Spider Pig's Doughnut-Eating Spree: Solution

Problem: Given a set of coordinates. Find the shortest path that
moves monotonically to the right and then monotonically to the
left.

Example: (0,4) (1,10) (2,7) (3,1) (4,5) (8,5) (9,7) (10,2) (12,6)
12

10 —Kﬂ
!

rJ L (8] oJ
W=
24AER73
..,..-
B
/
~d
=

Dynamic Programming Solution

Dynamic Programming:
- Let n be the number of doughnuts.

- We construct an array C[n,n], where C[i,j] holds the cost of a
partial solution.

- ([i,j]is sum of lengths of the shortest pair of paths that traverse
the doughnuts 0..max(i,j), where the outbound path ends at
doughnut i and the inbound path ends at doughnut j.

Basis Case (C[1,1]1=0.
Final Optimal Path Length: C[n,n].

Dynamic Programming Solution

Computing C[i, j]: (Assume that j <i. Other case symmetrical.)
J = it Edge (i-1,i) must be on one path or the
other. Take the shorter of the two:
Clii] = C[i—1,i]+distance(i—1,i)
"% |Cli,i— 1]+ distance(i —1,i)

j = i-1: Doughnut i is preceded by one of i-2,
i-3, ..., 0. Don't know which, so try them all:
\

Cli, j1=Mminog < ., (CLk, j]+ distance(k, i)).

J < i-1: Doughnut i must be preceded by i-1:

~ i-1 .
Cli, j1= Cli-1, j] + distance(i-1, i) j " ag

Recovering the Path

Observe: Each value C[i,j] arises by adding a single segment onto some
prior entry:
- Ifi> j: Prior entry is of the form C[k, j].
- Ifi<j: Prior entry is of the form C[i, k].
- Path Array: P[i,j] holds this value k of the prior entry.
Computing P:
Basis case: P[1,1]1= 0.
General cases:
j=i: Cli, i1 = C[i-1, i] + distance(i-1, i).
Pli,i]=i- L.
j=i-L Cli, j]1 = mingg <i.» (C[k, j]+ distance(k, i)).
P[i, j]= the value k giving the minimum
j<i-l: C[i, j1=Cli-1, j]+ distance(i-1, i).
Pli, j]=i-1.
Computing the Path:

- Start with P[n,n]. By tracing the values of P[i, j] back, we can determine the
last edge added to the path. Repeat, working our way back to start.

