in size because when a document Di, is clustered it is
added to just 1 cluster or creates a new cluster.

The row update sits inside the update buffer until Di+1

needs to have its similarities computed. The thread in the
GPU kernel assigned to compute the dot product for the



Figure 2: Throughput performance for increasing number of documents compared against [23].

row that needs to be updated pushes the values from the
update buffer into the ELL encoded matrices just before it
computes the dot product for Di+1. Once the GPU kernel
is done executing, the update buffer is no longer needed by
Di and is ready for use by Di+1. This method reduces the
percent of execution time spent updating rows from 40% to
3%, with a raw speedup of 10X and no significant rise in the
execution time of the multiplication kernel.

Algorithm 3 shows the pseudo code for the GPU kernel.
Lines 2-6 initialize some local variables. Line 10 is an op-
eration known as a warp vote, where if any thread inside
a thread warp (32 threads) evaluates the branch to true,
then all threads in that warp will take that branch. By per-
forming the warp vote outside the multiplication loop we
can eliminate complicated boolean logic inside the multipli-
cation loop. For instance if a thread, tupd, is the updating
thread than it must execute all K iterations of the multi-
plication loop regardless if vidx has seeked to the end of D.
This is because it must update all K entries for its clus-
ter. Because tupd must perform all K iterations, all threads
inside its warp will be stuck waiting as well.

For the threads not in tupd’s warp, repeatedly evaluating
whether they are the updating thread is unnecessary, while
there is also a chance that all threads in the warp can exit
early ( e.g. before n = K). The rest of the multiplication
loop is similar to those described in [2, 18]. Line 30 per-
forms the thread block local reduction using the 6th variant
described in [11]. Line 33-36 writes the thread block local
maxima back to global memory so that the CPU can per-
form the global reduction. One thing to note is that access
to shared[0] is served via a shared memory broadcast, mean-
ing that threads will not be serialized trying to access that
shared memory bank. Atomic operations are needed to set
the output values in the unlikely case that multiple threads
computed the same maximal dot product. In this situation,
the last writer to out[blockIdx.x].sim wins.

5. EXPERIMENTS
We tested our CPU and GPU implementation using datasets

provided by the UCI Machine Learning Repository [10]. The
second largest dataset from [10], features only 300,000 New
York Times articles, which is not a large enough document
collection for us to test against. In order to compare against
current research in the area [23] we need to use document
collections of at least 1 million. UCI’s largest dataset is
generated from 8.2 million PubMed articles.

This data is provided pre-tokenized with the removal of
stopwords. The data is also truncated by keeping only those
words that occurred more than ten times. The document
data comes in sparse format, meaning that an integer id is
provided for each term, term frequency pair as opposed to
the word itself. A separate vocabulary dataset is provided
in order to map these integers keys back to their constituent
words. We use these keys directly in our system as the term
vector’s termid. If a document has more than K terms, then
we keep the top K.

The entire 8.2M document set serves as the corpus for our
document collection. This makes the weighting scheme more
analogous to a traditional TF-IDF term weighting scheme,
than a TF-ICF term weighting scheme. However, the weight-
ing scheme is not pertinent to the performance of the clus-
tering algorithm itself. As such, the time spent computing a
document’s term vector weights is omitted from the timing
data presented here. This is also true for the timing data
in [23] that we compare against.

We run our CPU implementation on a machine with a
Intel Core2 Quad Q9450 processor and 4GBs of RAM. The
application is compiled using GCC version 4.1.2 with the -O2
flag. The GPU implementation is run on a CPU host with a
Dual Core AMD Opteron 2218 processor and 2GBs of RAM.
The GPU for our GPU implementation is a NVIDIA GTX
480. We build our application using the NVIDIA CUDA
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Figure 3: Latency performance when computing against varying number of clusters.

SDK version 3.2 targeting Compute Capability 2.0 and GCC
version 4.1.2 with the -O2 flag. We also perform some ex-
periments with a NVIDIA GTX 280 graphics card. The
GTX 280 sits on a CPU host with the same specs as the
480. The build configuration is nearly identical except we
target Compute Capability 1.3, which is the highest version
supported by that card. The GTX 280 is the card also used
by Zhang et al [23] in Figure 2.

In order to compare against current research we measure
throughput, which for us is the length of time needed to clus-
ter N documents, starting with 0 clusters. Figure 2 shows a
plot of our throughput performance against Zhang et al [23].
In order to produce this graph we overlaid our data directly
on top of Zhang’s graph. The graph shows the clustering
times for document collections of up to 1M. We average our
GPU running times from 3 independent runs for K = 35
and T = .6. Our CPU is also run for K = 35 and T = .6.
The median number of terms per article inside the PubMed
dataset for the first 5.5M articles is 55.

The set of plots near the top of the legend are all those
from [23], while the lower set are ours. The plots from Zhang
et al [23] as more GPUs are added shifts little. This is due to
the bottleneck being, not the GPUs, but the communication
between the different MPI compute nodes. For 16 GPUs,
about 60% of their execution time is spent communicating
boids between nodes. This is partially a result of the power
of the GPUs as the communication costs for CPU clusters
is only 1-7% for document collections over 100K.

Due to limitations on our access to the GTX 280 we were
only able to process 350,000 documents on that device in-
stead of 1M as in our other experiments. With the 950MBs
of global memory available to the GTX 280, the card should
be able to process much more (depending on the value of
K), since we need only O(M) space:

Maxclusters =
950MB

Size(KeyType) ∗ Size(V alueType) ∗ K
(4)

Having data points up to 1M would have been ideal for
a more direct comparison against [23]. We can, however,
project it based on our timing data up to 350,000 data points
by comparing it against the performance of the GTX 480,

for which we collect data up to 5.5M documents. When
we compare the performance of the GTX 480 against the
GTX 280 we see a consistent 30% reduction in execution
time for more than 50,000 documents. Under 50,000 we see
15%. This may seem surprising because the 480 has 2X as
many CUDA cores as the 280. The cause is that the SpMV
kernels are memory bound, so the performance is dictated
by the memory bandwidth of the device. The GTX 280 has
a memory bandwidth of 141.7 GB/s while the GTX 480 is
177.4 GB/s. This is a 25% increase in memory bandwidth
and thus our model and observed performance differences fit
nicely.

Even though our implementation using 1 GPU is not faster
than Zhang et al’s 16 GPU cluster, our throughput results
still look promising for two reasons. With the flock of birds
clustering algorithm even with 4 GTX 280 graphics cards
only 200K documents can be clustered, without implement-
ing a paging mechanism between the GPU and CPU. It isn’t
clear from the paper [23] whether this memory restriction
rose from the clustering algorithm itself or in combination
with memory allocations being used by other portions of
their system. By contrast we can cluster between 300K-2M
using a single GTX 280 (see Equation 4) and on the 1 GTX
480 we cluster 5.5M documents in 16.1 hours with T = .6,
which is a high tolerance leading to rapid cluster growth
(3.5M clusters at the end of the clustering). The second
reason is that our algorithm is very easily extendable to a
GPU/MPI compute cluster (see Section 6). We plot the
theoretical speedup of this work as if we had 16 GTX 280
graphics cards.

The best case speedup can be achieved if the communi-
cation overhead introduced by moving to a GPU/MPI ma-
chine can be hidden behind the GPU compute kernel, which
currently accounts for 95% of the clustering execution time
(see Section 6). In this scenario the speedup is directly pro-
portional to the increase in memory bandwidth, which we’ve
already seen indications of in the performance differences of
the GTX 280 and 480. With two cards of the same type the
effective memory bandwidth is doubled thus yielding a 2X
speedup in performance.

For the purposes of our algorithm we measure the per-
formance in terms of latency, which is the length of time



(a) 500K documents as T is varied and K = 60. (b) 300K documents as K is varied and T = .4

Figure 4: Performance characteristics when varying both K and T. Numbers next to the plot indicate the number of clusters
after processing all N documents.

needed to cluster a single document D when there are M

clusters. Due to limitations in the granularity of the clock,
we measure this statistic by timing how long it takes 10,000
documents to be clustered and divide by that number.

One of the goals of our design is to provide an algorithm
that can incrementally cluster documents in order to reduce
latency. Figure 3 compares the latency performance of our
GPU implementation against our CPU implementation. We
do not plot number of documents on the X axis because the
performance of these algorithms depends on the number of
clusters. The number of clusters is a function of the num-
ber of documents, K and T . By graphing the X axis versus
cluster size we minimize the effects of varying K or T during
our analysis. Figure 3 also shows some sporadic jumps in the
performance of the CPU, while the GPU remains smooth.
The problem with the CPU implementation is that in order
to process 2M documents it takes a whole week. The areas
of the graph that show spikes in the CPU usage are caused
by system maintenance or others users logging into the ma-
chine. When stating our speedup of 43X we ignore these
regions of graphs.

Our best speedups from Figure 3b approach 43X. This is
also close to the range of our speedup against the CPU in the
throughput oriented experiments (30-40X). Teitler et al[17]
obtained speedups of only 3-4X with their GPU implementa-
tion over the CPU baseline for moderate to large document
collections. This make our GPU implementation 10X faster
than their GPU implementation. The reason for this perfor-
mance difference is in the efficient memory coalescing of the
SpM in the SpMV multiplication kernel, as well as an im-
mediate thread-block local reduction phase. Furthermore,
when we look at how long it takes to cluster a single doc-
ument it takes the GPU just .01 seconds even when there
are 1.61M clusters. This is equivalent to 100 documents per
second.

In order to see the sensitivity of our implementation to
varying values of K and T , we first run experiments with
500K documents fixed at K = 60 and then vary T . The
number of clusters generated for various configurations are
shown on the graph in Figure 4a. As we’d expect as T in-
creases the running time also increases. This is because the
performance is proportional to the number of clusters gener-

ated. With large values for T cluster growth is more rapid,
leading to more similarity computations. We also notice that
cluster size is more sensitive in the range 0.1 -0.6 than over
0.6. Performance is most sensitive between 0.3 -0.6. The
reason the 9-fold increase in cluster size between T = .1
and T = .3 does not have a drastic effect on performance is
that the GPU has not yet become saturated. Changes be-
yond T = .6 produce little variation in the number of output
clusters, which explains why the performance is flat on the
right side of Figure 4a.

When measuring the effect of K on the algorithm we
use the New York Times dataset [10], consisting of 300K
documents. The benefit of this dataset over the PubMed
dataset [10] is that the average number of terms per docu-
ment is larger (230 as opposed to 50). When we look at the
data in Figure 4b there are two noticeable things. First, we
notice a weak linear scaling with respect to increasing values
of K. Second, we notice that as K is increased the number
of output clusters increases. This increase is nowhere near as
pronounced as when T is varied and is part of the reason we
achieve linear weak scaling, but it does gradually increase.
This is due to the nature of moving to higher dimensional
space [3]. As more terms are added to the term vectors,
their normalized weights are reduced. This means that to
maintain the same similarity value as when a smaller K was
chose, more terms must be in common between the cluster
and the document.

6. FUTURE WORK
As part of our ongoing work we plan to implement our

system using a cluster of GPUs. GPUs between machines
will be tied together via an interconnection network and
programmed against using MPI. The goal of this work is to
try and achieve our ideal speedup graphed in Figure 2.

In this scenario we use simple row-based partitioning to
evenly distribute the rows of Call amongst the various graph-
ics cards. This partitioning can favor those cards with bet-
ter memory bandwidth. The only modification that is re-
quired to Algorithm 2 is that the global reduction becomes
a compute-node local reduction. A final reduction must be
done between the MPI nodes to determine the maximum,
and then this value needs to be scattered back out to notify



the compute nodes. In the case of a new cluster, the node
next in line to store a cluster does so.

We can further increase throughput of this architecture
by completely hiding the cost of the global reduction. If
more than 1 document needs to be clustered, then with a
slight relaxation of the algorithm, we can begin computing
Di+1 immediately after Di has had its thread-block local
maxima copied to the CPU. The cost of the compute-node
local maxima and global maxima can then be completely
overlapped with the similarity computation of Di+1. With
the extension of the update buffer to an update queue the
architecture is complete.

We also plan on investigating the application of our work
to query processing. What makes this appealing is that
while there is strict formatting imposed on the cluster ma-
trix, the document term vector is free to be nearly un-
bounded in length.

7. CONCLUSION
We have shown a practical GPU-based implementation for

online document clustering that is 43X faster than its CPU
analog and exhibits weak linear scaling with respect to K,
the maximum number of terms in a term vector. Our algo-
rithm is based on an efficient similarity computation kernel
that builds upon existing research in Sparse Matrix Vector
multiplication. We provide an effective means to update a
sparse matrix stored on a GPU and encoded in ELLPACK.
Our performance for document collections less than 350K
using just 1 GTX 280 is better than current research using
between 4-16 GTX 280s. Our results for collections larger
than 350K has a great potential to achieve strong linear
scaling by increasing the effective memory bandwidth to the
GPU kernel by increasing the number of GPUs. All while
hiding any added communication costs. Our current imple-
mentation uses O(m) memory on the GPU, where m = the
number of clusters, allowing us to cluster collections of 5.5M
documents on a single GTX 480 GPU in 16.1 hours. The
measured latency of our GPU implementation is .01 seconds
per document when 1.61 million clusters exist in the system
(100 documents per second).

8. REFERENCES
[1] CUDA C Programming Guide 3.2, Nov. 2010.
[2] N. Bell and M. Garland. Efficient sparse matrix-vector

multiplication on CUDA. NVIDIA Technical Report
NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is ”nearest neighbor” meaning-
ful? In Proceedings of the 7th International Con-

ference on Database Theory, ICDT ’99, pages 217–
235, London, UK, 1999. Springer-Verlag. ISBN 3-
540-65452-6. URL http://dl.acm.org/citation.cfm?

id=645503.656271.
[4] R. Bordawekar and M. M. Baskaran. Optimizing sparse

matrix-vector multiplication on gpus. In Ninth SIAM

Conference on Parallel Processing for Scientific Com-

puting, (RC24704), 2008.
[5] J. M. Cavanagh, T. E. Potok, and X. Cui. Paral-

lel latent semantic analysis using a graphics process-
ing unit. In Proceedings of the 11th Annual Conference

Companion on Genetic and Evolutionary Computation

Conference: Late Breaking Papers, GECCO ’09, pages
2505–2510, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-505-5. doi: http://doi.acm.org/10.1145/
1570256.1570352. URL http://doi.acm.org/10.1145/

1570256.1570352.
[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaf-

fer, and K. Skadron. A performance study of general-
purpose applications on graphics processors using cuda.
J. Parallel Distrib. Comput., 68:1370–1380, October
2008. ISSN 0743-7315. doi: 10.1016/j.jpdc.2008.05.014.
URL http://dl.acm.org/citation.cfm?id=1412749.

1412827.
[7] J. W. Choi, A. Singh, and R. W. Vuduc. Model-

driven autotuning of sparse matrix-vector multiply
on gpus. SIGPLAN Not., 45:115–126, Jan. 2010.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1837853.1693471. URL http://doi.acm.org/10.1145/

1837853.1693471.
[8] X. Cui, J. Gao, and T. E. Potok. A flocking based

algorithm for document clustering analysis. J. Syst.

Archit., 52:505–515, August 2006. ISSN 1383-7621.
doi: 10.1016/j.sysarc.2006.02.003. URL http://dl.

acm.org/citation.cfm?id=1163824.1163829.
[9] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y.

Yang, B. He, Q. Luo, P. V. Sander, and K. Yang. Par-
allel data mining on graphics processors. Technical re-
port, The Hong Kong University of Science and Tech-
nology, Oct. 2008.

[10] A. Frank and A. Asuncion. UCI machine learning repos-
itory, 2010. URL http://archive.ics.uci.edu/ml.

[11] M. Harris. Optimizing parallel reduction in cuda.
NVIDIA Developer Technology, 2008. URL http://

developer.download.nvidia.com/compute/cuda/1_

1/Website/projects/reduction/doc/reduction.pdf.
[12] S. A. Manavski and G. Valle. Cuda compatible

gpu cards as efficient hardware accelerators for smith-
waterman sequence alignment. BMC bioinformatics, 9
Suppl 2(Suppl 2):S10–9, Mar. 2008. ISSN 1471-2105.
doi: 10.1186/1471-2105-9-S2-S10.

[13] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump,
M. T. Elmore, and A. R. Hurson. Tf-icf: A new term
weighting scheme for clustering dynamic data streams.
In Proceedings of the 5th International Conference on

Machine Learning and Applications, pages 258–263,
Washington, DC, USA, 2006. IEEE Computer Soci-
ety. ISBN 0-7695-2735-3. doi: 10.1109/ICMLA.2006.50.
URL http://dl.acm.org/citation.cfm?id=1193211.

1193734.
[14] K. Rieck and P. Laskov. Linear-time computation

of similarity measures for sequential data. J. Mach.

Learn. Res., 9:23–48, June 2008. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1390681.

1390683.
[15] G. Salton and C. Buckley. Term-weighting approaches

in automatic text retrieval. Inf. Process. Manage.,
24:513–523, August 1988. ISSN 0306-4573. doi:
10.1016/0306-4573(88)90021-0. URL http://dl.acm.

org/citation.cfm?id=54259.54260.
[16] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D.

Lieberman, and J. Sperling. Twitterstand: news in
tweets. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, GIS ’09, pages 42–51, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-649-6. doi:
10.1145/1653771.1653781. URL http://doi.acm.org/

http://dl.acm.org/citation.cfm?id=645503.656271
http://dl.acm.org/citation.cfm?id=645503.656271
http://doi.acm.org/10.1145/1570256.1570352
http://doi.acm.org/10.1145/1570256.1570352
http://dl.acm.org/citation.cfm?id=1412749.1412827
http://dl.acm.org/citation.cfm?id=1412749.1412827
http://doi.acm.org/10.1145/1837853.1693471
http://doi.acm.org/10.1145/1837853.1693471
http://dl.acm.org/citation.cfm?id=1163824.1163829
http://dl.acm.org/citation.cfm?id=1163824.1163829
http://archive.ics.uci.edu/ml
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://dl.acm.org/citation.cfm?id=1193211.1193734
http://dl.acm.org/citation.cfm?id=1193211.1193734
http://dl.acm.org/citation.cfm?id=1390681.1390683
http://dl.acm.org/citation.cfm?id=1390681.1390683
http://dl.acm.org/citation.cfm?id=54259.54260
http://dl.acm.org/citation.cfm?id=54259.54260
http://doi.acm.org/10.1145/1653771.1653781


10.1145/1653771.1653781.
[17] B. E. Teitler, J. Sankaranarayanan, and H. Samet.

Online document clustering using the GPU. Tech-
nical Report TR–4970, Computer Science Depart-
ment, University of Maryland, College Park, MD,
Aug. 2010. URL http://www.cs.umd.edu/~hjs/pubs/

GPUClusteringFinalWithReferences.pdf.
[18] F. Vazquez, G. Ortega, J. J. Fernandez, and E. M.

Garzon. Improving the performance of the sparse ma-
trix vector product with gpus. In Proceedings of the

2010 10th IEEE International Conference on Computer

and Information Technology, CIT ’10, pages 1146–1151,
Washington, DC, USA, 2010. IEEE Computer Soci-
ety. ISBN 978-0-7695-4108-2. doi: http://dx.doi.org/
10.1109/CIT.2010.208. URL http://dx.doi.org/10.

1109/CIT.2010.208.
[19] R. Wu, B. Zhang, and M. Hsu. Clustering billions of

data points using gpus. In Proceedings of the com-

bined workshops on UnConventional high performance

computing workshop plus memory access workshop,
UCHPC-MAW ’09, pages 1–6, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-557-4. doi: http://doi.
acm.org/10.1145/1531666.1531668. URL http://doi.

acm.org/10.1145/1531666.1531668.
[20] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and

N. Xu. Efficient pagerank and spmv computation on
amd gpus. In Proceedings of the 2010 39th Interna-

tional Conference on Parallel Processing, ICPP ’10,
pages 81–89, Washington, DC, USA, 2010. IEEE Com-
puter Society. ISBN 978-0-7695-4156-3. doi: http:
//dx.doi.org/10.1109/ICPP.2010.17. URL http://dx.

doi.org/10.1109/ICPP.2010.17.
[21] M. Zechner and M. Granitzer. Accelerating k-means

on the graphics processor via cuda. In Proceedings

of the 2009 First International Conference on Inten-

sive Applications and Services, pages 7–15, Washing-
ton, DC, USA, 2009. IEEE Computer Society. ISBN
978-0-7695-3585-2. doi: 10.1109/INTENSIVE.2009.19.
URL http://dl.acm.org/citation.cfm?id=1547557.

1548166.
[22] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Gpu-

accelerated text mining. In Workshop on Exploiting

Parallelism using GPUs and other Hardware-Assisted

Methods, Mar. 2009.
[23] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Data-

intensive document clustering on graphics processing
unit (gpu) clusters. Journal of Parallel and Distributed

Computing, 71(2):211 – 224, 2011. ISSN 0743-7315.

http://doi.acm.org/10.1145/1653771.1653781
http://www.cs.umd.edu/~hjs/pubs/GPUClusteringFinalWithReferences.pdf
http://www.cs.umd.edu/~hjs/pubs/GPUClusteringFinalWithReferences.pdf
http://dx.doi.org/10.1109/CIT.2010.208
http://dx.doi.org/10.1109/CIT.2010.208
http://doi.acm.org/10.1145/1531666.1531668
http://doi.acm.org/10.1145/1531666.1531668
http://dx.doi.org/10.1109/ICPP.2010.17
http://dx.doi.org/10.1109/ICPP.2010.17
http://dl.acm.org/citation.cfm?id=1547557.1548166
http://dl.acm.org/citation.cfm?id=1547557.1548166

	Introduction
	Background
	Related Work
	Clustering Algorithm
	CPU Implementation
	GPU Implementation

	Experiments
	Future Work
	Conclusion
	References

