
1

Contents

1 Secret Message Pad 2

2 Neo's Leap 3

3 Cipher's Worms 4

4 Helicopter Crash 6

5 Transmit Neo 8

6 A Glitch in the Matrix 11

7 Find Neo 13

8 Sentinel Detection 17



2001 Maryland High-school Programming Contest 2

1 Secret Message Pad

Hearing stories from the Oracle that a programmer named Neo may possibly be "The One", Trinity

risks going into the Matrix to observe Neo. While in the Matrix, her communications are intercepted

and Trinity is almost caught by Agent Smith and two other agents.

Safely back in the hovercraft Nebuchadnezzar, Trinity decides to add another level of encryption to

her communication using a "one-time pad". The idea is that given a sequence of numbers (a pad), any

message can be proven to be securely encrypted if each character in the string is encoded by a number

from the pad, if each number from the pad is only used once.

Trinity decides to use the one-time pad to encrypt her messages by shifting each letter in the

message by k posit"one-0 T,



2001 Maryland High-school Programming Contest 3

2 Neo's Leap

On board the hovercraft Nebuchadnezzar, Neo is practicing his skills for the Matrix. Tank loads Neo

into the Jump program, where he must jump from the the top of one building to the next. In the

Matrix, by concentrating hard Neo can a�ect gravity to slow the change in the rate of his fall to 5

meters/second. As long as Neo does not land, he will continue to move forward at the same speed he

was running before his jump.

Tank can approximate Neo's jump by calculating his speed and position every second. For example,

if Neo jumps up with a speed of 10 meters/second while running at 30 meters/second, the results are:

Time Distance Height Speed

0 seconds 0 meters 0 meters up 10 meters/sec

1 seconds 30 meters 10 meters up 5 meters/sec

2 seconds 60 meters 15 meters up 0 meters/sec

3 seconds 90 meters 15 meters down 5 meters/sec

4 seconds 120 meters 10 meters down 10 meters/sec

5 seconds 150 meters 0 meters down 15 meters/sec

As a result, Neo will jump 150 meters and stay in the air for 5 seconds.

Tank starts testing Neo with jumps to buildings that are at di�erent distances away. For simplicity,

Tank will calculate Neo's position at the end of every second, even though more accurate calculations

are possible by if shorter intervals are used.

Input Format

The input consists of a list of three numbers representing a jump to a target building:

1. the speed Neo is running (in meters/second),

2. the speed Neo jumps up into the air (in meters/second),

3. the distance to the target building (in meters).

Output Format

Print the distance and height of Neo's jump after each second as a pair of numbers on a new line, starting

at one second. Repeat each second until Neo lands (height reaches zero or below). Use integers for

calculating results. For each building, output "yes" if Neo is within 3 meters of the building when he

lands (height � zero), else print "no".

Example

Input 1:

30 10 150

Output 1:

30 10

60 15

90 15

120 10

150 0

yes

Input 2:

10 12 65

Output 2:

10 12

20 19

30 21

40 18

50 10

60 -3

no



2001 Maryland High-school Programming Contest 4

3 Cipher's Worms

Cipher is hacking into the matrix and modifying it in small ways that make the crew's job easier. Part

of his job is generating trees, bushes, worms, and other critters that look real and that can be used to

hide stu� for the crew. We'll focus on worms here. To keep things simple, our worms are represented

as character strings (with each character representing some combination of color, texture, etc.). For

example, if we use a and b to denote azure and black then aaabbbaaabbbaaa is a worm with azure

and black bands. Now, realistic critters tend to have patterns that are more complex than this simple

example. Fortunately, Cipher knows of a simple method for creating realistic and complex worms.

For each worm type, Cipher has a set of rules that determine how a worm grows. For example,

the rule a -> bab indicates that the string a is replaced with bab, while bb -> a indicates that bb

is replaced with a. Given the current state of any worm (e.g., bbabb), the next state is computed

by replacing the left-hand-side (LHS) of each rule with its right-hand-side (RHS) at all positions in

the worm where the LHS occurs. The replacements are not done sequentially (�nding one match,

performing one replacement, then �nding the next match, etc.). Rather, they are done in parallel:

All matches to rule LHSs are replaced in unision with the corresponding RHSs. For example, bbabb

has three matches in all: The �rst rule matches the a in the middle while the second rule matches

the bb substrings at each end. Substituting the rule RHSs (a, bab, and a) for the LHSs in the worm

(respectively, bb, a, and bb) results in ababa as the next state of the worm. The initial state of a

worm is called the seed. Successive states are sequentially numbered generations, with the seed being

generation 0.

Your task is to write a program that grows worms as described above. Your input is a set of rules,

the seed, and the number of generations. Your output is a listing of the states of the worm for each

generation from zero through the given number. The rules always match unambiguously. That is,

there is never more than one rule with an LHS that matches any given position in a worm. You may

assume that worms and rules use only the 52 characters a{z and A{Z, that there are no more than 10

rules, and that worms do not grow longer than 200 characters.

Input Format

The �rst part of the input is a set of rules, organized one to a line. Each rule is speci�ed by its LHS

and RHS, separated by one or more spaces. The end of rules is indicated by a line containing a single

period (\." character). Following the rules, the input speci�es the seed and the number of generations

(each on a line by itself). The input may contain blank lines, which should be ignored. The two-rule

example described above is speci�ed as follows:

a bab

bb a

.

ab

5

The two rules (a -> bab and bb -> a) are followed by the seed (ab) and the number of generations

(5). Note that the rules do not include the arrow (->).

Output Format

The output consists of exactly G + 1 lines, where G is the number of generations speci�ed in the

input. Line number x consists of the state of the worm at generation x. Thus, the �rst line (line 0) is



2001 Maryland High-school Programming Contest 5

generation 0, which is the seed; the last line (line G) is the G'th generation. The output should contain

nothing else (no extra spaces, no blank lines). The output required on the above input is below:

ab

babb

bbaba

ababbbab

babbbababbabb

bbababbabbbabababa

Example

In the above example, there is only one match in generation 0: The �rst character matches the LHS

of the �rst rule (a -> bab). Replacing the LHS with the RHS (bab) gives us generation 1: babb. Now

we have two matches. The a character matches the �rst rule and the string bb to its right matches

the second rule (bb -> a). We perform the replacements indicated by the rules (in parallel), giving

generation 2: bbaba. (In more detail, the �rst character of babb remains unchanged, the second

matches the �rst rule and is replaced with bab, while the last two match the second rule and are

replaced by a.) The rest of the generations are computed by continuing in this manner.

Input 1:

a bab

bb a

.

ab

5

Output 1:

ab

babb

bbaba

ababbbab

babbbababbabb

bbababbabbbabababa



2001 Maryland High-school Programming Contest 6

4 Helicopter Crash

As one of the arti�cial intelligence (AI) entities implementing the Matrix, you are responsible for maintaining

the appearance of physical reality in response to events in the Matrix. One day, you are on duty when human

vermin somehow gain control of a helicopter while attempting to escape from your agents. Due to their limited

human re
exes, they crash the helicopter into the side of your glass building. You must calculate the appropriate

ripple e�ects resulting from the impact.

To model the surface of a building, you can use a two-dimensional array of doubles. The value of each point

in the array indicates how far that part of the building surface has been stretched. You then apply an iterative

�nite-di�erence technique to model the ripple e�ects of the crash as follows.

1. begin with all points at 0.0 (rest state) except the impact point, which is set to the impact value.

2. calculate the new position of a point in the surface as the average of 1) current location and 2) average of

neighbors.

3. update all points at once.

The outermost positions of the building are assumed to always remain at 0. For simplicity, you may assume

your building has a height of 7 and a width of 5.

Note that it is important to store changes to the array and apply them all at once at the end of the time step.

Otherwise, algorithms utilize a mixture of old and new simulation data, which can yield undesirable results.

Input Format

The input will consist of four integer numbers. The �rst two numbers indicating the point of impact (height,

width). The third number is the impact strength; The �nal number is how many time steps of the simulation

should be displayed.

Output Format

For each time step of the simulation, the program should print "Time < t >" (starting at time 0), then the state

of the building at that timestep. The building state can be printed as a 7x5 array of numbers, with each 
oor

of the building on a separate line. Even though the values are stored as doubles, for clarity the program should

convert it and just print an integer values.



2001 Maryland High-school Programming Contest 7

Example

Input:

2 2 100 3

Output:

Time 0

0 0 0 0 0

0 0 0 0 0

0 0 100 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Time 1

0 0 0 0 0

0 6 6 6 0

0 6 50 6 0

0 6 6 6 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Time 2

0 0 0 0 0

0 7 7 7 0

0 7 28 7 0

0 7 7 7 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0



2001 Maryland High-school Programming Contest 8

5 Transmit Neo

As you well know, the way to travel back and forth from the Matrix to the real world is via sophisticated

communication over telephone lines. Turns out, what is transmitted is the actual DNA sequences of the folk who

are going back and forth from the Matrix. Clearly, such communication must be error free, otherwise, genes may

be modi�ed in transit which can, at the very least, be messy (rumor has it an early transmission error literally

caused Morpheus to lose his hair!).

In any case, nowadays these highly sensitive messages are protected using error detecting and correcting

codes. The messages themselves are DNA sequences, and thus consist only of the letters A, C, G, and T.

When these letters are transmitted over the phone lines, they can be arbitrarily modi�ed because of noise on

the circuit. However, each modi�ed letter still is a letter from the original alphabet, e.g. if you transmitted A,

and it was corrupted in transit, you would get some other letter C, G, or T.

The error detecting and correcting code takes into account the fact that the telephone lines in and out of the

matrix can corrupt at most two letters in any nine letter sequence. This code can detect any error as long as less

than three letters in the message are modi�ed in transmission. It can even correct the error if only one letter

is modi�ed in transit. Each message consists of four data letters from a DNA sequence and �ve other letters

(constructed from four data letters as explained below).

The nine letters in a message are arranged as a 3�3 matrix. The top-left 2�2 matrix of this 3�3 matrix are

the four data words. The rest are the check codes. The check codes are computed using the � binary function

shown in Table 1. The individual entries in 3 � 3 matrix are computed as shown in Table 2. The dx;y entires

are the data letters. The check codes are computed using the letters as shown in the message. You should try

to �gure out what (and why) the entry marked � in the bottom right of the message should be.

� A C G T

A A C G T

C C A T G

G G T A C

T T G C A

Table 1: The � function

d0;0 d0;1 d0;0�d0;1
d1;0 d1;1 d1;0�d1;1

d0;0�d1;0 d0;1�d1;1 �

Table 2: Message format

Example

Consider the example message in Table 3. Here d0;0 = T, d0;1 =G, etc. Using Tables 1 and 2, you should be

able to check that all �ve check code entries in this message are correct.

Now suppose the message is corrupted during transmission and (say) the �rst letter (T) is changed to an A.

In this case, the received message is shown in Table 4.

Note that two check codes in the �rst column and the �rst row , (corresponding to the incorrect letter),

are invalid, because A � G 6= C and A � C 6= G. Given the check codes and the corrupt message, can you

reconstruct the original letter?

In our last example (shown in Table 5), we consider the case when two letters of message 3 are corrupted in

transit.



2001 Maryland High-school Programming Contest 9

T G C

C T G

G C T

Table 3: Example Message (no errors)

A G C

C T G

G C T

Table 4: Message with one error

In this case, the �rst two data letters T and G have been corrupted to A and C. Consider the �rst and

second columns of the transmission | since A � C 6= G and C � T 6= C we know there were errors in the

transmission. However, we can only detect this error and not correct it. (Why?) (The problem is that both the

original message and the message in Table 6 can be re-constructed by changing two letters from the message in

Table 5, and there is no way of telling which one is the original message!)

Program

The input to your program will be a set of messages. Each line will contain three characters separated by a single

space each and there will be a newline between each di�erent message. Your program should read a message

(three lines) and output whether the message had any errors. If only one error is detected in the data part, it

should point out where the error is can correct it (and output a new correct message). If more than one error is

detected, the program should just say that errors were detected (and not try to correct them). If a single error

is detected in the check codes, the program should note this. The expected output of the program is shown on

a few sample messages (using some of the messages we have already talked about).



2001 Maryland High-school Programming Contest 10

A C C

C T G

G C T

Table 5: Message with two errors

A C C

G A G

G C T

Table 6: Another valid message that can be constructed by changing two letters in Table 5.

Input:

T G C

C T G

G C T

A G C

C T G

G C T

A C C

C T G

G C T

A C C

G A G

G C T

A C C

G A G

A C T

Output:

Read:

T G C

C T G

G C T

Data transmission fine...

Read:

A G C

C T G

G C T

Error in pos: (0,0) ... corrected, new code:

T G C

C T G

G C T

Read:

A C C

C T G

G C T

Can't correct more than one error

Read:

A C C

G A G

G C T

Data transmission fine...

Read:

A C C

G A G

A C T

Check code error at position (2, 0)



2001 Maryland High-school Programming Contest 11

6 A Glitch in the Matrix

Cipher has succeeded in hacking into the matrix and has introduced several friendly critters, such as the worms

in Question 3. Now, he is getting more ambitious and wants to modify the topology of the matrix. This task is

delicate, since agents patrol the matrix looking for glitches caused by imperfectly done modi�cations.

Cipher knows that the essential topology of the matrix is represented using a simple directed graph. Nodes

in this graph represent locations (e.g., a building basement) and have optional labels (e.g., \basement132"). The

labeled edges in this graph represent connections between locations. For example, an edge with label \elevator2"

from a node (with label) \basement132" to node \lobby" indicates that the elevator leads from the basement to

the lobby. The graph has a special node, called the root, that serves as the main entry point into this world.

The following �gure suggests two such graphs. Note that all edges are labeled, but some nodes are not.

elevator

walkway
elevator

(root)
red_zone red_zone

elevator
elevator

(root)
red_zone

red_zone

elevator

walkway

red_zone

elevator
elevator

Cipher also knows a little about how the patrolling agents operate: Since determining whether two graphs

are identical is an expensive task, agents use a simpler method based on only local comparisons. More precisely,

Cipher has determined that agents will be unable to detect a glitch in the matrix if there exists a relation (say,

R) between the nodes of the old and new graphs (G1 and G2) with the following properties. (If node x in G1 is

related to node y in G2, we write xRy.)

1. The roots of G1 and G2 are related to each other and to no other nodes.

2. If xRy then x and y must either have the same label or must both be unlabeled. (Recall that node labels

are optional.)

3. If xRy and (x; l; x0) is an edge in G1, then there must be an edge (y; l; y0) in G2 such that x0Ry0. Similarly,

if xRy and (y; l; y0) is an edge in G2, then there must be an edge (x; l; x0) in G1 such that x0Ry0.

Cipher has a number of graphs he would like to use interchangeably. For a pair of such graphs, if we can �nd

some relation R with the above properties, the agents will be unable to tell them apart (and thus will be unable

to detect a glitch). Your task is to write a program that determines when such a relation R exists between two

given graphs. We will only consider graphs in which each non-root node is reachable from the root by following

one or more directed edges. You may assume that the graphs will have no more than 64 nodes each and that

there are no more than 16 edges out of any node. Node and edge labels contain only the characters a{z, A{Z,

and underscore (\ ") and are at most 31 characters long.

Input Format

For the purpose of describing an input graph, we will number the nodes of the graph sequentially 0;1;2; : : : ;N�1,
where N is the number of nodes in the graph. We will use the convention that the root of the graph is always

numbered 0. (Note that these numbers are for the purpose of data input only; they have no signi�cance for

identifying a relation R as described above.)



2001 Maryland High-school Programming Contest 12

The input describes two graphs, one after the other. For each graph, the input �rst lists the edges, one per

line, followed by a line containing only \." (the period character), followed by a listing of node labels, one per

line, followed by another line containing only a period. An edge is described by listing its label, source node

identi�er, and target node identi�er (separated by white space). A node label is described by listing the label

followed by the node identi�er (separated by white space). Node labels are optional; therefore, some or all of

the nodes may have no labels speci�ed. Blank lines in the input should be ignored. For example, the two graphs

depicted above would be input as follows:

elevator 0 1

elevator 0 2

walkway 1 1

.

red_zone 0

red_zone 1

.

elevator 0 1

elevator 0 2

elevator 0 3

walkway 1 2

walkway 2 2

walkway 2 1

.

red_zone 0

red_zone 1

red_zone 2

.

Output Format

If it is possible to �nd a relation R as described above (and thus fool the agents), your program should output

the string \No glitch"; otherwise, it should output the string \Glitch" to warn Cipher that the agents may

detect the glitch. For the two graphs in our example, the relation R given by f(0;0); (1; 1); (1;2); (2;3)g satis�es
the requirements (items 1{3 above) and therefore the output indicates no glitch:

No glitch

Note that the task of identifying the required relation R in this example was simpli�ed a by the presence of

the node labels and the small number of nodes. However, since node labels are optional your program cannot

rely solely on labels for relating nodes. Further, when the number of nodes in the input graphs is large, a strategy

based on trying out all possible relations between nodes is likely to run out of time before it �nds an answer.



2001 Maryland High-school Programming Contest 13

7 Find Neo

Neo is inside the Matrix and he needs to urgently get back to the ship. Tank must �nd Neo inside the Matrix

using messages that Neo is sending. However, Neo can't just say where he is | otherwise, the agents will get to

him �rst! Instead, Neo uses an ingenious scheme that Morpheus has devised to help Tank �nd him.

Instead of sending one message, Neo sends a set of messages over the Matrix's communication network. Each

router has an unique address and Tank has to �gure out which router Neo is closest to.

If we consider the comm. network to be a graph, then the routers in the network are vertices and the links

between the routers are edges, and Tank's job is to �gure out the id (address) of the Neo's vertex. Each edge in

the graph has a weight. As messages are transmitted over these edges, the weight of the link is multiplied to a

product carried with the message. Neo always sets the initial value of the product to 1, and as messages traverse

through the network, the number carried in the messages is the product of the edge weights of all the edges a

message has been forwarded on.

The messages Neo sends are routed randomly throughout the network, and travel arbitrary distances. How-

ever, each message can only travel over a single link once (and can only visit a given vertex once). The network

topology is already known to Tank. For each message that Neo sends, Tank receives the id of the vertex that

the message ends at (i.e. the node from which the message was not forwarded any more) and the product of the

weights of edges the message took to get there. Given su�cient number of messages, using just this information,

Tank can track Neo and get him back safely.

Wait a minute. . .

You are probably already worried that a really large number of messages must be needed in order for this

technique to work. Further, it is not clear how any number of messages would be su�cient for arbitrary topologies.

Morpheus was stumped with these problems as well, when Trinity pointed out two very important properties of

the Matrix communication graph:

� The communication graph is not an arbitrary graph, but has a lot of structure. Speci�cally, it is a set of

same sized cliques arranged as a tree. (Recall that a clique is a graph in which every vertex has an edge

to every other vertex, and a tree is a connected graph without any cycles).

� Lastly (and extremely important), the edges inside the clique all have weights chosen from the set

f2; 3; 5;7g, and the edges between the cliques are chosen from the set f11;13;17;19;23;29g.

An example graph of this type is shown in Figure 1. In this case, the cliques all have four vertices (and

correspondingly six edges). There are �ve of these cliques and so the total number of edges in the graph is 34

(= 6x5 + 4).

Consider an example in which Neo is on vertex 16 and sends the a message that travels �ve hops | vertices

14, 5, 6, 4 and ends up at node 7. In this case, the information Tank gets is (node 7, product 12350).

Similarly, consider another Neo sends (again starting from vertex 16) that goes through nodes 14, 12, 13,

and ends up at node 15. In this case, Tank gets the pair (node 15, product 532).

In both these cases, the only possible node that could have sent that message with those products happen

to be node 16. However, consider a message that starts at node 16, and traverses nodes 14, 5, 7, 4, 6, 9, 10, 8,

and �nally ends up at node 11. In this case, the information Tank gets is (node 11, product 15042300). Tracing

back, it turns out this message could have been originated from any of the nodes 16, 17, 18, or 19! So in general,

a single message points back to a set of possible originating nodes, and in order to �gure out exactly where Neo

is, Tank has to keep intersecting the possible originating node sets till only one remains.

Clearly, writing an intersection algorithm is no problem to an experienced programmer like Tank, but he

needs your help in �guring out the originating set.



2001 Maryland High-school Programming Contest 14

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

3

75 7
3

7

5
2

3

3

5

7

5
7

7

52

5

2
2

7

27

3

5

5

5

7

7

7

11

29

13

19

Figure 1: Example Graph

A further detail Morpheus noticed a while back that for long paths, the product grows large quickly and

can easily over
ow the 32-bit registers in the ship's computers. Therefore, when the routers compute the product,

they send back four integers. These integers contain unique prime factors of the real product. Speci�cally, the

�rst integer is used if (and only if) an edge with weight 29, 5, or 3 is crossed. The second integer is used only

for edges with weights 23, 7, and 2. The third integer is used for the weights 17 and 13, while the last integer is

used for the weights 11 and 19.

Thus, in our �rst three examples, the input product integers were 25 2 13 19 (25 � 2 � 13� 19 = 12350), 1

28 1 19 (28� 19 = 532), and 2175 28 13 19 (2175� 28� 13� 19 = 15042300).

Program description

The input to your program is a graph description �le. The output should be the set of vertices reachable from

vertex i using exactly and only the product integers (in any order).

The graph description �le has the following format:

#clique size #num cliques

4 5

#Graph

20 34

#Edge Set

0 3 7

0 2 5

0 1 3

...

5 14 13

14 16 19

#Paths

15 1 28 1 19

7 25 2 13 19

11 2175 28 13 19

0 75 49 13 209

2 9 49 13 209



2001 Maryland High-school Programming Contest 15

The �rst line is a comment. The second line says what the clique size is and how many cliques are there in

the graph. The third line is a comment. The fourth line lists the number of vertices and the number of edges.

The �fth line is again a comment. The subsequent lines are either blank or is an edge description. An edge is

de�ned by two vertices (speci�ed by the �rst two integers) and a weight. The entire graph description �le for

the graph in Figure 1 is given at the end of this description.

At the end of the list of edges is another comment, following which are a list each containing �ve integers.

These integers are the terminating vertex id and the four product integers. The output of your program should

be the set of vertices reachable from each terminating vertex using the product integers.

Example Output

Terminating vertex 15, product set [1, 28, 1, 19]

Found a path from 15 -> 16

Terminating vertex 7, product set [25, 2, 13, 19]

Found a path from 7 -> 16

Terminating vertex 11, product set [2175, 28, 13, 19]

Found a path from 11 -> 16

Found a path from 11 -> 17

Found a path from 11 -> 18

Found a path from 11 -> 19

Terminating vertex 0, product set [75, 49, 13, 209]

Found a path from 0 -> 16

Found a path from 0 -> 17

Found a path from 0 -> 18

Found a path from 0 -> 19

Terminating vertex 2, product set [9, 49, 13, 209]

Found a path from 2 -> 16

Here are another set of example runs assuming Neo is sending messages from node 7.

Terminating vertex 15, product set [3, 28, 13, 1]

Found a path from 15 -> 4

Found a path from 15 -> 6

Found a path from 15 -> 7

Terminating vertex 3, product set [75, 7, 1, 11]

Found a path from 3 -> 6

Found a path from 3 -> 7

Terminating vertex 2, product set [45, 98, 1, 11]

Found a path from 2 -> 7

We will test your code on graphs somewhat larger than this toy example. Our test graphs will have cliques

of size up to 10 and graphs with no more than 10,000 vertices. We have provided you a test graph with clique

size 6 and 128 cliques.

Complete Graph Description File



2001 Maryland High-school Programming Contest 16

#clique size #num cliques

4 5

#Graph

20 34

#Edge Set

0 3 7

0 2 5

0 1 3

1 3 7

1 2 3

2 3 7

4 7 5

4 6 2

4 5 3

5 7 3

5 6 5

6 7 7

8 11 5

8 10 7

8 9 7

9 11 5

9 10 2

10 11 5

12 15 2

12 14 2

12 13 7

13 15 2

13 14 7

14 15 3

16 19 5

16 18 5

16 17 5

17 19 7

17 18 7

18 19 7

1 4 11

6 9 29

5 14 13

14 16 19

#Paths

15 1 28 1 19

7 25 2 13 19

11 2175 28 13 19

0 75 49 13 209

2 9 49 13 209



2001 Maryland High-school Programming Contest 17

8 Sentinel Detection

After rescuing Neo, Morpheus is piloting the hovercraft Nebuchadnezzar back to Zion, the last human city.

To recapture them, the AI entities controlling the Matrix have sent out several robot sentinels, giant octopus-

shaped robots which can chase down and tear apart the hovercraft. Nebuchadnezzar's sensors have located

several sentinels sentinels around the ship. Morpheus needs to calculate the range of their detection systems in

order to de�ne safe zones for travel.

You are to help Morpheus by writing the code to accurately detect the proximity of the sentinels and

appropriately sound the warning alarms. The latest generation sentinels that the Matrix has designed can be

approximated by regular hexagons (each side of the hexagon is equal). Your ship can be approximated by a

circle. Write the code to detect the closest sentinel to the ship. You can assume that all the hexagons are

oriented alike with one pair of edges parallel to the x-axis. The distance has to be reported from the ship's outer

hull to the outer boundary of the sentinel (not from ship's center to the sentinel's center). If the distance to the

closest sentinel is less than zero (i.e. the sentinel has already breached the ship's hull), the distance should be

reported as zero (not a negative number).

(-5, 3)

(-9, -6)

(-4, -3)

(0, 0)

(7, 5)

(6,-5)

Figure 2: Example Scenario

Input Format

The �rst line contains the number of lines you need to further read. This is an integer. All the other values

should be read as doubles. The second line contains the center of the ship's position and radius:

shipxshipyshipradius
The third and subsequent lines contain the centers and radii of the sentinels:

sentinelixsentineliysentineliradius

Output Format

List the distance of the closest sentinel to 2 decimal places :

The distance of the closest sentinel is 21.91



2001 Maryland High-school Programming Contest 18

Example

Input:

6

-4 -3 2

-9 -6 1

-5 3 0.5

0 0 1.5

6 -5 1

7 5 2

Output:

The distance of the closest sentinel is 1.67


