Problem: You are given a currency system with n different values:

$$C = [c_0, c_1, \ldots, c_{n-1}]$$

and a desired total value total. How many ways are there to make total using these coins?

Example: $C = [2, 10, 11]$, $\text{total} = 22$, then there are 4 combinations:

1. $(2+2+2+\ldots+2)$ (repeated 11 times)
2. $10+(2+2+\ldots+2)$ (repeated 6 times)
3. $10+10+2$
4. $11+11$
Solution Structure

Table: Let n be the number of coins. Create a 2-dimensional array $nCombs[n+1][total+1]$, where $nCombs[i][t]$ is the number of ways to obtain t using first i coins.

Final result: $nCombs[n][total]$.

Computing $nCombs[i][t]: for $i = 0, 1, ..., n$ and $t = 0, 1, ..., total$.

- **For $i = 0$:** There are no coins. The only sum is 0 and one way to do it. Thus $nCombs[0][0] = 1$ and $nCombs[0][t] = 0$ for $t > 0$.

- **For $i > 0$:** Let j be the number of times we use coin c. Clearly $0 \leq j \leq t/c$. This leaves $t - j\cdot c$ remaining to be made up by the previous $i-1$ coins. We have already computed this as $nCombs[i-1][t - j\cdot c]$. Thus:

\[
 nCombs[i][t] = nCombs[i-1][t] + nCombs[i-1][t - c] + nCombs[i-1][t - 2\cdot c] + \ldots + nCombs[i-1][t - m\cdot c], \text{ where } m = t/c.
\]

We just need to set up loops to compute this table.
Pseudo-code

```
nCombs ← new int[n+1][total+1]
nCombs[0][0] ← 1  // basis case (no coins)
for (t ← 1 up to total) nCombs[0][t] ← 0
for (i ← 1 up to n) {
    c ← coins[i-1]  // current coin value
    for (t ← 0 up to total) {
        sum ← 0
        for (j ← 0 up to t/c) {
            sum ← sum + nCombs[i-1][t-j⋅c]
        }
        nCombs[i][t] ← sum  // store final sum
    }
}
return nCombs[n][total]  // return final total
```