Pippin’s Garden Problem

There are many solutions depending how efficient you want to be. Generate all possible locations \((x, y)\) for the lower left corner, and generate increasing sizes \(s\) until something goes wrong:
- The square contains a point
- The square goes outside the outer rectangle
Report the largest square found.
Pippin’s Garden Problem

Pseudo code:

input width, height and points;
maxSize = 0; // saves maximum square size so far
for x = 0 to width-1 {
 for y = 0 to height-1 { // (x,y) = lower left corner of square
 okay = true;
 s = 0; // holds size of the square
 while (okay) { // while square is still valid
 s = s+1; // increment square size
 if ((x+s > width) or (y+s > height)) okay = false;
 for i = 0 to numberOfPoints-1
 if (point[i] is contained within (x,y)..(x+s,y+s))
 okay = false;
 }
 if (s > maxSize) { maxSize = s; save (x,y,s); }
 }
}
output saved square: (x, x+s, y, y+s)
Pippin’s Garden Problem

Enhancements:

Early loop termination: Exit the while loop as soon as okay = false;

Limit x and y values: Observe that the choices for x and y can be restricted to the (distinct) x- and y-coordinates of the input points (and 0).

Limit s values: Rather than testing the size s by a linear search, use a binary search instead.

Implementing all these enhancements leads to an $O(n^2 \log n)$ time solution, where n is the number of points. There is an $O(n \log n)$ solution based on Voronoi diagrams. But this is quite hard.
The Game of Rings

Rules: Three piles of rings. Players take turns removing some numbers of stones from one or more piles. Player who takes the last stone(s) wins.

Game State: The state of the game is determined by:
- The numbers of stones in each pile: \((i, j, k)\)
There are at most \(100^3 = 1,000,000\) different states.

Winning Strategy: Since no draws or randomness involved, the result is fully determined from the state. Our encoding:
- \(S[i, j, k] = W\) if current player can force a win
- \(S[i, j, k] = L\) otherwise

Solution: Construct the entire \(S\) table. Given the initial numbers of stones \((a,b,c)\), if \(S[a,b,c] = W\) then Bilbo wins else Frodo wins.
The Game of Rings

Examples:
S[0,0,0] = L (current player loses when stones are gone)
S[1,0,0] = W (by removing last stone from pile 1 we win)
S[0,1,0] = W (by removing last stone from pile 2 we win)
S[0,2,0] = W (by removing last 2 stones from pile 2 we win)
S[1,2,0] = L (every move leads to W state for opponent)

State Transition:
• If any move leads to an “L”, then this state is “W”
• If all moves lead to “W”, then this state is “L”
The Game of Rings

Pseudo code:

input number of stones per pile \(\rightarrow (a, b, c) \)

for \(i = 0 \) to \(a \)
 for \(j = 0 \) to \(b \)
 for \(k = 0 \) to \(c \)
 if \((i == j == k == 0) \) \(S[i, j, k] = L \)
 else if \((S[i-1, j, k] == L) \) \(S[i, j, k] = W \)
 else if \((S[i, j-1, k] == L) \) \(S[i, j, k] = W \)
 else if \((S[i, j-2, k] == L) \) \(S[i, j, k] = W \)
 else if \((S[i, j, k-1] == L) \) \(S[i, j, k] = W \)
 else if \((S[i, j, k-2] == L) \) \(S[i, j, k] = W \)
 else if \((S[i, j, k-3] == L) \) \(S[i, j, k] = W \)
 else if \((S[max(0,i-1), max(0, j-1), max(0,k-1)] == L) \)
 \(S[i, j, k] = W \)
 else \(S[i, j, k] = L \)

if \((S[a,b,c] == W) \) output “Bilbo wins”
else output “Frodo wins”

Design a “smart” subscripting operator that returns “L” if subscripts are negative.