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Abstract

Rapid evolution of GPUs in performance, architecture, and programmability provides general and scien-

tific computational potential beyond their primary purpose, graphics processing. In this work we present

an efficient algorithm for solving symmetric and positive definite linear systems using the GPU. Using the

decomposition algorithm and other basic building blocks for linear algebra on the GPU, we demonstrate

a GPU-powered linear program solver based on a Primal-Dual Interior-Point Method.
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1 Introduction

Strong competition in the gaming industry is driving graphics processing hardware development. ATI’s

Radeon and NVIDIA’s GeForce series, the dominant products in the market, offer highly programmable

parallel engines for processing graphics problems. Due to competition and the rapidly growing game

market, GPUs are now cheap parallel machines available to any users.

Although GPUs formerly were much slower than CPUs and had very limited programmability, now they

show superior performance in some classes of applications and show much faster evolution speed than

Moore’s law predictions for CPUs [Har04]. For example, NVIDIA’s latest graphics hardware GeForce

7800 GTX shows sustained performance of 165GFLOPS (300GFLOPS at peak) compared to a 24.6

GFLOPS theoretical peak for a 3GHz Intel dual-core Pentium 4 [Lue05]. Recent support for single pre-
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cision floating point numbers and long programs gave rise to a new horizon of GPUs’ applications. Re-

searchers have been applying GPUs to general computations including evolutionary algorithms [WWF05],

linear algebra [KW03], fluid dynamics [FQKYS04], FFT [MA03], and others [OLG+05].

GPUs have a different programming model from CPUs and their own high level programming languages,

namely Cg (C for graphics) [Mar], HLSL (High Level Shading Language) [MIC03], and GLSL (OpenGL

Shading Language) [Ros04]. Only assembly languages had been available before those high level languages

were introduced. Although those high level languages are easier to use than the assembly languages,

knowledge of esoteric graphics APIs, DirectX [MIC05] and OpenGL [WNDS05] for instance, is required

to load, bind and invoke kernels, to manage streams, and to organize data. BrookGPU hides those

difficulties and makes computations as a sequence of kernel calls on streams [BFH+04]. As a result,

researchers don’t need to perform those abstruse tasks associated with graphics and can concentrate on

the development of kernels themselves.

Contributions: We present a new algorithm to decompose symmetric and positive definite dense ma-

trices through a set of kernel calls with minimum copying operations to maximize performance. Using

our algorithm and other BLAS kernels, we demonstrate how to build the GPU-powered primal-dual

interior-point method with minimum feedback to the CPU. We use:

• Triangular domain updating to exploit the symmetric structure.

• Texture coordinate mapping and index swizzling for efficient texture fetching.

2 Background

2.1 Linear Algebra on GPUs

Only recently have GPUs been used for linear algebra, including programs for matrix multiplication

[JH03], an iterative sparse system solver [BFGS03], a direct dense system solver [GGHM05], and others

[OLG+05]. Our work to implement a direct solver for symmetric positive definite systems is an extension

of those efforts.

2.2 GPU Architecture

This section briefly explains the architectural features of the GPU. A functional block diagram of a GPU

is presented in Figure 1. GPUs are equipped with programmable vertex and fragment processors. General

purpose GPU applications use fragment processors more frequently than vertex processors, because GPUs

have more fragment processors than vertex processors and drawing a triangle or a rectangle is usually

enough to map computational concepts.

The array is the most heavily used data structure to represent vectors and matrices. The counterpart



2 Background 3

� � � �

� �

� � � � � 	 
 � � � 
 � �

� � � � � � � � � �

 �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �
� � � � � 	 �

� � � � �

 	 � � � � � � � 	 � � � � � 	

� � � � 	 �

� � 	 � 
 � 
 � �

� � � � 	 �

� � 	 � 
 � 
 � �

� � � � 	 �

� � 	 � 
 � 
 � �

� � � � 	 �

� � 	 � 
 � 
 � �

� � � � 	 � � � � � � � 	 � � 
 � �

� � � � � � � 	 �

�  ! � � �

� � � � � 	 �

� 	 � � � � � 
 � �

� � 	 � � �

� 	 � � � � � 
 � �

Fig. 1: GeForce 6 series architecture. (Source: GPU Gems 2, 2004) [KW05]

in the GPU is the texture, also known as the stream in the streaming model perspective. Textures were

originally used for patterning of geometries, but modern GPUs are capable of rendering computational

results directly to textures, which, in turn, can be fed back into the GPUs as new input streams without

being copied back from the framebuffer.

A kernel or a GPU fragment program is a set of GPU instructions, which are applied to all elements

of a stream. Many elements up to the number of fragment processors in the GPU can be processed in

parallel as they would be in a SIMD machine. For example, the GeForce 6800 Ultra has 16 fragment

processors. In addition, the instruction-level parallelism allows up to 4 arithmetic operations to be

performed simultaneously in a fragment processor.

Most computations involve a set of kernel calls. A kernel must process the entire stream as specified

in the command issued by the CPU. A subsequent kernel must wait until the previous kernel finishes.

As the kernel calls are asynchronous to the CPU, the CPU can keep computing and issuing subsequent

kernel calls, in turn, managed by the GPU driver.

As illustrated in Figure 2, a kernel is initiated by drawing a shape, usually a triangle or a quadrilateral in

GPGPU(General Purpose GPU) computations. The shape is then transformed to a stream of fragments

by the vertex processors and the rasterizer. The fragments are different from pixels in that they don’t

have colors, which are assigned at the fragment processors. The rasterizer is capable of interpolating

texture coordinates linearly for each fragment from the coordinates assigned at each vertex of the shape.

These interpolated coordinates are passed to fragment processors as inputs, which are usually used as

indexes to fetch textures. Iterator streams provided in BrookGPU use this capability and are also mainly

used for index generation.
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Fig. 2: GPU pipeline. The vertex and fragment processors are the highly programmable compo-
nents in a GPU, but BrookGPU exposes fragment processors only.

To represent a matrix, a 2 dimensional, single channel texture or stream of the same size is created. In

specifying the domain of a output or input stream, x-coordinates correspond to column indexes, and

y-coordinates to row indexes. So the index ordering is exactly in reverse to that for a matrix.

3 Cholesky decomposition on a GPU

3.1 Cholesky decomposition

A system of linear equations, Ax = b, where A is a large, dense n× n matrix, and x and b are column

vectors of size n, can be efficiently solved using a decomposition technique, LU for instance. If the matrix

is symmetric and positive definite, Cholesky decomposition is the most efficient in solving the system

[GL96]. The Cholesky algorithm using vectorized notation can be stated as

Algorithm 1 Vectorized Cholesky decomposition
for k = 1 to n-1 do

A(k, k) = sqrt(A(k, k)) // Square rooting

A(k+1:n, k) = A(k+1:n, k)/A(k, k) // Normalization

for j = k+1 to n do

A(j, k+1) = A(j, k+1) - A(j, 1:k)T×A(k+1, 1:k) // Inner product subtraction

end for

end for

A(n, n) = sqrt(A(n, n))
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(c) Inner product subtraction
process for inner product updating:
Compute the inner product of the two
sub-rows, the pivot and the active row,
and then subtract the result from the
active element
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(d) Submatrix update process for
outer product updating: Compute the
product of the two elements, active pivot
and active neighbor, and then subtract
the result from the active element

Fig. 3: kth iteration of Cholesky decomposition

For n− 1 iterations, 3 routines (square rooting, normalizing, and subtracting inner product or updating

submatrix) are done as depicted in Figure 3. Only the routine for square rooting is performed at the

last iteration. Each routine can be well matched to a GPU kernel as described in Figure 3a, 3b, and 3c

or 3d.

The square root and the normalization kernels read and update only the kth column below the diagonal.

The inner product subtraction kernel reads the lower left submatrix of A to update the k + 1st column

below the diagonal. The submatrix update kernel reads the kth column to update lower triangular

region starting from the k + 1st column. Thus there is no read-after-write(RAW) hazard in the parallel

architecture. This may inspire one to bind one stream as both the source and the target at the same

time.

However, the result of reading from and writing to the same stream simultaneously is not defined.
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(a) Inner product form: Only one additional copy for one element at each iteration
is needed to avoid simultaneous reading and writing.
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(b) Outer product form: Two additional copies for a column are needed to avoid
simultaneous reading and writing.

Fig. 4

Although the GeForce 6800 architecture works correctly with carefully written code using simultaneous

reading and writing due to data independency, future architectures with more parallelism may produce

incorrect results. To work around this we use a temporary storage of the size equal to A to pingpong

the intermediate result as shown in Figure 4. As the calls to the GPU kernels are asynchronous to the

CPU, it can continue issuing kernel calls while the GPU is working, i.e., the kernel calls are pipelined by

the GPU driver.

3.2 Triangular update and index swizzle

Since BrookGPU doesn’t support designating a triangular domain as an output target, a column-wise

multipass update is used to mimic triangular update, but this approach cannot fully utilize the parallel

architecture because each pass has several processors unused. However, singlepass update over a trian-

gular domain can be implemented with OpenGL API as seen in Figure 5. An oversized triangle, the
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Algorithm 2 Cholesky decomposition on the GPU - Outer product form
// Note that the 2 dimensional stream or texture’s coordinates start from (0,0)
Create two stream S and T of size equal to A.
Copy A to S.

for k = 0...n− 2, do
Bind T as the target.
Run square root kernel on (k, k).

Bind S as the target.
Run copy kernel to copy the square rooted result on the diagonal of T back to S.

Bind T as the target.
Run normalization kernel over the domain covering the kth column below the diagonal, from (k+1, k)
to (n− 1, k).

Bind S as the target.
Run copy kernel to copy the normalized column of T back to S.

Bind T as the target.
Run submatrix update kernel over the domain covering submatrix (k + 1, k + 1) to (n− 1, n− 1).

Swap S and T, i.e., swap the pointers to texture ID of S and T.
end for

Bind T as the target.
Run square root kernel on (n− 1, n− 1).

// Now the lower triangular of T is the result of Cholesky decomposition
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vertices of which are at (k+1, k), (k+1, n), and (n+1, n), is drawn to cover the lower triangular matrix.

Two sets of texture coordinates are assigned to the vertices to generate indexes for the active pivot and

the active neighbor. In fact, the index pairs passed to the fragment processor are same as in the LU

algorithm [GGHM05]. However, the index pair for the pivot is different, since our Cholesky decomposition

doesn’t update the upper triangular part. The index pair needs to be swapped, which can be handled

by a swizzle operator at no cost. The swizzle operator reorders the coordinates of a multidimensional

variable. For example, a.xxyz produces a 4 dimensional value (a.x, a.x, a.y, a.z) and b.yx reverses the

order of the coordinates of the 2 dimensional value b. This technique reduces the number of instructions

from 6 to 4. In addition, it is observed that the two index pairs share an invariant index k. Thus, it can

be put at a z coordinate which is invariant to the x and y coordinates. Thus the pairs can be packed

into, interpolated from, and restored (using swizzle) from a single 3D texture coordinate. This reduces

the rasterizer’s work [KW05].
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(a) The pivot moves vertically,
when the active element moves
horizontally.
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(b) The interpolated index pair for
the pivot is swizzled to compensate
the different movement.
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(c) Only one interpolated index
triad is needed if a 3D texture co-
ordinate is applied to each vertex.

Fig. 5: kth iteration of Cholesky decomposition: An oversized triangle is drawn to cover sub-
lower triangular part of the matrix. Texture coordinates T0 (and T1) are assigned to the vertices
P (k + 1, k), P (k + 1, n), and P (n + 1, n) to get the indexes for the active pivot and neighbor
elements. The interpolated index is then swizzled to point the entries at P (k, i) and P (k, j). The
swizzle operator handles this at the same time as it fetches the texture. No temporary register
is necessary to form the swizzled indexes.

4 Interior-Point Method on a GPU

4.1 Linear Programming

Linear programming is the problem of optimizing a linear objective function subject to satisfying a set

of linear constraints, either equalities or inequalities. The standard form is

min
x

cT x (4.1)

s.t. Ax = b, (4.2)

x ≥ 0, (4.3)
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where c and x are real vectors of size n, b is a real vector of size m, and A is an m × n real matrix

with full row rank, with m ≤ n. Any inequalities can be transformed to equalities by introducing slack

variables.

A dual is always associated with the primal (4.1)-(4.3). It uses the same data but different variables:

max
λ

bT λ (4.4)

s.t.AT λ + s = c, (4.5)

s ≥ 0, (4.6)

where λ and s are real vectors of size m and n, respectively.

4.2 Primal-Dual Interior-Point Method

The Primal-dual interior-point method is one of the most widely used algorithms to solve the linear

programming problem (4.1)-(4.3) [Wri97]. Solving the linear programming problem is equivalent to

finding a solution to the KKT (Karush-Kuhn-Tucker) conditions:

AT λ + s = c, (4.7)

Ax = b, (4.8)

xisi = 0, i = 1, 2, ..., n, (4.9)

x ≥ 0, s ≥ 0. (4.10)

To solve the KKT conditions, a modified Newton’s method is used. The search direction at each iteration

is obtained by solving either the perturbed KKT conditions,26664
0 A 0

AT 0 I

0 S X

37775
26664

∆λ

∆x

∆s

37775 =

26664
rb

rc

−rxs

37775 , (4.11)

or, equivalently, the normal equations,

AD2AT ∆λ = rb + A(S−1Xrc + S−1rxs), (4.12)

∆s = rc −AT ∆λ, (4.13)

∆x = −S−1(rxs + X∆s), (4.14)

where D2 = S−1X; rb = b − Ax; rc = c − AT − s; e = (1, ..., 1)T ; and rxs = XSe and rxs =

−σµe + ∆Xaff∆Saffe for predictor and corrector, respectively [Wri97]. The affine-scaling predictor

direction is the pure Newton direction for (4.7)-(4.9). The corrector step attempts to reduce the error

caused by the linear approximation of the pure Newton direction. Here σ is a centering parameter,

µ = xT s/n is the complementarity measure, and X and S are matrices with, respectively vector x and

s on their diagonals.
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Usually solving (4.12)-(4.14) is preferred, because the matrix for the normal equations is much smaller

than that for the KKT system. Moreover the matrix is symmetric and positive definite, and thus Cholesky

decomposition, which is faster and numerically more stable than LU, can be used. Here a variant of

Mehrotra’s predictor-corrector (MPC) algorithm from [Wri97] is used. See Algorithm 3. We make use of

the following kernels (where multipass algorithms which call several kernels are also referred as kernels

for brevity):

• Level 1 - O(n)

– inner product: This uses two kernels, the element-wise vector-vector multiplication and the

sum reduction kernel. Multipass.

– inf norm: abs-max reduction kernel. Multipass.

– smin: min reduction kernel. Multipass.

– smax: max reduction kernel. Multipass.

– saxpy and its variants: Scalar vector multiplication followed by a vector addition. The

variants include element-wise vector-vector multiplication. Singlepass.

– line search kernels: Specialized kernels to determine step length for the predictor and the cor-

rector. These kernels are used with reduction kernel to compute the step length. Singlepass.

• Level 2 - O(n2)

– sgemv and its variants: Matrix vector multiplication with optional vector additions. Sin-

glepass(inner product) or multipass(outer product).

– forward and backward substitution: These kernels solve a system of linear equation where

the matrix is lower or upper triangular. Multipass.

• Level 3 - O(n3)

– aat and adat: Matrix-matrix multiplications to form the matrix of the normal equations.

Singlepass(inner product) or multipass(outer product).

– chol: Cholesky decomposition. Multipass.

Having feedback from the GPU is inevitable as the termination criteria must be determined. This blocks

the kernel calls, so the CPU has to wait until the GPU completes all the computations. Calling some

of the kernels for solving (4.12)-(4.14) prior to the determination can help the algorithm perform a little

better, because they don’t depend on the feedback and the CPU can compute the termination criteria

while the GPU is working on the search direction. The GPU driver must empty its queue for kernel calls

because of the current driver’s limitation. Once this limitation is resolved, we can get even more speedup

by pre-computing the predictor direction while deciding whether to terminate, because the computation

doesn’t affect the current point.

5 Analysis

In this section we consider the complexity of the algorithms we have discussed.
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Algorithm 3 Mehrotra’s Predictor-Corrector Algorithm
Generate an initial point (x0, λ0, s0)
for k = 0,1,2,... do

Get primal and dual objective values using inner product kernels.
Get rc and rb using sgemv kernels.
Get norm of rc and rb using the infinity norm kernel.
Transfer the primal and dual objective values and the norm of residuals from GPU memory
to CPU memory.

Terminate if the relative duality gap and the residual norms are sufficiently small (6.1)-(6.3).

Solve (4.12)-(4.14) using level 1, 2 and 3 kernels (including adat; Cholesky; and forward and
backward substitution) to obtain (∆xaff, ∆λaff,∆saff).

Determine the predictor step length using level 1 kernels (line search and reductions):

αpri
aff = arg max

α∈[0,1]
{xk + α∆xaff ≥ 0}

αdual
aff = arg max

α∈[0,1]
{sk + α∆saff) ≥ 0}.

Determine the centering parameter using level 1 kernels:

σ = (µaff/µ)3, where µaff = (xk + αpri
aff ∆xaff)T (sk + αdual

aff ∆saff)/n.

Solve (4.12)-(4.14) using level 1 and 2 kernels (including forward and backward substitution)
to obtain (∆xcc,∆λcc, ∆scc).

Compute the search direction (∆xk, ∆λk, ∆sk) by adding (∆xaff,∆λaff, ∆saff) and
(∆xcc, ∆λcc, ∆scc) using level 1 kernels.

Determine step size parameters, αpri
k and αdual

k using level 1 kernels (line search and reduc-
tions):

αpri
max = arg max

α∈[0,1]
{xk + α∆xk ≥ 0} (4.15)

αdual
max = arg max

α∈[0,1]
{sk + α∆sk ≥ 0}. (4.16)

Select αpri ∈ [0, αpri
max) and αdual ∈ [0, αdual

max) according to Mehrotra’s heuristic [Wri97] using
level 1 kernels.

Set xk+1 = xk + αpri
k ∆xk, (λk+1, sk+1) = (λk, sk) + αdual

k (∆λk, ∆sk) using level 1 kernels.
end for
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LU [GGHM05]

Kernel # of Frags bytes/frag Bytes

Copy
n(n+1)

2
8 4n(n + 1)

Normalization
n(n+1)

2
12 6n(n + 1)

Copyback
n(n+1)

2
8 4n(n + 1)

Elimination (n−1)n(2n−1)
6 16 ≈ 16n3

3
≈ n3

3

Total ≈ 16
3

n3

(a) LU decomposition.

Cholesky (inner)

Kernel # of Frags bytes/frag Bytes
Square root n 8 8n
Copy n− 1 8 8(n− 1)

Normalization
(n−1)n

2
12 6(n− 1)n

Innerproduct n − k 4(2k + 2) ≈ 8n3

3
subtraction at kth itr at kth itr

Total ≈ 8
3
n3

(b) Cholesky decomposition (inner product).

Cholesky (outer/singlepass/square)

Kernel # of Frags bytes/frag Bytes
Square root n 8 8n
Copy n− 1 8 8(n− 1)

Normalization
(n−1)n

2
12 6(n− 1)n

Copyback
(n−1)n

2
8 4(n− 1)n

Submatrix (n−1)n(2n−1)
6 16 ≈ 16n3

3
Update ≈ n3

3

Total ≈ 16
3

n3

(c) Cholesky decomposition (outer product via singlepass-
update over square domain).

Cholesky (outer/singlepass/triangular)

Kernel # of Frags bytes/frag Bytes
Square root n 8 8n
Copy n− 1 8 8(n− 1)

Normalization
(n−1)n

2
12 6(n− 1)n

Copyback
(n−1)n

2
8 4(n− 1)n

Submatrix (n−1)n(n+1)
6 16 ≈ 16n3

6
Update ≈ n3

6

Total ≈ 8
3
n3

(d) Cholesky decomposition (outer product via singlepass-
update over lower triangular domain). This cannot be im-
plemented in BrookGPU.

Tab. 1: Memory access (reading/writing) counts. A table for the outer product Cholesky decom-
position via multipass triangular update is omitted as it’s the same as the single pass triangular
update version.

5.1 Cholesky decomposition

The square root kernel requires only one sqrt instruction with one texture fetch. The normalization

kernel requires only one div instruction with two texture fetches. The submatrix update kernel requires

exactly one mad operation with three texture fetches. The inner product subtraction kernel requires k

mad instructions with k + 1 texture fetches, and a dynamic loop to iterate k times. All kernels need

one writing operation. Memory access counts and computational complexities of each algorithm are

summarized in Tables 1 and 2.

The inner product implementation doesn’t employ a cache aware algorithm [JH03] due to the cache

inefficiency in texture access [FSH04]. The outer product implementation is cache ignorant [GGHM05],

which allows the algorithm to achieve maximum bandwidth.

5.2 Interior Point Method

The problem we are interested in is dense linear programming problem, i.e., we assume that A is dense.

At each iteration, most computational resources are consumed in solving the normal equations (4.12).

To do this, we form and factor a symmetric positive definite matrix at each iteration. Approximate

computational costs for the two operations are as follows:
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LU [GGHM05]

Kernel # of Frags Op/frag Ops

Normalization
n(n+1)

2
1

n(n+1)
2

Elimination
(n−1)n(2n−1)

6
1 ≈ n3

3

≈ n3

3

Total ≈ n3

3

(a) LU decomposition.

Cholesky (inner)

Kernel # of Frags Op/frag Ops
Square root n 1 n

Normalization
(n−1)n

2
1

(n−1)n
2

Innerproduct (n− k)/itr. k/itr. ≈ n3

6
subtraction

Total ≈ n3

6

(b) Cholesky decomposition (inner product).

Cholesky (outer/singlepass/square)

Kernel # of Frags Op/frag Ops
Square root n 1 n

Normalization
(n−1)n

2
1

(n−1)n
2

Submatrix
(n−1)n(2n−1)

6
1 ≈ n3

3

Update ≈ n3

3

Total ≈ n3

3

(c) Cholesky decomposition (outer product via singlepass-
update over square domain).

Cholesky (outer/singlepass/triangular)

Kernel # of Frags Op/frag Ops
Square root n 1 n

Normalization
(n−1)n

2
1

(n−1)n
2

Submatrix
(n−1)n(n+1)

6
1 ≈ n3

6

Update ≈ n3

6

Total ≈ n3

6

(d) Cholesky decomposition (outer product via
singlepass-update over lower triangular domain).
This is not implementable with BrookGPU.

Tab. 2: Arithmetic operation(multiplication/division/sqrt) counts

• Forming the matrix : m2n
2

,

• Factoring : m3

6
.

In BrookGPU, the actual costs are approximately m2n for the matrix formation and m3

3
for the decom-

position, because BrookGPU doesn’t support triangular domain computation. Usually the problems in

this class have many more variables than constraints(i.e., n À m) which implies that forming the matrix

is more expensive than the decomposition.

6 Results

Our algorithms were tested in the following environment:

• NVIDIA GeForce 6800

- 12 fragment processors

- 325 MHz core clock cycle

- 600 MHz memory clock cycle

- 256 MB DDR memory

• Intel Pentium IV 2.8GHz

- Hyper Threading

- 16 KB L1

- 1 MB L2
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- 512 MB DDR2 dual channel

- 400 MHz effective memory clock cycle

• Operating system

- Windows XP with Microsoft VC7 compiler, or

- Linux Fedora Core 4 with gcc3 compiler

6.1 Cholesky Decomposition

The time spent to transfer data between CPU and GPU is not considered, because our application will

form the matrix using GPU kernels and will solve the system using the data stored in the memory of

the graphics hardware.

6.1.1 Overhead of copy to texture

Figure 6 presents timings for BrookGPU implementations. The outer product Cholesky algorithm is

outperformed by the inner product version when measured on Linux due to the copy-to-texture (CTT)

operation, in which the computed results are initially saved to the framebuffer and then copied to the

designated texture. BrookGPU uses the old p-buffer, and does not support the render-to-texture(RTT)

in Linux [Lef04]. Thus the outer product algorithm requires approximately (n−k)2 more copy operations

at each iteration.
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Fig. 6: BrookGPU implementations measured on Linux with OpenGL backend. Average execu-
tion time of Cholesky algorithms via inner product and outer product (singlepass square update),
and LU decomposition.
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6.1.2 Dynamic loop and computed index pairs

In constrast, the outer product Cholesky algorithm outperforms the inner product version on Windows

XP, which supports RTT for p-buffers as seen in Figure 7. The inner product subtraction kernel needs the

index pairs to be gathered from two separate variables in the loop, which obviously increases the instruc-

tion counts. Despite the cache-friendly sequential access pattern, fetching textures in a dynamic loop

doesn’t benefit from the pattern because GPU architectures are suited to typical graphics applications

which usually perform many arithmetic operations per memory access [FSH04].

The inner product Cholesky is less parallel than the outer version because it uses a dynamic loop, and

fewer fragments are processed in the inner product subtraction kernel than in the submatrix update

kernel. When the number of fragments to be processed is not a multiple of the number of fragment

processors, only a few fragment processors are active to serve the dynamic loop at the end. Especially in

the later iterations, this is quite expensive. For instance, a single processor works to repeat 1023 times

at the last iteration of decomposing a matrix of dimension 1024 × 1024.
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Fig. 7: BrookGPU implementation measured on Windows XP with OpenGL backend. Average
execution time of Cholesky algorithms via inner product and outer product (singlepass square
update), and LU decomposition.

6.1.3 Speedup by triangular update, index interpolation, and swizzle

The outer product Cholesky algorithm implemented with BrookGPU cannot be faster than LU, because

it cannot use the triangular update to take advantage of the symmetric structure. Figure 8 shows that

Cholesky with triangular update takes about half the time of LU using OpenGL API.

Computing an index pair for the pivot needs 2 more instructions, whereas swizzling an interpolated index
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pair doesn’t increase the instruction count because swizzling and fetching can be processed simultane-

ously. Using interpolated and swizzled indexes performs 35% better than using a computed pivot index

pair gathered from the interpolated indexes of the active neighbor and element. As mentioned in Section

3.2, we used index triads to reduce the rasterizer’s work. Since the rasterizer is not the bottleneck, no

noticeable difference is observed between the pair and the triad implementations.
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Fig. 8: OpenGL API implementation. Execution time of Cholesky and LU decomposition
[GGHM05] measured on Windows XP.

6.1.4 Square root kernel and bandwidth usage

In the square root kernel, only one fragment is shaded so there is no parallelism. Therefore, the Cholesky

decomposition (outer product with triangular update) shows less bandwidth usage than LU as seen in

Figure 9. When the matrix is sufficiently large, however, Cholesky uses as much bandwidth as LU does.

This means that our Cholesky algorithm is also bandwidth-bounded [GGHM05].

6.2 Primal-Dual Interior Point Method

6.2.1 Decomposition and formation

As seen in Figure 10, if the linear programming problem has two times more variables than constraints,

then forming the matrix is approximately 6 times as expensive as decomposing it (m2n = 2m3 = 6×m3/3)

when only rectangular domains can be updated.
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Fig. 9: OpenGL API implementation. Memory bandwidth utilized by Cholesky decomposition
(with outer product form with singlepass triangular update) and LU decomposition.

6.2.2 Problem solving

We used termination criteria from [Wri97] stopping when the relative residuals and duality measure are

sufficiently small:

‖rb‖∞
1 + ‖b‖∞ ≤ ε, (6.1)

‖rc‖∞
1 + ‖c‖∞ ≤ ε, (6.2)

|cT x− bT y|
1 + |cT x| ≤ ε, (6.3)

where the termination tolerance ε is a small positive number. Usually 10−8 is chosen when double

precision is used, but it’s not easily achievable with single precision. For that reason we used problem

specific tolerances. The initial starting point, (x, λ, s), was chosen using the heuristic in [Meh92]. We

compared our implementation with a MATLAB version implementing exactly the same algorithm using

the dense constraint matrix with single precision. The results are shown in Table 3.

7 Conclusions

We have presented several Cholesky implementations for dense symmetric and positive definite matrices.

In the interior point method, matrix formation and decomposition are most avaricious of computational

resources. Thus, support for the triangular output domain is essential in order to exploit the symmetric
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Fig. 10: BrookGPU implementations measured on Windows XP with OpenGL backend. Forming
the matrix for the normal equations is usually more expensive than decomposing the matrix.
Triangular domain support is essential in achieving speedup in the matrix formation.

structure. In our experiment, Cholesky decomposition can achieve its full performance gain over LU only

when the triangular update technique is deployed.

Rendering a triangle is truly a native feature of GPUs. Developers of streaming languages targeting

GPUs should seriously consider incorporating the feature in their model. When the feature is enabled,

our algorithm for forming the symmetric matrix also uses it.

Languages designed for graphics hardware, including Cg, GLSL, and HLSL, are not adequate for general

purpose computations for those who are not familiar with graphics APIs. Specialized languages including

BrookGPU, Accelerator [TPO05], and others that hide those peculiarities mitigate the difficulties of using

the hardware. Our implementation of the interior point method would not be possible without the aid

of such specialized languages.

Due to lack of double precision support, our interior point algorithm cannot converge as closely to an

optimal point as a double precision implementation. Using GPUs in the early iterations and CPUs in

the later iterations can be helpful because the systems of early iterations are usually not ill-conditioned.

Recent study on improving performance while maintaining the double precision accuracy via a combined

CPU-GPU solver on a finite element method (FEM) [GST05] could be extended to the interior point

method on a combined CPU-GPU system.
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GPU MATLAB(MPC)
Time (s)

Problem Size ε Iterations
Inner Cholesky Outer Cholesky

Iterations Time (s)

adlittle 57× 97 3× 10−5 12 0.60 0.62 9 0.10

afiro 28× 32 4× 10−5 7 0.20 0.20 7 0.03

agg2 517× 302 5× 10−5 18 22.77 17.14 17 5.02

agg3 517× 302 6× 10−4 20 25.30 19.02 17 5.05

bandm 306× 472 2× 10−3 12 5.22 4.45 12 1.12

beaconfd 174× 262 3× 10−4 7 1.23 1.18 6 0.21

blend 75× 83 2× 10−3 11 0.70 0.88 8 0.08

e226 224× 282 9× 10−4 18 4.94 4.39 16 1.19

sc50b 51× 48 3× 10−5 6 0.28 0.29 6 0.04

sctap1 301× 480 5× 10−4 15 7.00 6.02 13 1.88

Tab. 3: Average running time of Interior Point Methods on NETLIB problems. The BrookGPU
implementation was measured on Windows XP with OpenGL backend. Cholesky decomposition
in inner or outer product form is used to solve the normal equation (4.12). Note that the outer
product version uses the square update.
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