
Pippin’s Garden Problem
There are many solutions depending how efficient you want to be.
Generate all possible locations (x,y) for the lower left corner, and 

generate increasing sizes s until something goes wrong:
– The square contains a point
– The square goes outside the outer rectangle
Report the largest square found.

x

y
s

s



Pippin’s Garden Problem
Pseudo code:

input width, height and points;
maxSize = 0;                             // saves maximum square size so far
for x = 0 to width-1 {

for y = 0 to height-1 {      // (x,y) = lower left corner of square
okay = true;  
s = 0;                          // holds size of the square
while (okay) {              // while square is still valid

s = s+1; // increment square size
if ((x+s > width) or (y+s > height)) okay = false;
for i = 0 to numberOfPoints-1

if (point[i] is contained within (x,y)..(x+s,y+s))
okay = false;

}
if (s > maxSize) { maxSize = s;  save (x,y,s); }

}
}
output saved square: (x, x+s, y, y+s)



Pippin’s Garden Problem
Enhancements:
Early loop termination: Exit the while 

loop as soon as okay = false;
Limit x and y values: Observe that 

the choices for x and y can be 
restricted to the (distinct) x- and 
y-coordinates of the input points 
(and 0).

Limit s values: Rather than testing the 
size s by a linear search, use a 
binary search instead.

Implementing all these enhancements 
leads to an O(n2 log n) time solution, 
where n is the number of points.  
There is an O(n log n) solution based 
on Voronoi diagrams.  But this is 
quite hard.



The Game of Rings
Rules: Three piles of rings.  Players take turns removing some 

numbers of stones from one or more piles.  Player who takes 
the last stone(s) wins.

Game State: The state of the game is determined by:
– The numbers of stones in each pile: (i, j, k)
There are at most 1003 = 1,000,000 different states.

Winning Strategy: Since no draws or randomness involved, the 
result is fully determined from the state.  Our encoding:

S[i, j, k] = W if current player can force a win
S[i, j, k] = L otherwise

Solution: Construct the entire S table.  Given the initial numbers 
of stones (a,b,c), if S[a,b,c] = W then Bilbo wins else Frodo 
wins.



The Game of Rings
Examples:

S[0,0,0] = L (current player loses when stones are gone)
S[1,0,0] = W (by removing last stone from pile 1 we win)
S[0,1,0] = W (by removing last stone from pile 2 we win)
S[0,2,0] = W (by removing last 2 stones from pile 2 we win)
S[1,2,0] = L (every move leads to W state for opponent)

State Transition:
• If any move leads to an “L”, then this state is “W”
• If all moves lead to “W”, then this state is “L”

0,0,0:L

1,0,0:W

0,1,0:W1 from [2]

1 from [1]

0,2,0:W

2 from [2] 1,2,0:L

1 from each

1,1,0:W
1 from each

1 from [1]

2 from [2]

1 from [2]



The Game of Rings
Pseudo code:

input number of stones per pile (a, b, c)
for i = 0 to a

for j = 0 to b
for k = 0 to c

if (i == j == k == 0) S[i, j, k] = L
else if (S[i-1, j, k] == L) S[i, j, k] = W
else if (S[i, j-1, k] == L) S[i, j, k] = W
else if (S[i, j-2, k] == L) S[i, j, k] = W
else if (S[i, j, k-1] == L) S[i, j, k] = W
else if (S[i, j, k-2] == L) S[i, j, k] = W
else if (S[i, j, k-3] == L) S[i, j, k] = W
else if (S[max(0,i-1), max(0, j-1), max(0,k-1)] == L)

S[i, j, k] = W
else S[i, j, k] = L

if (S[a,b,c] == W) output “Bilbo wins”
else output “Frodo wins”

Design a “smart” subscripting 
operator that returns “L” if 
subscripts are negative.


