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Abstract

There are numerous applications such as air traffic manage-
ment, cellular phone location tracking, and vehicle protection
systems where there is a critical need to reason about moving
objects. In this paper, we propose a formal logic of motion
(LOM for short). We provide a formal syntax for LOM, as
well as a model theory for LOM. In addition, we develop al-
gorithms to check consistency of LOM theories, as well as to
answer certain kinds of queries posed to LOM theories. We
have implemented these algorithms in a prototype LOM sys-
tem - we describe experiments showing that such queries can
be efficiently executed in practice.

Introduction
There are numerous applications in the world today that in-
volve objects that are moving in space and time. Here are
several examples:
• In the USA, the Federal Aviation Authority must reason,

in real time, about the locations of various airplanes and
helicopters in US airspace. Other countries have similar
agencies as well.

• Wireless companies are continuously interested in where
their customers are located and how they are moving -
this information is used to estimate load on different cell
phone towers and allocate handoff policies.

• A third application involves systems such as LOJACK
and ONSTAR which are anti-theft devices used in vehi-
cles. Here, monitoring stolen vehicles requires the ability
to reason about where these vehicles are.

• We have built three applications for the US military which
involve spatiotemporal reasoning about moving objects.
The first application reasons about where and when en-
emy submarines will be in the future, while the second
one is used to ensure that multiple US Navy ships will not
collide in the future. The third one extends the US Army’s
Combat Information Processor that manages tactical bat-
tlefield simulations which tracks movements of friendly
and enemy vehicles in a given region on the ground. Such
a system associates an ID with each vehicle and estimates
various parameters such as its current location, its current
velocity, and so on.
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Users may wish to pose many different kinds of queries to
such systems. Such queries could include:

(Q1) What are all the vehicles within a given rectangular
region R now?

(Q2) What are all the vehicles that might reach intersection
I in the next 30 minutes?

(Q3) What are all the friendly vehicles that may be threat-
ened by enemy vehicle e within the next 10 minutes (as-
suming the vehicles continue to move at the current speed
and directions)? Here threatened might mean: be within
1 mile of e.

Though the dynamics of motion have been studied exten-
sive since the time of Newton, to our knowledge, there is no
logic of motion (LOM for short) which is used to formalize
how vehicles move. This paper makes the following contri-
butions:

1. It provides a formal syntax for motion theories and a frag-
ment of motion theories called go-theories.

2. It provides a formal model theory for motion theories
together with a result that checking consistency of go-
theories is NP-complete.

3. In lieu of a classical Hilbert-style proof theory (which
we defer to the journal version of this paper), we present
sound and complete algorithms for checking consistency
of go-theories, and for processing certain types of queries
against go-theories. This is a de facto operational seman-
tics for our logic of motion.

4. It gives experimental results showing the performance of
LOM, a prototype system based on the above algorithms.

LOM Syntax
We assume the existence of two sets of constant symbols: R
is the set of all real numbers and OID is the set of all object
ids. We assume the existence of two disjoint sets VR, VOID

of variables ranging over R and OID, respectively. We
also assume the existence of three special predicate symbols
go, near, in, of arities 11, 5, 7 respectively. As usual a real
(resp. object) term t (resp. o) is any member of R ∪ VR

(resp. OID ∪ VOID).

LOM Atoms. Let x1, y1, x2, y2, t−1 , t+1 , t−2 , t+2 , v−, v+, d,
t1, and t2 be real terms; and let o, o1, and o2 be object terms.



Then the following are LOM atoms:

near(o1, o2, d, t1, t2);
in(o, x1, y1, x2, y2, �, h);

go(o, x1, y1, x2, y2, t
−
1 , t+1 , t−2 , t+2 , v−, v+).

Ground terms and ground atoms are defined in the usual
way.

Intuitively, go(o, x1, y1, x2, y2, t
−
1 , t+1 , t−2 , t+2 , v−, v+) is

true if object o leaves location (x1, y1) at some time point in
the interval [t−1 , t+1 ], goes along the straight line connect-
ing (x1, y1) and (x2, y2) at a speed between v− and v+,
and arrives at location (x2, y2) at some time point in the in-
terval [t−2 , t+2 ]. in(o, x1, y1, x2, y2, t1, t2) returns true if o is
guaranteed to be inside the rectangle whose lower left cor-
ner is (x1, y1) and whose upper right corner is (x2, y2) (with
vertical and horizontal edges) at some time point between
t1, t2. Likewise, near(o1, o2, d, t1, t2) is true if objects o1

and o2 are within distance d of each other at all1 times t,
t1 ≤ t ≤ t2. in(o, x1, y1, x2, y2, �, h) is true if object o is
inside the rectangle whose lower left corner is (x1, y1) and
whose upper right corner is (x2, y2) at some time point at
some time during the interval [�, h]. Two sides of the rect-
angle are assumed to be parallel to the x-axis and the other
two to the y-axis here.

Note that unlike most existing studies of motion (whether
in the AI or database or networking communities), this
framework allows us to express uncertainty about when an
object leaves a given location, when it arrives at its destina-
tion, and what its velocity is. This is consistent with the real
world where the velocity of an object may vary (e.g. with
traffic in the case of road vehicles, with windspeed in the
case of aerial vehicles, with oceanographic currents in the
case of marine vehicles, etc.). This in turn has an impact on
exactly when a vehicle will reach its destination - that too
is uncertain. We are not aware of existing treatments of this
uncertainty in reasoning about moving objects.

LOM formulas are inductively defined as follows: every
LOM atom is a LOM formula; and if F1, F2 are LOM for-
mulas, then so are F1 ∧ F2, F1 ∨ F2 and ¬F1.

A motion theory is a finite set of LOM formulas. A go-
theory is a finite set of ground go-atoms.2

Notation. If

g = go(o, x1, y1, x2, y2, t
−
1 , t+1 , t−2 , t+2 , v−, v+),

1In (Yaman, Nau, & Subrahmanian 2004), we also describe a
predicate symbol in which the “all” requirement here is replaced
by “some.”

2It is straightforward to generalize the definition of a mo-
tion theory to allow several other predicate symbols, higher order
derivatives (e.g. acceleration), and motion in spaces having more
than 2 dimensions. See (Yaman, Nau, & Subrahmanian 2004) for
details.

then we will let

obj(g) = o;
loc1(g) = (x1, y1);
loc2(g) = (x2, y2);

t−1 (g) = t−1 ;

t−2 (g) = t−2 ;

t+1 (g) = t+1 ;

t+2 (g) = t+2 ,

v−(g) = v−;

v+(g) = v+.

LOM Semantics: Model Theory
In this section, we define a formal model theoretic semantics
for LOM. A LOM-interpretation I is a continuous3 function
from OID×R to R×R. Intuitively, I(o, t) is the location
of object o at time t. We will often abuse notation and write
I(o, [t1, t2]) for a closed real interval [t1, t2] to denote the
straight line connecting the points I(o, t1) and I(o, t2).

Satisfaction of a ground LOM formula F by a LOM-
interpretation I is defined as follows:

1. If F = go(o, x1, y1, x2, y2, t
−
1 , t+1 , t−2 , t+2 , v−, v+), then

I |= F iff the following conditions hold:

• There are real numbers t1 ∈ [t−1 , t+1 ] and t2 ∈ [t−2 , t+2 ]
such that I(o, t1) = (x1, y1), I(o, t2) = (x2, y2), and
I(o, t) maps the interval [t1, t2] one-to-one onto the line
segment [(x1, y1), (x2, y2)]. Intuitively, this means that
during [t1, t2], o moves from (x1, y1) to (x2, y2) with-
out stopping, going in reverse, disappearing and reap-
pearing, or “jumping” from one place to another in zero
time.

• At all but finitely many points in [t1, t2], the derivative
v(t) = d(|I(o, t)|)/dt (which represents o’s speed) is
defined, and v− ≤ v(t) ≤ v+. However, we do not
require I to be analytic (as in Newtonian physics), be-
cause in many practical applications it is useful to allow
I(o, t) to be, for example, piecewise linear.

2. If F = near(o1, o2, d, t1, t2), then I |= F iff
dist(I(o1, t), I(o2, t)) ≤ d for every t1 ≤ t ≤ t2, where
dist is the function that computes the classical Euclidean
distance between two points.

3. If F = in(o, x1, y1, x2, y2, �, h), then I |= F iff there are
numbers t ∈ [�, h], x ∈ [x1, x2], and y ∈ [y1, y2] such
that I(o, t) = (x, y).

4. I |= F ∧ G iff I |= F and I |= G.
5. I |= F ∨ G iff I |= F or I |= G.
6. I |= ¬F iff I does not satisfy F .

I satisfies a motion theory MT iff I satisfies every F ∈ MT.
MT is consistent iff there is a LOM interpretation I such

3Continuity is w.r.t. classical real fields (Ellis & Gulick 1978)
rather than, say, the discrete notion of continuity used in logic pro-
gramming (Lloyd 1987).



that I |= MT. F is a logical consequence of MT, denoted
MT |= F , iff every LOM interpretation I that satisfies MT
also satisfies F .4

The following theorem describes the computational com-
plexity of checking consistency.

Theorem 1 The problem of checking whether an input mo-
tion theory is consistent is NP-hard. The problem is NP-
complete if the input theory is required to be a go-theory.

The proof of NP-hardness is obtained by polynomially re-
ducing the problem of sequencing with deadlines and release
times which is known to be NP-complete (Garey & Johnson
1977) to the problem of checking consistency of a motion
theory.

In addition, checking consistency is complicated by the
fact that a single go(obj1, 0, 0, 0, 60, 44, 48, 50, 52, 4, 5) is
inconsistent because there is no way to get from location
(0, 0) to location (60, 44) within the prescribed speed lim-
its of 4-5 miles per hour within the prescribed time frame
(leave sometime in the [44, 48] interval and arrive at some
time in the [50, 52] interval). In addition, consider the go-
atom go(obj1, 0, 0, 0, 60, 35, 50, 40, 55, 6, 10). The distance
between the origin and destination is 60. If the object leaves
at time 35, the earliest time at which it can arrive at the des-
tination (given the max speed of 10) is at time 41. Thus the
lower bound on the arrival time which is 40 in the above go-
atom can be tightened to 41. Likewise, the upper bound may
also be amenable to tightening.

Consistency Checking
In this section, we describe deterministic and nondetermin-
istic algorithms to check consistency of go-theories.

Given a go-theory G and an object o, let Go denote the set
of all atoms g ∈ G such that obj(g) = o. It is clear that G
is consistent iff Go is consistent for all objects o. Therefore,
throughout the rest of this paper, without loss of generality,
we assume that for all gi, gj ∈ G, obj(gi) = obj(gj). In
other words, all atoms in G are about the same object.

Coherent movement. Consider the following question:
Given a set of go-atoms G is it possible for G to describe
the movement of a single object o on a single line segment
over a single continuous time interval? In this case, we say
that the set G of atoms describes a coherent movement. Here

4Suppose G = {g1, g2}, where

g1 = go(o, x11, y11, x12, y12, t
−
11, t

+
11, t

−
12, t

+
12, v

−
1 , v+

1 );

g2 = go(o, x21, y21, x22, y22, t
−
21, t

+
21, t

−
22, t

+
22, v

−
2 , v+

2 ).

Suppose the points (x11, y11), (x12, y12), (x21, y21), (x22, y22)
are all distinct and t−21 > t+12. Then the above definition allows I to
have the object o travel at an arbitrarily high speed during the open
interval (t+12, t

−
21). We can prevent this by introducing a notion of

V -interpretation where V > 0 is some real value that bounds the
maximal velocity of object o. Replacing the notion of satisfaction
and logical consequence by the notion of V -satisfaction and V log-
ical consequence can be dealt with using similar methods to those
described here. See (Yaman, Nau, & Subrahmanian 2004) for de-
tails.

are some examples, for the case where G consists of two go-
atoms g1, g2:

1. Suppose t+2 (g1) < t−1 (g2). Then the answer is no, be-
cause g1 must end before g2 starts.

2. Suppose t−1 (g1) ≤ t+2 (g2), t−1 (g2) ≤ t+2 (g1), the line
segments [loc1(g1), loc2(g1)] and [loc1(g2), loc2(g2)] are
not collinear or the line segments do not intersect or the
directions of the movements5 are not the same. Then the
answer is no, because g1 and g2 must overlap temporally
but they define incompatible trajectories for o during the
time that they overlap.

3. Suppose t−1 (g1) ≤ t+2 (g2), t−1 (g2) ≤ t+2 (g1), the line
segments [loc1(g1), loc2(g1)] and [loc1(g2), loc2(g2)] are
collinear and their intersection is not empty and direction
of the movements are same. Then the answer may be ei-
ther yes or no, depending on whether the minimum and
maximum speeds v1(g1), v2(g1), v1(g2), v2(g2) are com-
patible or the common line segment can be visited at the
same times by both g1 and g2. Since o’s actual speed does
not need to be constant, those conditions are rather com-
plicated.

More generally, suppose G = {g1, . . . , gn} is a set of go-
atoms object o (i.e., ∀gi ∈ G, obj(gi) = o) and such that
the union of the line segments {[loc1(gi), loc2(gi)]}n

i=1 is
a single line segment L = [P1, P2]. Here are the formal
conditions under which is it possible for G to consistently
define the movement of o over a single time interval. Let
{p1, . . . , pn} = {loc1(gi), loc2(gi)}k

i=1. Without loss of
generality, assume that the points p1, . . . , pn are listed in as-
cending order of their distance from P1. We use the notation
Movement(G) to denote the set of constraints given below.

1. t−1 (gj) ≤ Ti ≤ t+1 (gj) for every i, j such that pi =
loc1(gj);

2. t−2 (gj) ≤ Ti ≤ t+2 (gj) for every i, j such that pi =
loc2(gj);

3. dist(pi, pi+1) ≤ (Ti+1 − Ti) × v+
i , i = 1, . . . , n − 1;

4. (Ti+1 − Ti) × v−i ≤ dist(pi, pi+1), i = 1, . . . , n − 1;

where

• T1, . . . , Tn are variables;
• v−i = max{v−(g) | [pi, pi+1] is a subsegment of the line

segment [loc1(g), loc2(g)]};

• v+
i = min{v+(g) | [pi, pi+1] is a subsegment of the line

segment [loc1(g), loc2(g)]}.

We will show later that consistency of a go-theory re-
quires satisfying all the constraints in Movement(G). The
rationale behind this assertion is based on the intuition that
Ti denotes the actual time at which the object o leaves point
pi. The first constraint above says that if gj is any go-
statement involving leaving from location p i, then Ti must
lie within the earliest departure time and the latest departure
time from point pi according to gj . The second constraint
says that if g is any go-atom that describes when o arrives at

5Direction of movement is a unit vector (loc2(g1) −
loc1(g1))/dist(loc2(g1), loc1(g1))



pi then Ti must lie within the times at which o can reach pi as
well. This is needed because otherwise we could not view
the set of go-atoms in G as representing a continuous se-
quence of movements. The third and fourth constraints say
that the arrival time of object o at pi+1 from point pi must be
compatible with the distance between these two points and
the velocity of the object. Note that if multiple go-atoms
cover the line segment between pi and pi+1, then the veloci-
ties in question must all apply to the movement of o from p i

to pi+1.
Note that as Movement(G) only contains linear con-

straints, there are Linear Programming (LP) solvers
(Khachiyan 1979; Karmarkar 1984) that can solve
Movement(G) in polynomial time.6

Example 1 If g1 = go(obj1, 40, 10, 40, 60, 1, 5, 6, 14, 5,
10) and g2 = go(obj1, 40, 30, 40, 90, 8, 10, 13, 18, 6, 12)
then it is possible to combine them into a single move-
ment, because t−1 (g1) ≤ t+2 (g2) and t−1 (g2) ≤ t+2 (g1), the
line segments [(40, 10)(40, 60)] and [(40, 30)(40, 90)] are
collinear with non-empty intersection [(40, 30)(40, 60)] and
direction of the movements are same. Furthermore, the fol-
lowing constraints (in Movement({g1, g2}) are satisfiable:

1 ≤T1 ≤ 5;
8 ≤ T2 ≤ 10;
6 ≤ T3 ≤ 14;

13 ≤ T4 ≤ 18;
dist(p1, p2) ≤ (T2 − T1) × 10;
dist(p2, p3) ≤ (T3 − T2) × 10;
dist(p3, p4) ≤ (T4 − T3) × 12;

(T2 − T1) × 5 ≤ dist(p1, p2);
(T3 − T2) × 6 ≤ dist(p2, p3);
(T4 − T3) × 6 ≤ dist(p3, p4);

where p1 = (40, 10), p2 = (40, 30), p3 = (40, 60) and
p4 = (40, 90). A solution to the constraints above is T1 = 4,
T2 = 8, T3 = 13, T4 = 16.

Consistency of a go-theory. We are now ready to consider
the problem of consistency of an arbitrary go-theory. For
simplicity, consider a pair of go-atoms g1, g2. Intuitively,
there are three cases in which {g1, g2} is consistent:

1. if it is possible to end g1 before g2 starts, which can hap-
pen iff t−2 (g1) < t+1 (g2);

2. if it is possible to end g2 before g1 starts, which can hap-
pen iff t−2 (g2) < t+1 (g1);

3. if it is possible for g1 and g2 to overlap, which
can happen iff the line segments [loc1(g1), loc2(g1)]

6In (Yaman, Nau, & Subrahmanian 2004), we show that an
even better time bound can be achieved. In polynomial time,
Movement(G) can be transformed into a Simple Temporal Prob-
lem (STP) (Dechter, Meiri, & Pearl 1991), and the satisfiability of
the STP can be checked in O(n3). As discussed in (Dechter, Meiri,
& Pearl 1991), minimum and maximum values for each Ti can be
computed in O(n3) and a solution can be constructed within the
same time complexity bounds.

and [loc1(g2), loc2(g2)] are collinear, the line segments
intersect, direction of the movements are same and
Movement({g1, g2}) has a solution.

We have generalized the above reasoning to get a nonde-
terministic polynomial-time algorithm Consistent(G) that
determines whether a set of go-atoms G = {g1, . . . , gn} is
consistent.

Algorithm Consistent(G)

1. Let C be a set of linear constraints that is ini-
tially empty. Let Γ be a graph whose nodes are
g1, . . . , gn, and whose edges are chosen nondeter-
ministically from the set {{gi, gj} | the line seg-
ments [loc1(g1), loc2(g1)] and [loc1(g2), loc2(g2)]
are collinear and intersect}.

2. For every connected component s of Γ, insert
Movement(s) into C. For every pair of connected
components s, s′ of Γ, nondeterministically insert
one of the following two sets of constraints into C:

• {T < T ′ | T is a variable of s and T ′ is a variable
of s′};

• {T ′ < T | T is a variable of s and T ′ is a variable
of s′}.

3. If C has a solution then return “yes,” else return “no.”

To see that the algorithm runs in nondeterministic poly-
nomial time, note that in every execution trace, Steps 1 and
2 end after a polynomial number of steps, and Step 3 can be
done using a polynomial-time LP solver.

Just as with any nondeterministic polynomial-time al-
gorithm, Consistent(G) can be translated into a sound
and complete deterministic algorithm that runs in expo-
nential time. We now present the deterministic version of
Consistent(G), CheckConsistency(G).

Algorithm CheckConsistency(G)
Let O = {(gi, gj) | gi and gj are go-atoms that

can overlap}
Let Γ be a graph with no edges whose vertex set is G
Let SP = Ø
Let C be an empty set of constraints
return SolveConstraints(O, Γ,SP ,C)

Algorithm SolveConstraints(O, Γ,SP ,C)
if O �= Ø then

(gi, gj)=first element of O
O′ = O − {(gi, gj)}
if SolveConstraints(O′, Γ,SP ,C) then

return “yes”
else

Γ′ = Γ with additional edge (gi, gj)
returnSolveConstraints(O, Γ′,SP ,C)

elseif C = Ø then
Let S be the connected components of Γ
Let SP ′ be the set of all pairs in S
Let C ′ = {movement(s) | s ∈ S}
return SolveConstraints(O, Γ,SP ′,C ′)

elseif SP = Ø then
return “yes” if C is solvable, otherwise “no”



else
(s1, s2)=first element of SP
SP ′ = SP − {(s1, s2)}
C′ = C+ constraints of s1 before s2

if SolveConstraints(O, Γ,SP ′,C ′) then
return “yes”

else
C′ = C+ constraints of s1 after s2

return SolveConstraints(O, Γ,SP ′,C ′)

The CheckConsistency(G) algorithm calls
SolveConstraints(O, Γ,SP ,C) procedure, which per-
forms a depth-first search over all possible alternatives.
It is a recursive algorithm which in the first phase builds
the graph Γ, then in the second phase selects an ordering
over all connected components of Γ and finally checks
to see if the constraints C is solvable. If at any point the
algorithm returns “yes” all recursive calls return “yes”
and the algorithm stops searching. On the other hand
SolveConstraints(O, Γ,SP ,C) returns “no” only when
all choices return “no.” The reader can verify that at every
decision point there are only 2 choices and the depth of the
recursion can be at most O(n2), thus the time complexity
for CheckConsistency(G) is O(2n2

).
Example 2 Let

g1 = go(obj1, 200, 300, 200, 500, 10, 20, 30, 70, 4, 10);
g2 = go(obj1, 200, 400, 200, 600, 20, 25, 40, 65, 5, 10);
g3 = go(obj1, 40, 10, 40, 60, 1, 5, 6, 14, 5, 10).

Then only g1 and g2 can overlap.
Figure 1 shows the execution trace of the algorithm

SolveConstraints (O, Γ,SP ,C) when it is invoked by
CheckConsistency(G) with the parameters shown in the
root node. In the left subtree, SolveConstraints explores
the cases where g1 and g2 do not overlap and Γ contains
3 connected components. Each leaf of the left subtree cor-
responds to a different possible ordering of the connected
components; none of these leaves have solvable constraints.
In the right subtree SolveConstraints explores the cases
where g1 and g2 do overlap and Γ contains 2 connected
components. A solution exists when the combined motion
of g1 and g2 comes after g3.

Theorem 2 Algorithm Consistent(G) is correct, i.e., G is
consistent iff there is a way to make the nondeterministic
choices in Step 2 such that the algorithm returns “yes.” Like-
wise, Algorithm CheckConsistency(G) is correct, i.e. G is
consistent iff CheckConsistency(G) returns “yes.”

A class of go-theories called separated go-theories can
be defined for which the problem of checking consistency
is polynomially solvable. In addition, given an arbitrary go-
theory G, it is possible to check whether G is separated or
not in polynomial time. For details, see (Yaman, Nau, &
Subrahmanian 2004).

Answering in() Queries
In this section, we show how to check whether an atom of the
form a = in(o, x1, y1, x2, y2, t1, t2) is a logical consequence

O={(g1,g2)}, SP={}, C={}
Γ=<{g1,g2,g3},{}>

O={},  Γ=<{g1,g2,g3},{}> O={}, Γ=<{g1,g2,g3},{(g1,g2)}>

s1={g1}, s2={g2}, s3={g3}
SP={(s1,s2), (s1,s3), (s2,s3)}, 

C={M(s1), M(s2), M(s3)}

s1={g1, g2}, s2=g3
SP={(s1,s2)}, 

C={M(s1), M(s2)}

C={M(s1), M(s2), 
M(s3), (s1<s2),

(s1<s3), (s2<s3)}

C={ M(s1), M(s2), 
M(s3), (s1>s2),

(s1>s3), (s2>s3)}

NO NO

. . . .

C={M(s1),
M(s2), (s1<s2)}

C={ M(s1),
M(s2),(s1>s2)}

NO YES

Figure 1: Trace of CheckConsistency(G) for Example 2

of a go-theory G. Let us use Rec(a) to denote the rectangle
whose lower left corner is (x1, y1) and whose upper right
corner is (x2, y2). For the sake of simplicity suppose for now
that G contains just one go-atom g. The following lemma is
not difficult to show.

Lemma 1 Suppose G = {g} is a go-theory and a =
in(o, x1, y1, x2, y2, t1, t2) is a ground go-atom. a is a log-
ical consequence of g iff the following two conditions hold:

• Rec(a) must intersect the line segment (loc1(g), loc2(g));
• During the time interval [t1, t2], the object o must be in

L, where L = ((x′
1, y

′
1), (x

′
2, y

′
2)) is the sub-segment of

(loc1(g), loc2(g)) that intersects Rec(a)).

Before we can use this intuition to design an algorithm to
check if a is a logical consequence of an arbitrary go-theory,
we need one more definition.

Definition 1 Suppose G is a set of go-atoms and s is a con-
nected component of the graph Γ associated with G by al-
gorithm Consistent(G). Then

1. The extent of s is given by the interval

[min{t−1 (g) | g ∈ s}, max{t+2 (g) | g ∈ s}].
2. s can possibly overlap a = in(o, x1, y1, x2, y2, t1, t2) iff

extent(s) ∩ [t1, t2] �= ∅.

When attempting to determine if a is a logical conse-
quence of G, we also need to make sure that for every non-
deterministic trace of algorithm Consistent(G), the con-
straints C force a = in(o, x1, y1, x2, y2, t1, t2) to be true.
This is because each solution of the constraints C of algo-
rithm Consistent(G) corresponds to a set of interpretations
that satisfies G.

Let S be a connected component of the graph Γ described
in algorithm Consistent(G) and L = [P1, P2] be the union
of the line segments in set {loc1(g), loc2(g) | g ∈ S}. Let



{p1, . . . , pn} be the union of {loc1(gi), loc2(gi) | g ∈ S},
with the points given in ascending order of their distance
from P1. For any point P which is on the line segment L,
the earliest time at which object o could arrive at point P
can be found by solving the following linear programming
problem, LPmin(C, S, d):

1. If P = pi for some i and Ti is the variable associated with
pi in Movement(S) then LPmin(C, S, d) is the follow-
ing linear programming problem:

minimize Ti subject to C

2. If the previous case does not apply and P is on line seg-
ment [pi, pi+1] for some i and Ti is the variable associ-
ated with pi in Movement(S) then LPmin(C, S, d) is
the following linear programming problem:

minimize Ti + dist(P, pi)/v+
i subject to C

Another linear programming problem, LPmax(C, S, P ),
is defined with exactly the same constraints as above, ex-
cept that we replace v+

i with v−
i and maximize the objective

function rather than minimizing it. The result is the latest
time at which the object could arrive at the point P .

Algorithm CheckIn(G, Γ, C, a)
Suppose a = in(0, x1, y1, x2, y2, t1, t2);
S = set of all connected components of the graph Γ

associated with G in algorithm Consistent(G)
C = set of constraints associated with G and Γ in

algorithm Consistent(G)
for each connected component s ∈ S do
if s can overlap [t1, t2] ∧ LS(s) ∩ Rec(a) �= ∅ then

Suppose LS(s) ∩ Rec(s) has P1, P2 as its
end points;
Let Tmin be the solution of LPMin(C, s, P1)
Let Tmax be the solution of LPMax(C, s, P2)
if Tmin ≥ t1 and Tmax ≤ t2
then return true and halt
else continue

end for
return false

The following theorem says that CheckIn is correct as long
as the go-theory is consistent.

Theorem 3 Suppose G is a consistent go-theory and a =
in(o, x1, y1, x2, y2, t1, t2) is a ground atom. Then: a is
a logical consequence of G iff for every Γ,and C as-
sociated with G in algorithm Consistent(G), algorithm
CheckIn(G, Γ, C, a) returns “true” when C is solvable.

Example 3 Suppose we have a go theory G=[g1, g2, g3] for
the object o, and let a = in(o, x1, y1, x2, y2, t1, t2). Figure
2 contains a rectangle R(a) and three lines �1, �2, �3 repre-
senting the movements defined by g1, g2 and g3 respectively.
Furthermore, suppose a trace of Consistent(G) algorithm
requires that we do g1 first, then g2, and finally g3. If we as-
sume [t1, t2] is wide enough so that all gi’s temporally over-
lap, then the algorithm CheckIn will perform the following
checks:

• o arrives at P1 after t2: then answer is NO

l1

l2

l3
P1

P2

P3

P4

Figure 2: grapical representation of G and R(a) in Example
3

• o arrives at P1 before t2 and
– o arrives at P2 after t1: then answer is YES
– o arrives at P2 before t1 and
∗ o arrives at P3 after t2: then answer is NO
∗ o arrives at P3 before t2 and
· o arrives at P4 after t1: then answer is YES
· o arrives at P4 before t1: then answer is NO

Answering near() Queries
In this section, we show how to check whether an atom of
the form b = near(o, o′, d, t1, t2) is a logical consequence of
a go-theory G. The basic idea of the algorithm is as follows.

1. Let space(o, t) denote the set of points in space at which
object o could be at time t. (We will define this term more
explicitly later in this section).

2. We want to check if there exists a t ∈ [t1, t2], an
(x1, y1) ∈ space(o, t) and an (x2, y2) ∈ space(o′, t) such
that the distance between (x1, y1) and (x2, y2) exceeds
d. If so, we return “no” (b cannot possibly be a logical
consequence of G) - otherwise we return “yes.”

This means we are left with the problem of defining
space(o, t) for any object o and any time t, given a go-theory
G.

Consider a go-theory G with one go-atom g. Obvi-
ously we only know where the object will be in the in-
terval TI(g) = [t+1 (g), t−2 (g)]. During this interval, the
object will be somewhere in the line segment LS =
L[loc1(g), loc2(g)]. Furthermore for any given time t ∈
TI(g), we can compute a smallest subsegment L = [P1, P2]
of LS such that the object can be anywhere on L and still
satisfy the temporal constraints defined by g. We call L the
space envelope of the object at time t.

Example 4 Let

g = go(obj, 40, 0, 40, 50, 10, 15, 16, 22, 5, 10).

The hexagonal area in Figure 3 is the space envelope of g
for every t ∈ [10, 22]. The two dimensions of the figure
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Figure 3: Graphical representation of space envelope in Ex-
ample 4

are time and the y coordinate of obj (we omit the x dimen-
sion because it is constant). The area shows where on the
line (40, 0, 40, 50), obj can be without violating to temporal
and speed constraints defined in g. The four points on this
graph (10, 0), (15, 0), (16, 50) and (22, 50) correspond to
the positions at the earliesst /latest departure/arrival times.
As seen in the figure there are four lines l1 (bottom left), l2
(top left), l3 (top right), and l4(bottom right) that define the
boundaries of this hexagonal shape. Both l1 and l4 have a
slope of 10, the fastest possible speed. Both l2 and l3 have a
slope of 5, the slowest possible speed. The bold dashed lines
show the space envelope of obj at time 21, which is [40, 50].

The next paragraph explains how to answer a query of
the form near(. . . , t1, t2) in the case where t1 = t2 (i.e., the
time interval consists of just one time point). The subsequent
paragraph extends this approach to the case where t1 �= t2.

Suppose we have a go-theory G containing two go-atoms
g1 and g2 for objects o1 and o2 respectively and we want to
know if the distance between o1 and o2 is at most d at time
t. Let’s assume t is in TI(g1) and TI(g2). In this case, we
can predict the positions of o1 and o2 at t. Let L = [P1, P2]
and L′ = [P ′

1, P
′
2] be the space envelopes of o1 and o2 at t.

Then the answer is “yes” if the maximum distance between
line segments L and L′ is at most d. The maximal distance
between the lines L = [P1, P2] and L′ = [P ′

1, P
′
2] is given

by max{dist(Pi, P
′
j) | 1 ≤ i ≤ 2, 1 ≤ j ≤ 2} and can be

computed in constant time.
In order to generalize this approach for a time interval

[t1, t2], all we need to do is represent each of the expressions
P1, P2, P

′
1 and P ′

2 as a function of time and use constraints
to check if max{dist(Pi, P

′
j) | 1 ≤ i ≤ 2, 1 ≤ j ≤ 2} > d

for any t ∈ [t1, t2]. If such a t exists, then the answer is “no”

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

200

P1 
P2 

P1’ 

P2’ 

Figure 4: Graphical representation of space envelopes in Ex-
ample 5

(because this means that there is at least one time instance,
viz. t at which the two objects are more than d units apart
from each other according to one interpretation) otherwise
the answer is “yes.” Note that as long as Pi(t) and P ′

j(t) are
expressible as piecewise linear functions, solving the above
inequalities takes linear time.

Example 5 Let

g1 = go(o1, 100, 100, 100, 700, 5, 50, 130, 180, 4, 6);
g2 = go(o2, 100, 500, 100, 1300, 50, 70, 180, 200, 5, 8).

Let b = near(o, o′, 580, 80, 120). Figure 4 shows the space
envelops for obj1 and obj2 along the y axis. Also the
piecewise linear functions P1, P2, P

′
1 and P ′

2 in the inter-
val [80, 120] are displayed on the figure. Looking at the
figure we can conclude that if o1 is on P1 and o2 is on
P ′

2 the objects are fartest apart. Furthermore there are
times when the distance is greater than 580, for exam-
ple at time 120. Hence b is not a logical consequence of
the go-theory G = {g1, g2}. We could however say that
near(o, o′, 700, 80, 120) is a logical consequence of G.

We now extend this intuition for arbitrary go-theories.
When attempting to determine if b = near(o, o′, d, t1, t2) is
a logical consequence of G, we need to make sure that for
every nondeterministic trace of algorithm Consistent(G),
the constraints C described in algorithm Consistent(G)
force b = near(o, o′, d, t1, t2) to be true. Given a go-theory
G, let Γ(o) and C(o) denote the graph and the constraints
associated with object o by algorithm Consistent(G).
Suppose s is a connected component of Γ(o) and it de-
fines a movement on the line segment [P1, P2] then we
can define the following linear programming problem
NewLPmax(C, s) as follows:



maximize T subject to C, where T is the variable as-
sociated with point P1 in Movement(s). The solution
to NewLPmax(C, s) is the latest departure time for
object o from P1.

Another linear programming problem NewLPmin(C, s)
can be defined in a similar way except that in
NewLPmax(C, s) T is the variable associated with
P2 and the objective function minimizes T rather than
maximizing it. The solution to NewLPmin(C, s) is the
earliest arrival time to P2.

Definition 2 Let G be a go-theory and b =
near(o, o′, d, t1, t2) be a ground atom. Let Γ(o) and
C(o) denote the graph and the constraints associated with
object o by algorithm Consistent(G). Suppose s is a
connected component of Γ(o). s is temporally relevant to
b iff [NewLPmax(C, s), NewLPmin(C, s)] contains the
interval [t1, t2].

Note that given Γ(o) and C(o) there can be at most one com-
ponent s that is temporally relevant to b. This is because
each trace of the algorithm Consistent(G) checks whether
a totally ordered connected components of Γ has a solution.

The following algorithm uses the functions
P1(o, s, t), P2(o, s, t) which return the closest and fur-
thest points that o can be at time t according to the go-atoms
in s. The full version of this paper contains the formal
definitions for P1(o, s, t) and P2(o, s, t). Furthermore it
also shows that for a given o and s, Pi(o, s, t) is a piecewise
linear function.

Algorithm CheckNear(G, Γ(o), C(o), Γ(o′), C(o′), b))
Suppose b = near(o, o′, d, t1, t2)
s= connected component of Γ(o) that is temporally

relevant to b
s′= connected component of Γ(o ′) that is temporally

relevant to b
if s or s′ is empty then return false
if ∃t | dist(P1(o, s, t), P1(o′, s′, t)) > d

and t1 ≤ t ≤ t2 then return false
if ∃t | dist(P1(o, s, t), P2(o′, s′, t)) > d

and t1 ≤ t ≤ t2 then return false
if ∃t | dist(P2(o, s, t), P1(o′, s′, t)) > d

and t1 ≤ t ≤ t2 then return false
if ∃t | dist(P2(o, s, t), P2(o′, s′, t)) > d

and t1 ≤ t ≤ t2 then return false
return true

The next theorem says that CheckNear is correct whenever
the go-theory is consistent.

Theorem 4 Suppose G is a consistent go-theory and b =
near(o, o′, t1, t2, d) is a ground atom. Then: b is a log-
ical consequence of G iff for every Γ(o),C(o),Γ(o′) and
C(o′) associated with G in algorithm Consistent (G)
such that C(o) and C(o′) are solvable, then algorithm
CheckNear(G, Γ(o), C(o), Γ(o′), C(o′), b) returns “true.”

Implementation and Experiments
We have built a prototype system called LOM which allows
us to represent and query go theories. The implementation
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Figure 5: Performance of logical consequence queries

includes 35 functions and 1256 lines of Matlab code. We
have performed the tests on a mobile Athlon XP 1800
processor with 256 MB memory running Windows XP.
Figure 5 shows computation time of four types of queries.
We generated go-theories with the following properties: all
points are in the rectangle [1, 1, 500, 600] and the maximum
speed allowed is 50. Four query templates were used:

Q1: in(o1, 1, 1, 500, 600, 0.5∗horizon, 0.75∗horizon);
Q2: in(o1, 100, 150, 200, 350, horizon− 300,

horizon − 10);
Q3: near(o1, o2, 50, 10, 12);
Q4: near(o1, o2, 60, horizon− 20, horizon− 10);

where horizon is the latest arrival time for o1 in the given
theory. In each of these cases, we varied the value of hori-
zon. The reader will notice that the implementation per-
forms very well, executing most queries in a very small
amount of time even when there are as many as 10,000 go-
atoms per object.

Related Work
Some of the related work is by researchers in AI and phi-
losophy who have studied spatio-temporal logics. These
logics extend temporal logics to handle space. Most of
them (Gabelaia et al. 2003; Merz, Zappe, & Wirsing 2003;
Wolter & Zakharyaschev 2000; Cohn et al. ), involve log-
ical languages similar to LTL in which time is a discrete
sequence of instants rather than being continuous.The focus
of these works is qualitative - in contrast our work is heavily
continuous and rooted in a mix of geometry and logic rather
in just logic alone.

Despite many work on qualitative spatio-temporal theo-
ries (for a survay see (Anthony G. Cohn 2001)), very little



work has been done on motion in such frameworks. (Muller
1998a; 1998b) describes a formal theory for reasoning about
motion in a qualitative frame work. The expressive power
of the theory allows for the definition of complex motion
classes. The work however is purely symbolic hence has a
different nature than our work. (Shanahan 1995) discusses
the frame problem, when constructing a logic-based calculus
for reasoning about the movement of objects in a real-valued
co-ordinate system. Other than continuity the work does not
specify any characteristics of the motion. (Rajagopalan &
Kuipers 1994) focusus on relative position and orientation
of objects with existing methods for qualitative reasoning in
a newtoninan framework.

The database literature includes work moving-object
databases, from the point of view of developing data struc-
tures to specify what objects are where and what their cur-
rent velocity is and developing algorithms to answer queries
projecting where the vehicles will be in the future (Chomicki
& Revesz 1997; Erwig et al. 1999; Su, Xu, & Ibarra 2001).
There are many differences between these works and ours:
They do not provide a formal model theory, and they do
not worry about consistency because they always record ob-
served information about where the vehicles were observed
in the past (presumably such a theory is consistent because
if the vehicle was at one location at time t and another loca-
tion at time t′ there was a physical way for it to get from the
first location to the second). They do not allow uncertainty
(e.g., about starting times, ending times, and velocities).

Conclusions
In numerous applications there is a critical need to reason
about moving objects. We have described a formal logic of
motion, including a formal syntax and model theory.

Our work is rooted in a mix of geometry and logic: it pro-
vides a realistic continuous model of motion based on New-
tonian physics. Our go-theories can represent uncertainty
about starting times, ending times, and velocities. This abil-
ity is useful in the real world, where specifying exact veloc-
ities and exact arrival times is almost impossible.

We provide algorithms to check consistency; these algo-
rithms are important because we want not only to reason
about where vehicles were in the past, but where we expect
them to be in the future. We show that consistency of go-
theories is NP-complete. We also provide algorithms to an-
swer two kinds of queries. in queries ask to find all vehicles
that are guaranteed to be inside a given rectangular region at
some time point in a given time interval. Such queries are
very useful - for example, in the US Navy submarine track-
ing example mentioned in the introduction, we may want
to find the identities of all enemy submarines that are guar-
anteed to be within a given region at a given point in time.
Likewise, in the US Army’s Combat Information Processor
example mentioned in the introduction, we may want to find
all enemy vehicles within a given region at a given point in
time, in order to assemble resources to neutralize the threat.
near queries in contrast ask for all pairs of objects that are
guaranteed to be within a given distance of each other at
some time point in a given interval. Again, this is very use-
ful. In our US Navy route collision avoidance example,we

want to know if two ships are scheduled to be very close
to each other at some point in time. The same is true in
air control traffic applications. Though we have not shown
how our framework can be extended to complex formulas
(involving conjunctions, disjunctions and negations), this is
straightforward and will be included in the journal version
of our paper.

An extremely important observation is that our algo-
rithms for computing in and near queries run in polyno-
mial time. This provides theoretical grounds for claiming
that our methods are efficient. However, to validate this ex-
perimentally, we have also built a prototype implementation
and shown that for a small sample of queries, our algorithms
are extremely efficient. For systems containing upto 10,000
go-atoms about a single object, we are able to answer in
queries in about 2-3 seconds. In contrast, we can answer
near queries in under half a second with the same number
of go atoms. These are very efficient.

We are currently extending the work in this paper in the
following directions.

• We are examining the incorporation of new atoms (e.g.
atoms to reflect the fact that a given object may possibly
be within a given region in a given time interval) into our
logic.

• For logic purists, we are developing a Hilbert-style proof
theory.

• More importantly, we are studying classes of go-theories
that have even better computational properties than those
described in this paper.

• We are developing a scalable LOM implementation that
allows us to conduct far more detailed experiments than
those described here.
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