2005 Maryland High-school Programming Contest

Contents

1 Incredibles Poker

2 Elastigirl’s Crime Records

3 Syndrome’s Run Length Encoder

4 Mr. Incredible’s Run Length Decoder
5 Violet’s Polynomial Printer

6 Dash’s Palindromic Milestones

7 Two Colors Diverged In A Wood...

8 Edna Goes to Vegas

11

2005 Maryland High-school Programming Contest 2

1 Incredibles Poker

The Incredible family is playing poker at home. Violet introduces the family to a game call Razz, which
she learned at school while watching her friends (while invisible). Each player receives 7 cards. Instead
of trying to get the highest 5-card poker hand, the winner is the player with the lowest 5-card hand
(using any 5 cards out of the 7 cards the player holds). Straights (5 cards in sequence) and flushes (5
cards of the same suit) do not affect the low hand, only pairs. Aces are treated as low cards.

Since Violet is a very timid poker player, she decides to bet only when she has the best possible
Razz hand, which is Ace, 2, 3, 4, and 5 (in any order). Your job is to help Violet determine whether
she has this 5-card hand out of her 7 cards.

Input/Output Format:

Cards are treated as numbers, with Aces, Kings, Queens, and Jacks represented as 1, 13, 12, 11,
respectively. 7-card hands are read in as 7 numbers on each line. For every hand, your program should
output on each line “Bet” if the lowest possible 5-card hand is possible, and “Fold” if it is not.

Example:

Sample Input:
1234567 e i
1234678 . -
12334414
1115412 2 3
51326729

Sample Output:
Bet

Fold

Fold

Bet

Fold

2005 Maryland High-school Programming Contest 3

2 Elastigirl’s Crime Records

Elastigir]l keeps a database of criminal records at home. Recently she decided to write a program for a
crime-stopping prioritizing system. It will take as input a set of individual crimes, one per line, each of
which consists of a crime ID (a String), state name (a capitalized String), and a dollar value (a floating
point value). However, each member of the Parr family has a different idea on the order in which the
information should be presented once entered. Mr. Incredible wants to see the list of crime IDs ordered
by state name, Elastigirl wants to see the crime IDs ordered by dollar value, and Jack Jack wants to
see them listed in the order that they were input. Your task is to read in all of the crime information,
and then output three lists of crime IDs; one in each of the specified orders—print Jack Jack’s ordering
first, then Mr. Incredible’s, and finally Elastigirl’s.

Example:

Sample Input:

32898 NY 35000.45
89328 MD 43500.00
12392 CA 10750.03

EL A&ETIEIMRL,

Sample Output:

Jack Jack: 32898 89328 12392
Mr. Incredible: 12392 89328 32898
Elastigirl: 12392 32898 89328

2005 Maryland High-school Programming Contest 4

3 Syndrome’s Run Length Encoder

Run-length encoding is a compression scheme used for images having relatively few colors, such as
animation cells and icons. More sophisticated compression algorithms can make even smaller files and
work well even when the input is a photograph having many colors.

The Arch-villain Syndrome decides to build a run length encoder, since it will serve two purposes.
First, it will allow him to store more films of his former idol, Mr. Incredible. Second, the run length
encoder can help protect his files from being viewed by any heroes who may escape from his robots.

Your task is to help Syndrome build a run length encoder for the following byte-oriented run-length
encoded format. Runs of the same, repeated byte in the original file are replaced with a count of the
number of repeated bytes, stored as a byte, followed by the repeated byte itself. For example, the
string “HELLQO”, would be encoded as follows:

original H{E|L|L|O
compressed (encoded) | 1 |H| 1 |E| 2 | L ‘ 1 ‘ O‘

Each letter is actually the ascii value of the character. (For example ‘h’ is 0x68 in base 16 or 104
in base 10). Note that every other byte is a count of how often to repeat the byte that follows.

Note that there is no reason to use a count of zero (0), so we can assume a count of 0 actually
represents 256. Also note that if you receive more than 256 letters in a row, you will need to use
multiple counts since bytes only store values up to 255. In such cases, all but the final count values
should 0. See the example below, which involves encoding a string of 1000 H’s.

original HIH H HHH| H|..
compressed (encoded) | 0 |H| 0O |H| 0 |H |232 | H

Example:

Sample Input:
HELLO

Sample Output:
1H1E2L1O

=Y NOMOME

Sample Input:
H ... (1000 times)

Sample Output:
OHOHOH232H

- Fixds

)
e s

2005 Maryland High-school Programming Contest 5

4 Mr. Incredible’s Run Length Decoder

Mr. Incredible has escaped from Syndrome’s robots, and is snooping around the island fortress. He
finds several of Syndrome’s encoded files, and through much study has determined the files are probably
the results of run length encoding.

Your task is to help Mr. Incredible build a run length decoder, using the same format Syndrome
used for his run length encoder.

If your decoder works, it should successfully decode any file encoded by the run length encoder and
produce the original file.

Example:

Sample Input:
1IH1E2L1O

Sample Output:
HELLO

Sample Input:
OHOHOH232H

Sample Output:
H ... (1000 times)

2005 Maryland High-school Programming Contest 6

5 Violet’s Polynomial Printer

The speedy youth Dash is not so fast when it comes to his algebra homework. His sister Violet helps him
by writing a program to print polynomials. This program is given a sequence of integers (ay, ..., ag),
which represents polynomial having these coefficients:

anx™ + ap_12" 1+ -+ ag.
For example, the sequence (3,4,2,5) represents the polynomial

323 + 42% + 2z + 5.

The program prints the polynomial in a nice looking format. Allowing the carat character (‘*’, which
is located above the ‘6’ key on most keyboards) to represent exponentiation, the above polynomial can
be expressed as follows:

3x"3 + 4x"2 + 2x + b

This sounds easy, but there are dangers! For example, for the sequence (4,—1,0) do you really
want to print the following?

4x"2 + -1x + 0
No. Instead, you want to print:
4x"2 - x

There are other dangers too but we won’t tell you what they are. Note that format is important, and
should match the above form exactly (including where spaces appear). More examples are given below.

Samples

The input will consist of a sequence of lines, each line contains the coefficients for one polynomial. The
coefficients are integers and are separated by spaces. Note that leading 0’s are possible (as seen in the
last example below).

Input: Polynomial:

3425 3x"3 + 4x72 + 2x + 6
4-10 4x72 - x

-11-1 -x"2 +x -1

-4 -2 003 -5 -4x"3 - 2x72 + 3x - 5
-8 -8

0 0

0-30 -3x

2005 Maryland High-school Programming Contest 7

Input/Output Format

We have provided a main program for you that reads in the coefficients and stores them in an array,
and prints the final output. All you need to do is to provide the body for a function formatPoly that is
given these coefficients and computes and returns the formatted polynomial as a string. The function
takes the following argument:

int[] a: an array containing the coefficients, where a[i] contains the coefficient for the z° term. (Note:
This is the reverse of the input order!)

If you want to do your own input and output, here is the format. Each line of the input contains a
sequence of integer coefficients, separated by spaces. The first coefficient belongs to the highest order
coefficient and the last belongs to the lowest (Oth order) coefficient. For each input line the output
consists of the original input line and the final polynomial.

Example:

An example is shown below. Note that for the first sample input the array a will have the values
[5,2,4,3].

Sample Input:
3425
4 -10

Sample Output:

Input: 34 25

Polynomial: 3x"3 + 4x"2 + 2x + 5
Input: 4 -1 0

Polynomial: 4x72 - x

VIOLET

. M
L

| L IHE IncReoiaLES

HEW FLEFIRE

2005 Maryland High-school Programming Contest 8

6 Dash’s Palindromic Milestones

One of Mr. Incredible’s greatest opponents, Cizelsyd, was dyslexic. When reading a word or a number
(especially an isolated one), he would get confused and would sometimes read from right to left,
instead of left to right. When he was building the Grand National Highways to unite his vast empire,
he decided to number the milestones in such a manner that he would never get confused while traveling.
His ingenious solution was to leave all milestones blank, except those carrying numbers that read the
same both forwards and backwards. So, the first 10 milestones would be 0,1,2,...,9 (where 0 is the
starting point) followed by 11,22,33,...,99, followed by 101,111,121, etc. Milestones for distances that
are not of this form are left blank.

Dash is running along one such highway starting from the capital, and to keep himself alert, decides
to play the following game. When Dash is at distance k miles from the capital, he picks a number
n and tries to guess what will be the number on the n-th non-blank milestone from this point (not
including the current milestone, if there is any). Design a program to do this.

Input/Output Format:

The input will contain several test cases. The first line contains a positive integer N giving the number
of test cases. For every test case, there are 2 lines. The first line contains the positive integer k (the
miles covered so far) and the second line contains n (which milestones value is to be calculated).

Your output should be one line per test case, giving the reading on the n-th non-blank milestone
after the k-th mile.

Example:

Sample Input 1:
2

13

2

99

3

Sample Output 1:
33
121

Sample Input 2:
1

100090 THE INcrEDIBLES
100000 MOW PLATIE

Sample Output 2:
910999019

2005 Maryland High-school Programming Contest 9

7 Two Colors Diverged In A Wood...

Our heroes, Mr. Incredible and the gang, have just arrived at the island of Coloropia, so called because
of its distinctive and bright colored roads. All the major roads on the island are colored with various
colors, some red, some blue and some using other colors. Our heroes have to travel along these roads
to the capital of Coloropia to confront their arch-nemesis, the King of Coloropia, which they naturally
wish to do as soon as possible. To make it hard for the King to follow their movements, Mr. Incredible
wants to use different colored roads when coming into any city, and when leaving that city. So if they
enter a city on a road colored red, they would like to leave the city on a road with any other color than
red. Unfortunately, Mr. Incredible’s job has been made incredibly harder because of the superstitious
nature of his companions. For example, Elastigirl will not travel on a red colored road if she has
already traveled on a green colored road and wvice versa. She believes this brings her bad luck. The
other companions have similar superstitions, and this has made Mr. Incredible incredibly frustrated.
He is considering giving up this life of crime-fighting and taking up his old job as an insurance claims
specialist again. For sake of humanity, you must help Mr. Incredible find the shortest such path to the
Capital (visiting the fewest number of cities along the way) that satisfies all the constraints outlined
above.

Input/Output Format:

The first line of the input contains the number of cities N, and the number of roads between the cities.
Cities are numbered from 0 to N — 1. The next set of lines describes the roads using three numbers
each. The first two numbers indicate the two cities that the road connects, and the third number is the
color of the road. After that, the next line contains one number that denotes the total number of color
constraints, and the next set of lines describe the constraints, one by one. Each of the constraints is
given as two numbers, denoting the colors that cannot both be used in a path. Roads are bidirectional,
so a road between cities 1 and 2 can be used to go from 1 to 2 or from 2 to 1. There will be at most
10 different colors (from 0 to 9).

Example:

For instance, assume you are given the following;:
44 - 4 cities, and 4 roads between them.
010 - thereis a road between cities 0 and 1, and it is colored with color 0.
121 - there is a road between cities 1 and 2, and it is colored with color 1.
2 32 - there is a road between cities 2 and 3, and it is colored with color 2.
133 - there is a road between cities 1 and 3, and it is colored with color 3.
1 - 1 constraint
03 - Colors 0 and 3 can’t both be used in a path.

You are required to find the shortest alternating-colors path satisfying the constraints, between cities
0 and N — 1 (where N is the total number of cities); in the above case, you need to find the shortest
such path between cities 0 and 3. If there is no path between the two cities, the output should simply
contain a line:

No Valid Path Found
If there is a path between the two cities satisfying the constraints (as in the example above), the output
should look something like this:

Start at City 0

2005 Maryland High-school Programming Contest 10

Go to City 1 On Road Colored 0
Go to City 2 On Road Colored 1
Go to City 3 On Road Colored 2
End at City 3

There exists a shorter path between 0 and 3, but it does not satisfy the constraints as it uses roads
colored 0 and 3 both, which is not allowed.

Note that the shortest path satisfying the constraints might visit a given city multiple times (See
Sample 1 below).

Sample Input 1:

55

020

240

211

130

321

0

Sample Output 1:

Start at City 0

Go to City 2 on Road Colored 0
Go to City 1 on Road Colored 1 FROEonNE
Go to City 3 on Road Colored 0
Go to City 2 on Road Colored 1
Go to City 4 on Road Colored 0
End at City 4

Sample Input 2:

43

010

121

230

1

01

Sample Output 2:
No Valid Path Found

Sample Input 3:

43

010

120

230

0

Sample Output 3:
No Valid Path Found

2005 Maryland High-school Programming Contest 11

8 Edna Goes to Vegas

Super-hero fashion guru Edna Mode decides to take a vacation in Las Vegas. There she plays a new
game of chance that involves oddly shaped dice. Each die has two or more sides, and the numbers on
the sides run from 1,2,... up to the number of sides. However, the dice are not balanced and different
numbers have different probabilities of occurring. (E.g., it may much more likely to throw a 2 than a
5.) Through a secret analysis process, Edna has figured out the probabilities for each dice individually
(“Sorry dahling, I'm not at liberty to discuss my secrets”), but she needs to compute the probability of
a certain total number when all the dice are thrown. Given an integer value m, Edna wants to compute
the probability of obtaining a total value of m when all the dice are rolled at once.

Formally, the input is:

e A positive integer k. (This is the number of dice.)

e For each 4,0 <7 < k—1, a tuple (vector) of values (p;1,...,Pin;), where n; is the number of sides
on the ith die. The value p; ; denotes the probability of throwing j on die 7. These probabilities
satisfy the following for each i:

— For all j, 0 <p;; <1, and
— pigt+pig+--+pig =1

e A positive m, the desired value to be rolled.

The output is the probability that, if all the dice are rolled, the total number of dots showing will
be m. (If m is less than the minimum possible value or greater than the maximum possible value that
can be rolled, the probability of course is 0.)

Example:

Here is an example. Suppose that there are three dice, having 3, 4, and 2 sides, respectively, and with
the following probabilities:

Die 0: 0.5, 0.2, 0.3.
Die 1: 0.2, 0.1, 0.3, 0.4.
Die 2: 0.1, 0.9.

Also suppose that m = 5. There are 5 ways to roll m = 5 with the above dice:
(1,2,2), (1,3,1), (2,1,2), (2,2,1), (3,1,1).
The respective probabilities of these events are:

0.5-0.1-09 = 0.045

0.5-0.3:0.1 = 0.015
02-0.2:09 = 0.036
0.2-0.1:-0.1 = 0.002

0.3-0.2-0.1 = 0.006

2005 Maryland High-school Programming Contest 12

Thus, the total probability of rolling 5 is the sum of these individual probabilities, which is 0.104, which
is the program’s output.

On the other hand, suppose that m = 2. It is impossible to roll 2 with the above dice, so the result
would be 0.

The final answer must be accurate to decimal 6 digits. Hence, it is strongly recommended that you
use double (rather than float) in your computations, to avoid accumulations of round-off errors.

Note that the number of dice may be large, so a brute force solution, based on enumerating all
the possibilities will take too long. Also, with 6 digits of precision required, you will not have time to
estimate the probability by simply randomly tossing the dice over and over.

Input/Output Format:

We have provided a main program for you that inputs all these quantities stores them in arrays,
and formats and prints the final output. All you need to do is to provide the body for a function
findProbability that computes and returns the final probability (as a double). The arguments to
this function are:

int nDice: the number of dice. You may assume there are at most 50 dice.

int[] nSides: nSides[i] is the number of sides on the ith die, for 0 < ¢ < nDice — 1. You may
assume that 2 < nSides[i] < 20.

double[][] prob: The value of prob[i] [j] is the probability of rolling the value of 5 on the ith
die, where j runs from 1 up to nSides[i]. (You should not attempt to access prob[i] [j] for
j >nSides[il).

int rollValue: The target value to be rolled.

If you want to do your own input and output, here is the format. The first line of the input file is
the number of dice. The next lines contain the probabilities, one line for each die. The probabilities
are given as floating point values, separated by spaces. The number of entries on a line is the number
of sides on the die, with the first being the probability of rolling 1, the second the probability of 2,
and so on. The last number is the value m to be rolled. The output consists of the final probability,
accurate (and printed) to 6 decimal positions. The input quantities and the output should be printed
as shown below.

Sample Input:

.2 0.3
.10.3

0.4

o oo w
oo
o oo
© = N

Sample Output:

Dice[0] probabilities: (1): 0.5 (2): 0.2 (3): 0.3

Dice[1] probabilities: (1): 0.2 (2): 0.1 (3): 0.3 (4): 0.4
Dice[2] probabilities: (1): 0.1 (2): 0.9

Roll value = 5

Final probability = 0.104000

2005 Maryland High-school Programming Contest 13

0 Dash’s Poker Game

The Incredible family is playing poker at home. Dash likes to play a game called 7-card Stud. Each
player receives 7 cards, one at a time, and tries to get the best 5-card poker hand.

Since Dash is a very fast poker player, he decides to bet whenever he has either an Ace or a pair
(two cards with the same value). He will fold his hand otherwise. Your job is to help Dash determine
whether he has an Ace or a pair out of his 7 cards.

Input/Output Format:

Cards are treated as numbers, with Aces, Kings, Queens, and Jacks represented as 1, 13, 12, 11,
respectively. 7-card hands are read in with 7 cards on each line. For every hand, your program should
output on each line “Bet” if there is an Ace or a pair present, and “Fold” if not.

Example:

Sample Input:
1234567
2346789
92347411
11 13548 2 3
51326729

Sample Output:
Bet

Fold

Bet

Fold

Bet —

el

