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Abstract

We describe Jqual, a practical framework for type qualifier inference in Java. Jqual is implemented
as an Eclipse plug-in that allows researchers to quickly develop and test modifications to the Java type
system based on the flexible, lightweight and familiar mechanism of type qualifiers. We demonstrate one
such analysis which supports specification and checking of reference immutability for Java types modeled
on the Javari language[2]. Finally, we describe the results of applying this analysis to a moderate-sized
sample program.

1 Introduction

As the Java programming language gains popularity as a platform for large, widely-distributed applications,
it becomes increasingly important for researchers to develop techniques for assuring security and correctness
in Java programs. We believe that this goal can be advanced by the availability of a highly-adaptable
framework for program analysis that will allow researches to quickly develop and test analysis techniques on
large programs. Among the many approaches that have been investigated for program analysis, type-based
analysis has proven to be powerful, efficient and broadly-applicable. Therefore, we seek to develop a method
for researches to quickly define, implement, and test modifications to the Java type system with a minimum
of repetition of effort.

Type qualifiers provide just such a means for modifying an existing type system in a convenient and
easily understood way. Type qualifiers are modifiers that can be applied to the existing types in a language
to provide more restrictive types that embody extra properties or specifications about terms in a program.
Many languages already include a fixed set of type qualifiers as part of the language for just this purpose—
const and volatile in C, for example, or final in Java. By presenting a general-purpose mechanism for
introducing new type qualifiers into Java, we leverage the flexibility of type qualifiers as a way to add new
properties to the language without the need to broadly reinvent the type system.

As with standard type qualifiers, our general purpose type qualifiers are introduced into a program as
decorators on existing types. For example, as part of an analysis we implemented to provide reference
immutability specifications into Java, based on the Javari variant of Java [2], we define a qualifier readonly,
which indicates that an object reference cannot be used to modify the target object to which it refers. A
programmer could define a variable x as a readonly reference of type C as:

readonly C x;

See Section 3 for a full discussion of our implementation of reference immutability.
Type qualifiers can be applied to any part of any type within the program. For example, it might be

useful to specify that the return value of a method is readonly to guarantee that the caller of the method
cannot modify the returned object:

class C {
private List data;
readonly List getData() { return data; }

}
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In order to allow rich semantics for type qualifiers we allow subtyping relationships between different
qualifiers. In our implementation of reference immutability we define two different qualifiers, readonly and
mutable, where mutable means that a type is not readonly. We define a relationship mutable ≤ readonly
meaning mutable references are a subtype of readonly references and so can be used in place of readonly
references. Intuitively, a mutable reference can do everything a readonly reference can, plus it can be used
to modify the object to which it refers. It has a superset of the functionality of a readonly reference and is
therefore a subtype of readonly.

To simplify the introduction of type qualifiers into Java programs, we describe Jqual, a framework for
performing type inference on type qualifiers. In the Jqual system, programmers can specify properties
by annotating key terms with qualifiers. We then perform type inference determine the qualifiers on the
remaining terms in the program. For example, in the following code the parameter p to the function f is
annotated as readonly:

void f(readonly List p){
List x = p;
x.clear();

}

If the variable x is not annotated as readonly, the semantics of p as a readonly parameter are not
preserved—after the reference is assigned from p to x it can be used to modify the underlying object.
In our type system, the qualifier on x will be inferred to be a supertype of the qualifier on p at the point
where p is assigned to x, which will constrain it to be readonly. When x is subsequently used to modify the
input value, this will be flagged as an error.

Previous work on type qualifier inference has been done for the C language [4]. The primary technical
challenge in extending this work to Java is to provide handling for object-oriented features of the language.
See Section 2 for a full description of our type inference system. We introduce a class table into the type
system as a means for keeping track of class definitions and to maintain the inheritance relationships between
types. We use class hierarchy analysis to account for dynamic method dispatch. We use object-insensitive
modeling of the fields of objects, meaning that a single set of types is shared among the fields of all objects
of the same class.

We have developed a practical implementation of Jqual as an Eclipse plug-in. In Section 4 we describe an
experiment in which we model Javari-style reference immutability using Jqual and analyze a sample program
that was hand-annotated with Javari qualifiers. The Jqual implementation was able to infer the same types
specified by hand for most terms in the program, though it raises a number of unnecessary warnings as a
result of lack of precision arising from conservative approximations in the Jqual type system. In addition,
Jqual identified a number of terms that could correctly be annotated readonly but had not been.

The principal contributions of this work are the extension previous type qualifier inference systems for
the C language to address the additional language features of Java and the implementation of a practical
tool for performing type qualifier analysis based on our type system.

2 Type System

We present our inference on the source language shown in Figure 1, which is a slightly simplified variation on
Featherweight Java [6]. In section 4 we describe our implementation, which handles the full Java language.

Along with the source program, Jqual requires as input a lattice file, which is a list of the qualifier
constants that are used in the program. This list can also specify the subtyping relationships between
different qualifiers. In order to infer types for a program, we will create qualifier variables for each position
in the source language where qualifiers can appear. For some applications programmers may include qualifier
annotations in the source program to specify the types of terms. These are applied to the appropriate qualifier
variables via the auxiliary function mkq(). The function mkq() returns a fresh qualifier variable κ. If the
function mkq() is passed a qualifier constant Q as an argument, then mkq() constrains κ to be equal to Q. If
mkq() is passed ε, then mkq() makes no constraints on κ. If the target term of an annotation is a reference
ref Q(CQ′

), the qualifier will be applied to the value qualifier Q′.
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P ::= ε | class C extends C ′ {F1; . . . ;M1; . . .} P
F ::= T l
M ::= T lQs(T1 x1, . . . , Tn xn) Q {e}
e ::= x | null | e.l | e1.l := e2 | e.l(e1, . . . , en)

| new T | (T ) e
C ::= Object | 〈class names〉
Q ::= ε | 〈qualifier constants〉
T ::= null | CQ

Figure 1: Source Language

In our formal language, programs P are made up of a sequence of class definitions. Each class extends
exactly one other class, except for the base class Object. A class definition cannot appear in the program
before the definition of its superclass. A class definition contains a sequence of field and method declarations.
Each field is declared with a qualified type T , which is either null or a class name C paired with a qualifier
Q. Qualifiers can be specified as annotations in the text of the program or left blank to indicate no explicit
qualifier at that position. Methods similarly have qualified parameter and result types, as well as a qualifier
Qs on the invocation target this and an overall qualifier Q which can be used to track properties or effects
of the method, for example whether the method has side effects or accesses shared memory. The overall
method qualifier is not used in the analyses described in this paper. When a method is invoked, it evaluates
to its body, which is an expression e. Expressions include variables x, which we allow to be the current object
this. Explicit target expressions e must be given for all field accesses e.l and method invocations e.l(. . .).
The expression new CQ creates a new instance of class C, with its fields initialized to the distinguished value
null. We also allow casts on qualified types. The soundness of casts with respect to base types is checked
at runtime. The soundness with regards to qualifiers is unchecked.

Our goal is to present the simplest language possible that will allow us to illustrate the interesting
aspects of modeling type qualifiers for objects. Besides the inclusion of qualifiers, our language differs from
Featherweight Java in three significant ways. First, in place of the auxiliary definitions used by Featherweight
Java, we handle inherited field and method resolution differently (see below). Second, we do not include
constructors in our language. We also do not include calls to super in our language.

2.1 Type System

The goal of our type system is to assign qualified types to every expression in the program. A key choice in
designing a type system for an object oriented language is how to model objects. Our type rules construct
a class table CT which maps class names C to object types σ [1], which contain fields and methods labeled
with li:

φ ::= ref Q(T ) | (Qs;T1 × . . .× Tn) →Q T
σ ::= {li : φi}i∈[1..n]

Our type system is object insensitive, meaning that all instances of a class share the same object type. The
implication is that constraints inferred on the fields of one object will also apply to the fields of all other
objects of the same class.

In our type system Fields and methods are assigned object component types φ. The object component
type for a field is of the form ref Q(T ) to denote that fields are updatable and to provide a clear separation of
reference-level qualifiers from value-level qualifiers [4]. Reference-level qualifiers represent properties of the
reference, while value-level qualifiers represent properties of the target object referred to by the reference.
For example, a field x.f has the type ref Q(CQ′

), where Q is the qualifier on the location of x.f and Q′ is the
qualifier on the contents of x.f . The object component type for a method is of the form (Qs;T1×. . .×Tn) →Q

T , where Qs is the qualifier on this, the Ti are the argument types, T is the return type, and Q is the overall
qualifier on the method. For object types σ, we write σ[li] to denote the φ corresponding to label li.
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Sub-Class
C extends C ′ ∈ P

P ` C ≤ C ′

Sub-Trans
P ` C ≤ C ′ P ` C ′ ≤ C ′′

P ` C ≤ C ′′

Sub-Null

P ` null ≤ T

Sub-Object
P ` C ≤ C ′ Q ≤ Q′

P ` CQ ≤ C ′Q′

Sub-Field
Q ≤ Q′

ref Q(T ) ≤ ref Q′
(T )

Sub-Method
Q′

s ≤ Qs P ` T ′
i ≤ Ti i ∈ [1..n] Q ≤ Q′ P ` Qr ≤ Qr

′

P ` (Qs;C1
Q1 × . . .× Cn

Qn) →Q Cr
Qr ≤ (Q′

s;C1
Q′

1 × . . .× Cn
Q′

n) →Q′
CQr

′

r

Figure 2: Subtyping Rules

Jqual incorporates subtyping both among base types, as in Java, and among type qualifiers. Figure 2
shows the subtyping rules for Jqual. The first four rules are for classes and qualified types. In the Sub-
Object rule for subtyping qualified types, notice that we place no constraints on the fields of C and C ′.
Such constraints are already produced by the class table construction rules (see below). The Sub-Field
rule, for subtyping field types, is the standard rule for subtyping references and specifies that subtyping is
only allowed for references to the same type [7]. The Sub-Method rule specifies subtyping of methods.
Following the Java typing rules, the classes of the parameters and the return type must be identical in the
subtype and supertype. However, the qualifiers Qi on the parameters are treated less restrictively and can
be subtyped contravariantly. Like the qualifiers on the parameter types, the qualifier Qs for this is used as
an input to the method and is also subtyped contravariantly.

Jqual uses a two-step type inference procedure to verify that consistent types can be assigned to all
expressions in a program P . The first step proves a judgment ε `CT P ;CT , meaning that the class table CT
matches the class, field, and method declarations of the program P . The second step uses type inference,
subtyping rules, and constraint solving to prove the judgment CT ` P , meaning that the program P type
checks under class table CT . The type inference and subtyping rules can reduce the judgment to a set of
subtyping relationships between qualifiers of the form Q ≤ Q′. If a consistent solution can be found for these
constraints, the type inference is successful.

Figure 3 shows the rules used to prove the class table judgment. The Empty rule is self-explanatory.
The Class rule examines each class definition in turn and augments the class table to reflect the class’ field
and method declarations. For a class C, this rule constructs an object type σ that associates each field or
method label li in the class definition with an object component type. For a label li corresponding to a
field declaration Fi, a mapping is made to a field object component type. For a label li corresponding to
a method declaration Mi, a mapping is made to a method object component type. Labels in the object
type CT [C ′] for the superclass C ′ that are not defined for C are mapped to the object component type
associated with that label in the superclass, as dictated by the class hierarchy mechanisms of our language.
The Class rule uses an the auxiliary function mkq(Q) to create fresh qualifier variables and constrain them
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Empty

CT `CT ε;CT

Class

σ[li] =



ref mkq (ε)(Cmkq (Q)) i ∈ {1 . . . n}
where Fi = CQ li

(mkq(Qs);C
mkq (Q1)
1 × . . .× Cmkq (Qp)

n ) →mkq (Q′) Cmkq (Q) i ∈ {n + 1 . . . n + m}
where Mi = CQ lQs

i (CQ1
1 x1, . . . , C

Qp
p xp) Q′ {e}

CT (C ′)[li] otherwise


σ[l] ≤ CT (C ′)[l] l ∈ dom(CT (C ′)) CT `CT P ;CT ′

CT `CT C extends C ′ {F1; . . . ;Fn;Mn+1; . . . ;Mn+m} P ;CT ′[C 7→ σ]

Figure 3: Class Table Construction

to be equal to the qualifier Q if Q is non-empty. For field types, value-level qualifiers Q′ may appear in the
source code. There is no mechanism for specifying qualifier constraints at the reference-level in the current
design of Jqual.

To model the relationship between parent and child types, we also create subtyping constraints CT (C)[l′] ≤
CT (C ′)[l′] for each label l in the parent class. This reflects the class hierarchy analysis [9] approach to call
graph resolution used by Jqual. This is a conservative assumption that any term in the program may actually
contain at runtime any subtype of the declared type of the term. As a result, any constraints inferred on the
subtypes must also be applied to the supertype. The subtyping prerequisite in the Class rule forces this to
happen in the process of constructing the class table.

The second step of our type inference procedure is the application of the type inference rules shown in
Figure 4. Successive applications of the Class rule are used to prove the judgment CT ` P by examining
each of the class definitions. Applying the rule for each class requires the application of the Method rule
to each of the methods defined in the class. The judgment CT,C ` M means that the method M of the
class C is consistent with the class table CT . It is not necessary to type the fields defined for the class since
there can not be a body or initializer code associated with a field in our language.

The Method rule retrieves the type for the method from the class table. It then proves that the body
of the method has a subtype of the declared return type for the method, given that the types for this and
the method parameters are given by the class table. The process of proving this leads to the application of
the remainder of the type inference rules, which are for expressions.

The Var rule applies to the typing of variables. The Var rule also applies to this, since this is treated
as a variable in the source language. The Null rule simply types null. The FieldAccess rule infers the
type T of the expression e. It then uses the class table to look up the type of the field l for the type T . The
type Tl of the object to which the field type refers is the resulting type for the field access expression since
a field access in Java returns the contents of the field, which has the type T1. Notice that since we retrieve
field types from the class table, all instances of the same class share field types. The Assign rule infers the
type for an assignment to a field e1.l. The type of the field l is determined as in the FieldAccess rule, and
the type of e2 is inferred to be a subtype of the type of e1.l. The Invoke rule infers the return type for an
invocation of the method l on an object e. The type of e is resolved via the inference rules. The type of the
method l as invoked on e is retrieved from the class table. Note that Jqual uses monomorphic analysis, where
the same type is used for all invocations of a method. The types of all of the actual parameters of the method
invocation are inferred via the inference rules. The qualifier on e is constrained to be a subtype of the type
of this for the method. The types of the actual parameters are likewise constrained to be subtypes of the
types of the formal parameters for the method, and the type of the invocation expression is the return type
for the method. Finally, the New rule takes the type of a new expression from the textual class name in the
expression. The qualifier is determined using the mkq() function, as in class table construction. The Cast
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rule behaves similarly. Casts to a supertype are sound because the subtyping rules are respected in class
table construction. A cast to a supertype followed by a cast to the original type will not cause constraints
on the fields of the subtype to be unsoundly ignored since, in our system, all instances of the same class
share field types.

The result of the application of the type inference and subtyping rules is a collection of qualifier constraints
of the form Q ≤ Q′. The qualifiers are either qualifier constants or qualifier variables associated with the
types in the program. Solving the constraints determines the qualifier constants that apply to type for each
program expression. We solve the constraints via graph reachability [4]. Contradictory qualifier constraints
on an expression indicate a type error in the program.

2.2 Algorithm Complexity

The Jqual type inference algorithm is of time complexity O(n2) where n is the length of the program text.
Our analysis of the algorithm complexity assumes class table lookup is implemented using a hash table large
enough that lookup times reliably approach constant time complexity.

Our algorithm has two parts. The first part, class table construction, is of complexity O(n2). Class table
construction requires a fixed number of operations for each field and method declaration in the program,
which implies a linear running time. Applying the subtyping rules between types and their supertypes
generates one constraint per qualifier location in the text of the program, so this will be require a linear
number of operations. However, creating the mappings for inherited fields and methods requires the creation
of one mapping for each field and method in the supertype. Therefore, the number of mappings created
may be on the order of the number of fields and methods in the base type multiplied by the number of class
declarations in the program, which implies quadratic running time. Alternately, we could not create these
mappings directly and instead have a procedure for class table lookups that looks in the supertype for any
labels that are missing from the type. However, this gives class table lookups linear running time in the size
of the program, which will again make the running time of various parts of the algorithm quadratic.

The second part of our algorithm, type inference, is of complexity O(n). Exactly one type inference rule
is applied for each term in the program and the complexity of applying the rules is either constant time
or linear in the length of the term, assuming again that class table lookups are constant time operations.
Except for the Sub-Trans rule, the subtyping rules can be applied in either constant time or in time linear
in the length of the terms to which they are applied. To make the work of applying the Sub-Trans rule
constant, we first solve the set of constraint’s generated during type inference. The number of constraints
will be linear in the length of the program. Since the qualifiers we are using form a lattice, the constraints
can be solved in linear time [4].

3 Reference Immutability with Jqual

As one application of type qualifier inference for Java, we have explored using Jqual to infer Javari-style
qualifiers for reference immutability. Javari is a variant of the Java language that allows programmers to
label variables with a new keyword readonly to specify that those variables will never be used to modify
the objects to which they refer. The Javari compiler verifies that these specifications are always respected
and produces a compilation error if they are not. While Javari can check such specifications, it cannot infer
them—programmers must make all annotations by hand. Implementing Javari-style qualifiers using Jqual
has the advantage of allowing these qualifiers to be inferred.

3.1 Javari

We present a brief overview of Javari. For a full discussion see [2].
The key addition to Java made by the Javari language is the keyword readonly. For example, the code

in this method would produce an error:

class C {
int x;
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Empty

CT ` ε

Class
CT,C ` Mk k ∈ [1..] CT ` P

CT ` C extends C ′ {F1; . . . ;M1; . . .} P

Method
CT (C)[l] = (Qs

′;T1
′ × . . .× Tn

′) →Q T ′

[this 7→ CQs
′
, xi 7→ Ti

′], CT ` e : T ′′ i ∈ [1..n] T ′′ ≤ T ′

CT,C ` T lQs(T1 x1, . . . , Tn xn) Q {e}

Var
x ∈ dom(Γ)

Γ, CT ` x : Γ(x)

Null

Γ, CT ` null : null

FieldAccess

Γ, CT ` e : CQ CT ` C[l] = ref Q′
(Tl)

Γ, CT ` e.l : Tl

Assign

Γ, CT ` e1 : CQ CT ` C[l] = ref Q′
(T1) Γ, CT ` e2 : T2 T2 ≤ T1

Γ, CT ` e1.l = e2 : T2

Invoke
Γ, CT ` e : Ce

Qe

CT (Ce)[l] = (Qs;T1 × . . .× Tn) →Q′
T Γ, CT ` ei : T ′

i Qe ≤ Qs T ′
i ≤ Ti i ∈ [1..n]

Γ, CT ` e.l(e1, . . . , en) : T

New

Γ, CT ` new CQ : Cmkq (Q)

Cast

Γ, CT ` (CQ) e : Cmkq (Q)

Figure 4: Type Qualifier Inference Rules
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void f() {
readonly C c;
c = new C(); //ok
c.x = 17; //error

}
}

In this example, the variable c is labeled as readonly. There is an error because c is used to modify the
value of the object to which it refers. The assignment to c itself is not an error because it is legal to modify
the value of a readonly reference, just not the value of the object to which it refers. It is useful to contrast
the meaning of readonly with the meaning of the Java keyword final. The value of a variable labeled as
final cannot be modified:

class D {
int x;
void f() {

final D d;
d = new D(); //error
d.x = 17; //ok

}
}

The variable d is annotated final, so in this case the assignment to d is illegal. Modifying the value of d.x,
however, is valid.

The definition of “modifying an object” includes modifying the object’s transitive state, which includes
the fields of the object as well as the objects to which those fields refer, transitively. For example, consider
the following code:

class A { int x; }

class B { A a = new A(); }

class C {
readonly B b = new B();

void f() {
b.a.x = 17; //error

}
}

This code produces an error because the readonly reference b is used to modify the x field of b’s a field. In
general, any field reached in any way from a readonly reference cannot be modified.

The Javari compiler also requires that readonly references are never assigned to variables that are not
labeled readonly, since if this were permitted it would allow code use readonly references to write to
memory. The following code gives an example of such a subterfuge:

class C {
int x;
void f() {

readonly C c = new C();
C d = c; //error
d.x = 17;

}
}
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In Javari, a term that is not labeled readonly is considered mutable. In this code, the object referred to by
c is modified by first assigning c to the non-readonly variable d, then using d to modify the object. Javari
flags the assignment statement as an error. The Jqual implementation of reference immutability will handle
this example differently. The assignment statement will not immediately generate an error. Instead, at that
point the type of the value-level qualifier on d will be inferred to be a supertype of the value-level qualifier
on c and, therefore, readonly. At the assignment statement to d.x, the type of the value-level qualifier on
d will be inferred to be mutable. Since there is a contradiction between these two inferences, Jqualwill flag
these statements as being badly-typed.

Along with local variables and fields, programmers can label method parameters, return types, methods
themselves, or entire classes as readonly. If a method parameter is readonly, the caller can assume that
objects passed to that position will not be modified. Similarly, if a method m is labeled as readonly, it is
guaranteed that invoking m on an object o will not modify the object o. Only methods labeled as readonly
can be invoked via readonly references, as demonstrated by the following code:

class C {
int x;

void f() {
readonly C c = new C();
c.g(); //error

}

void g() {
x = 17;

}
}

In this case the method g() is not labeled as readonly, so invoking it on the readonly variable c is
not allowed. In Javari, methods must be explicitly labeled readonly in order for them to be invoked via
readonly references. The type inference capability of Jqual allows it to infer readonly methods without
explicit labeling. In this case g() could not be labeled as readonly and would not be inferred to be readonly
by Jqual because it modifies the field x of its invocation target.

In Javari, the return type of a method can be labeled readonly to specify that the caller cannot modify
the object referred to by the return value of the method. Lastly, entire classes can be declared readonly as
a shorthand to specify that all references to objects of that type must be readonly.

Javari includes further functionality to make immutability specifications more flexible. Programmers can
use the mutable keyword to label individual fields of a class as being writable even via a readonly reference.
This can be useful for specifying ancillary fields that do not represent abstract state, for example, a field that
caches the value of the hash code of an object. Method overloading allows a class to have two methods which
are identical in name and type except with respect to whether the elements of the method signature are
readonly or not. Javari also includes parameterized polymorphism, which allows the programmer to create
methods or classes as templates in which variables representing the mutability of elements can be specified
for each usage of the method or class. Casts to readonly allow the programmer to identify references as
readonly in cases where the compiler does not have enough information to verify their immutability. These
casts are checked at runtime.

3.2 Implementing Inference for Javari using Jqual

We added Javari-style qualifiers to Jqual and modified the type inference rules for Jqual to allow them to
be inferred correctly.

To represent the mutability of references requires a lattice of two qualifiers, mutable and readonly.
These qualifiers are in a subtyping relationship mutable ≤ readonly since mutable types can be used as
readonly, but not vice-versa. Note that mutable here means only that a reference is not readonly. The
mutable annotation, used in Javari to identify fields that are not part of the abstract state of an object, is
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Assign
Γ, CT ` e1 : C1

Q1 CT ` C1[l] : ref Q2(C2
Q3)

Γ, CT ` e2 : T T ≤ C2
Q3 Q2 ≤ mutable Q3 6= Mutable⇒ Q1 ≤ mutable

Γ, CT ` e1.l := e2 : C2
Q3

FieldAccess
Γ, CT ` e : C1

Q1 CT ` T [l] = ref Q2(C2
Q3) Q1 ≤mutable,readonly Q3

Γ, CT ` e.l : C2
Q3

Figure 5: Modified Type Qualifier Inference Rules for Javari Analysis

represented by a qualifier Mutable that can appear as a program annotation but is never inferred. Mutable is
never inferred because we believe it represents an exception to normal behavior that should not be assumed
if it is not explicitly specified by the programmer.

We model Javari by placing readonly and mutable qualifiers on the value level of a type. It is natural to
extend these qualifiers to also model Java’s final, which we do by placing them on the reference level of a
type. If the reference-level qualifier on a field is readonly, that field is final. If the reference-level qualifier
is mutable, that field is non-final.

Making Jqual qualifiers readonly and mutable represent the semantics of Javari—and also the extra
semantics of Java’s final—requires modifications to two of the Jqual type inference rules, as shown in
Figure 5. The new Assign rule specifies that if a value is assigned to the field of an object via a reference,
that reference must be mutable unless the field that is being modified is Mutable. Since the field is being
assigned to, it must also be non-final, thus its reference-level qualifier must be mutable.

The new FieldAccess rule models the behavior of readonly over the transitive state of an object. The
relation notated ≤mutable,readonly is called a gated constraint and means that the constraint holds only with
respect to the qualifiers mutable and readonly. Since the semantics implying this constraint are particular
to the Javari qualifiers, it does not make sense to apply the constraint with respect to other qualifiers [5].

The other aspects of Javari semantics are either handled naturally by Jqual or are implemented through
small modifications, except for templated generics. The restrictions on readonly methods follow from the
constraints generated between the this qualifier on method types and the qualified types of their invocation
targets. If the fields of the enclosing object are modified in the method, the this qualifier on the method
type will be inferred to be mutable. Since the Invoke rule constrains the qualifier on the target object
of the method invocation to be a subtype of the this qualifier on the method type, the target object will
be inferred to be mutable—which will cause Jqual to raise an error if the target object is annotated as or
inferred to be readonly. The behavior of casts matches the standard behavior of Jqual casts, but Jqual
casts are not checked at runtime. Finally, readonly classes are implemented by constraining the qualifiers
on all references to readonly classes to be readonly.

3.3 Limitations of Jqual Implementation of Javari

As previously discussed, Jqual uses an object-insensitive analysis, where all instances of a class share the
same object type. Thus, templated generics are not supported by Jqual. To analyze Javari code, Jqual
ignores the template parameters and forces parameterized classes and methods to have a single type, which
results in Jqual producing some unnecessary warnings (see below). Jqual also does not support method
polymorphism. Finally, in Javari a method of an inner class is not readonly if it modifies the state of the
enclosing class. The Jqual implementation does not currently account for this.
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4 Implementation and Experiments

4.1 Jqual implementation

We implemented Jqual as a plug-in for the Eclipse development environment using the Java Development
Toolkit (JDT). We used Cqual [4] for our constraint solver via a JNI interface. Cqual maintains the con-
straints among qualifier variables and constants. When all of the constraints have been accumulated, Cqual
searches for a solution to the constraint graph and reports the results. There are a number of features of
the Java language not included in our formal system that are handled in the implementation. To distinguish
among overloaded methods, we used enhanced method identifier strings comprising the method names and
the names of the parameters types. Constructors are generally handled as ordinary methods by Jqual. In
Javari, constructors can modify the instances of readonly classes that they create, and Jqual allows this as
well. Local variables are treated in essentially the same way as method parameters. Interfaces are handled
similarly to classes. Annotations are made to source programs as Javadoc-style comments. The following is
an example of Jqual-annotated code:

/** @qual readonly **/ class C {

/** @qual readonly **/ Object x;

/** @qthis readonly
** @qreturn readonly
**/
Object f(/** @qual readonly **/ Object p) {

/** @qual readonly **/ Object v;
return p;

}
}

Annotations can be placed as comments before any type name or before the keyword class. The @qual
annotation specifies a qualifier on the subsequent type or class. Comments before a method declaration
allow qualifiers to be associated with the this or the return type of a method using the annotations @qthis
and @qreturn respectively. The lattice file for Jqual follows the same format as is used by Cqual. Jqual
allows the user to specify a set of source code files to be analyzed as a group. Jqual analyzes the specified
classes plus any other classes they reference (transitively) within the Eclipse project. Any classes for which
source code is not available must be modeled conservatively—in the case of the Javari analysis, this means
all qualifiers in the types in those classes are assumed to be mutable.

4.2 Experiment: GizmoBall

To test the Jqual implementation of Javari, we analyzed a sample program called GizmoBall, a pinball game
written in the Javari variant of Java. The program consists of 68 Java files containing approximately 8,000
lines of code. In addition, we analyzed 168 files from the Java standard libraries including approximately
24,000 lines of code. We used a script to convert the Javari annotations to the format required by Jqual.
We also stripped annotations for generics, which are not supported by Jqual.

We ran Jqual on the resulting program and compared the qualifiers inferred by Jqual with the annotations
made by hand by Javari developers. We examined terms which were annotated as readonly by the Javari
developers but which Jqual inferred mutable. Any discrepancies indicate either false positives resulting from
imprecision in Jqual or incorrect annotations in the sample program. We also looked for terms on which
Jqual inferred readonly but that were not annotated readonly in the sample program. These indicate
either limitations in Jqual or terms that the programmers overlooked in annotating the program.

The total running time for the Jqual analysis was approximately 64 seconds on a Linux machine four
2-gigahertz processors and two gigabytes of RAM. The analysis requires approximately 35 megabytes of
memory above the Eclipse overhead.
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4.2.1 Invalid Annotations Inferred

There are 18 places where Jqual infers mutable for elements that are annotated as readonly in the sample
program. Two of these appear to be errors in the Javari program. The other 16 are false positives, which
fall into five different categories.

The most common type of false positive results from the lack of object sensitivity in Jqual. The following
code shows an example of this type of false positive:

class A { int x; }

class B {
A a = new A();

void f() {
this.a.x = 17;

}

readonly void g() {
int y = this.a.x;

}
}

In f(), Jqual applies the Assign rule and infers that this.a is mutable. It also applies the FieldAccess
rule and infers that f this—the this qualifier for the method f()—is mutable, so the function is mutable,
which is correct. In g(), however, the FieldAccess rule is applied again to this.a, and g this is inferred
to be mutable, which is incorrect. The error occurs because the type for the a field of the class B is shared
among all instances of B. If Jqual maintained separate types for the fields of f this and g this, the incorrect
inference about g() would not be made. This type of false positive occurred 9 times in the sample program.

Because Jqual is not object-sensitive, it conflates the types of objects in the Javari code that use templated
polymorphism. For example, in one case a false positive is given when a method in one class inserts a
readonly reference into a Vector and a method in another class reads a reference from a different Vector
and assigns it to a mutable reference. The Javari version of this code uses polymorphism to distinguish
between Vectors containing readonly and mutable objects, which prevents confusion. Because Jqual cannot
not distinguish between the Vectors, it infers an error.

Jqual generates one unnecessary warning where it conflates the constraints generated in two different
calls to a method. This is a result of Jqual’s monomorphic method typing.

Jqual generates three unnecessary warnings as a result of its conservative class hierarchy analysis. In
class hierarchy analysis, constraints applied to a class are also applied to objects of the class’s superclass. In
the cases that generate the false positives, it is clear upon inspection that the objects in question can never
contain objects of the subtypes upon which the constraints were applied, so the class hierarchy analysis is
overly-conservative. The following code shows an example of this:

class A { int x; }

class B {
A a;
void g() {
b = new B();
b.x = 17;

}
}

class C extends B{
readonly A a;

}
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In this example, a constraint Q B.a ≤ Q C.a is made during class table construction, where Q X.a is the
value-level qualifier on X’s a field. Thus B.a is inferred to be readonly, even though we can see that the
variable b created in g() does not contain an instance of C.

Finally, one false positive occurs because Jqual makes conservative assumptions about the types of native
method, in this case Object.clone().

4.2.2 Missing Annotations Inferred

In addition to using Jqual to check the correctness of the annotations in the code, we also analyzed whether
all possible readonly annotations had been made. In particular, we looked at methods that Jqual infers to
be readonly but which are not annotated as such in the sample program. We found 113 such results.

There are two instances in the sample program where limitations in Jqual implementation causes it
to incorrectly infer readonly. In one of these, Jqual infers readonly on a method of an inner classes that
modifies its enclosing class. In the other, Jqual’s monomorphic analysis of methods does not understand that
a method is parameterized such that it can be either readonly or mutable depending on type arguments.
Jqual conflates mutable uses of the method with readonly uses.

In the remaining cases, methods are correctly inferred to be readonly. One method appears to be an
oversight on the part of the developers. The other methods are trivially readonly. Some are static methods
or methods of static inner classes, which can only modify static data of their class. Javari does not consider
this to be modification of the invocation target. Some are abstract methods, and the remainder are empty
methods.

5 Related Work

The theory of type qualifier inference for C was developed in the Cqual project [4]. We have extended this
work, as described above, to handle the language features of Java. In our implementation of Jqual we use
Cqual as a constraint solver.

Further work on type qualifiers for C includes a general framework for specifying the semantics of type
qualifiers [3]. A type system is defined by rules that describe how types are implied by language constructs.
For Jqual we use a set of rules modeling the flow of data through the program (see Figure ??), and these
rules are reflected in the implementation. When the semantics of a particular analysis dictate a different
set of rules, as is the case for the Javari analysis, the implementation must be modified. The work in [3]
describes a language for defining how type qualifiers interact with the constructs of the C language. Users
can also specify invariants that must hold under the type rules. The work includes a tool for proving that
the type rules respect the invariants and for type-checking C programs under the rules. The tool does not
currently support type inference. This work suggests an approach to allowing Jqual to support a richer set
of analyses without requiring modifications to the implementation.

Our model for Java types is based on Featherweight Java [6] and work on object type modeling [1].
While we are unaware of previous work that has provided a general framework for type qualifier analysis

in Java, previous work has used type qualifiers to perform specific analyses. [8] uses type qualifiers to
automate and check the use of proxies in Java programs. This work also uses a type system modeled on
Featherweight Java. It analyzes Java code at the byte-code level instead of the source-code level, utilizes
a less-conservative set-type mechanism for static type resolution, and performs byte-code transformation to
implement runtime checks and support for proxies. The Javari language [2], described previously, is another
application of type qualifiers in Java.

6 Conclusion

We have described Jqual, a type system for type qualifier inference and a practical implementation of that
system. We have shown the ability of Jqual to implement a qualifier-based analysis in Java. Our experiment
has shown that the Jqual was able to infer the correct types for the majority of terms in the sample
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application, although imprecision, particularly the lack of object sensitivity and method polymorphism,
caused a number of false positives in our analysis.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

[2] A. Birka and M. D. Ernst. A practical type system and language for reference immutability. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA 2004), pages 35–49, Vancouver,
BC, Canada, October 26–28, 2004.

[3] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. SIGPLAN Not., 40(6):85–95, 2005.

[4] J. S. Foster. Type Qualifiers: Lightweight Specifications to Improve Software Quality. PhD thesis,
University of California, Berkeley, Dec. 2002.

[5] J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken. Flow-Insensitive Type Qualifiers. ACM Transactions
on Programming Languages and Systems, to appear.

[6] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and
GJ. In L. Meissner, editor, Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y.,
1999.

[7] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[8] P. Pratikakis, J. Spacco, and M. Hicks. Transparent Proxies for Java Futures. In Proceedings of the
nineteenth annual conference on Object-oriented programming systems, languages, and applications, pages
206–223, Oct. 2004.

[9] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Valle-Rai, P. Lam, E. Gagnon, and C. Godin. Practical
virtual method call resolution for Java. ACM SIGPLAN Notices, 35(10):264–280, 2000.

14


