Problem: You have stolen a number of gold pieces of various values

\[S = \{s_0, s_1, \ldots, s_{n-1}\} \]

and a claim \(c \) on the amount you stole. You want to determine the **minimum sum** of a subset of values of \(S \) whose value is \textbf{at least} as large as \(c \).

Example:

\[S = \{7, 10, 13, 4, 10, 24\}, \]

\(c = 25 \),

\textbf{Answer}: 27 (= 7 + 10 + 10 or alternately 10 + 13 + 4).
Ideas that Don’t Work

Best-Fit: Add in the value that brings you closest to the claim.

Counter-example: $S = \{7, 10, 13, 4, 10, 24\}, c = 25$

$24 + 4 = 28$ *(too big!)*

First-Fit Increasing: Start with the smallest amount and start adding values until we reach a value as large as the claim.

Counter-example: $S = \{7, 10, 13, 4, 10, 24\}, c = 25$

$4 + 7 + 10 + 10 = 31$ *(too big!)*

Add and Prune: First-fit, but prune unneeded items.

Example: $S = \{7, 10, 13, 4, 10, 24\}, c = 25$

$4 + 7 + 10 + 10 = 31$; remove 4; $7 + 10 + 10 = 27$ *(maybe this works?)*

Counter-example: $S = \{7, 10, 13, 4, 10, 24\}, c = 23$

$4 + 7 + 10 + 10 = 31$; remove 7; $4 + 10 + 10 = 24$. But $10 + 10 + 13 = 23$, and this is better. *(No this doesn’t work)*

Bottom line: We need something that is provably correct.
Ideas that Do Work

Brute Force: Enumerate all subsets of coins, compute each sum, and return the smallest value exceeding the claim.

This should be too slow, if we had generated a large enough test case.

Foolishly, we didn't.
Our Solution Structure

Approach: We will construct **all the possible sums** that can be generated from the first i coins, where i = 0, 1, 2, ..., n. Then we will select the smallest sum that is at least as large as the claim.

Example: S = {7, 10, 13, 4, 10, 24}

- Sum[0] = {0}
 No coins yet.

- Sum[1] = {0, 7}
 We may either use 7 or not.

- Sum[2] = {0, 7, 10, 17}
 = {0, 7} ∪ ({0, 7} + 10)

- Sum[3] = {0, 7, 10, 17, 13, 20, 23, 30}
 = {0, 7, 10, 17} ∪ ({0, 7, 10, 17} + 13)

General Rule:

Sum[i] = Sum[i-1] ∪ (Sum[i-1] + s[i])

Implementation: We will represent Sum as a 2-dimensional array boolean array, where sum[i][j] = true if j is an element of Sum[i].

Final result: Return the smallest j ≥ claim, such that sum[n][j] = true.

Computing sum[i][j]:

- For i = 0: sum[0][j] ← true if and only if j = 0.
- For i ≥ 1: sum[i][j] ← sum[i-1][j] || sum[i-1][j - s[i]]
Pseudo-code

\[M \leftarrow \text{some large enough value (e.g. claim + largest stolen value)}. \]
\[\text{sum}[0][0] \leftarrow \text{true}; \quad \text{// initialize row 0} \]
\[\text{for } (j \leftarrow 1 \text{ to } M) \text{ sum}[0][j] \leftarrow \text{false}; \]

\[\text{for } (i \leftarrow 1 \text{ to } n) \{ \quad \text{// construct rest of table} \]
\[\quad \text{for } (j \leftarrow 0 \text{ to } M) \{ \]
\[\quad \quad \text{sum}[i][j] \leftarrow \text{sum}[i-1][j] \text{ || sum}[i-1][j - s[i]]; \]
\[\quad \quad \text{// Note: not quite correct - may generate negative subscript} \]
\[\quad \} \]
\[\} \]
\[\text{for } (j \leftarrow \text{claim to } M) \{ \quad \text{// determine return value} \]
\[\quad \text{if } (\text{sum}[n][j]) \text{ return } j; \quad \text{// return smallest after claim} \]
\[\} \]
\[\text{return -1; \quad \text{// no feasible solution} \]