
2010 Maryland High School Programming Contest 1

Contents

1 Stacked Floating Mountains 2

2 Chess Puzzle 3

3 Life Connections 4

4 Circle of Friends 5

5 Floating Mountain Stability 6

6 Aim It Right! 7

7 Navi Navigation 8

8 Locate Mining Center 10

2010 Maryland High School Programming Contest 2

1 Stacked Floating Mountains

The floating mountains of Pandora present a challenge for the human scientists, especially geologists
and physicists, who have been trying to understand how such structures could exist. While exploring
the mountains, the scientists stumbled across interesting stacked floating mountain structures, where
different mountains appeared stacked above one other, with the larger mountains being higher up in
the stack. The scientists were able to calculate the size of each mountain, and they made an interesting
observation: that the sizes of the mountains formed a (generalized) Fibbonacci sequence.

A sequence of numbers: x1, x2, ..., xn, is called a generalized Fibbonacci sequence if, for all i > 2,

xi = xi−1 + xi−2

The standard Fibbonacci sequence is simply a generalized Fibbonacci sequence with x1 = x2 = 1.
An example of generalized Fibbonacci sequence is: 2, 5, 7, 12, 19, ...
Your goal is to help the scientists verify this conjecture. Specifically, you are to write a program

that, given a sequence of numbers, decides whether the sequence is a generalized Fibbonacci sequence
or not.

Input/Output Format:

Input: The first line in the test data file contains the number of test cases, n. After that, each line
contains one test case. The test case begins with the number of elements in the sequence, k, and then
we have k numbers which form the sequence. Assume all numbers are ≥ 0, and that the numbers are
all < 230.
Output: For each test case, you are to output “YES” (if the sequence is a generalized Fibbonacci
sequence) or “NO” (if it is not).

Examples:

Input: Output:
3 YES
6 1 1 2 3 5 8 NO
7 1 2 2 4 6 10 16 YES
4 2 10 12 22

2010 Maryland High School Programming Contest 3

2 Chess Puzzle

Jake and Sully are playing around with a chessboard one night after working with their avatars all
day. They decide it would be interesting to place some rooks on the chessboard in a way that no rook
can threaten another rook. Since rooks move along rows and columns, this means two rooks may not
be on the same row or column. Your goal is to write a program to determine whether any rooks are
threatened.

Input/Output Format:

Input: Chessboards are 8x8 boards with positions between (1,1) and (8,8). The input begins with the
number of chess boards. Each chessboard is on a separate line and begins with the number of rooks,
followed by the column and row positions of each rook.
Output: For each chessboard, your program should output the words ”SAFE” or ”NOT SAFE” on a
single line.

Examples:

Input: Output:
2 SAFE
3 1 1 2 6 8 8 NOT SAFE
2 2 3 1 3

2010 Maryland High School Programming Contest 4

3 Life Connections

On Pandora all Navi are connected by friendships. After carefully mapping friendships between different
Navi, Grace wants to measure the strength of the connection between pairs of Navi. She decides the
way to calculate this is to treat Navi as nodes in a graph, and friendships between Navi as edges. Then
the connection strength between two Navi can be defined as the number different shortest paths each
could take to visit the other. Your goal is to help her calculate these values.

Given a list of connections between Navi and two Navi u and v, you must compute the number of
different shortest paths between u and v. The length of the path is the number of Navi on the path.
Two paths are different if they pass through at least one different Navi.

Input/Output Format:

Input: Connections between Navi are described beginning with the line “GRAPH BEGIN”. Additional
lines lists individual Navi (nodes), followed (on the same line) by their friends (edges). The line
“GRAPH END” ends the list of connection descriptions. The next lines describe pairs of Navi for
which answers need to be calculated, each on a single line. Following these lines, a new instance of the
problem can be given, starting from scratch.

You may assume all Navi are connected (i.e., any Navi can reach another Navi by some path). Not
all Navi will have their connections listed on a separate line: the friendships of some Navi may only be
implied by the friendships given on other lines.
Output: Your output should consist of pairs of Navi in the same order as in the input, followed by
the number of shortest paths between them, both on a single line.

For instance, in the following example the strength of the connection between Navi a and e is 2, since
there are 2 paths of length 3 (the shortest possible) from a to e (a → b → d → e and a → c → d → e).

Example:

Example Input: Example Output:
GRAPH BEGIN a b 1
a b c a c 1
b d a d 2
c d a e 2
d e b c 2
GRAPH END b e 1
a b
a c
a d
a e
b c
b e

a

c b

d

e

2010 Maryland High School Programming Contest 5

4 Circle of Friends

After measuring the strength of friendships between different Navi, Grace wants to find groups of Navi
who form close-knit friendships. A group of friends has strength k if each Navi in the group has at
least k friends within the group. Your goal is to help Grace find the strongest, largest circle of friends
for individual Navi.

Input/Output Format:

Input: Connections between Navi are described beginning with the line “GRAPH BEGIN”. Additional
lines lists individual Navi, followed (on the same line) by their friends. The line ”GRAPH END” ends
the list of connection descriptions. The next lines describe individual Navi to be analyzed, each on a
single line. Following these lines, a completely new instance of the problem can be given, starting from
scratch.

Some Navi may be only be listed as friends of other Navi (i.e., not all Navi will have their connections
listed on a separate line).
Output: Your output should consist of one line for each Navi analyzed, in the same order they were
listed in the input. Each line should contain the name of the Navi, the largest k for which the Navi
is a member of some group of friends of strength k, and all the friends in that group (in alphabetical
order), including themselves. Every Navi in the group must know the initial Navi either directly or
indirectly through some sequence of common friends (i.e., the friendship graph must be connected).

In the example below, Navi c is a member of a group of friends of strength 3: bcde. She is also a
member of several groups of friends of strength 2 (bcd, bce, cde, . . .) but because 3 > 2, the group of
strength 3 is the one that should be output.

Navi f is a member of several groups of strength 1 (ef , bef , def , . . .) but the largest one is abcdef ,
so that is the one that should be output.

Example:

Input: Output:
GRAPH BEGIN a 2 a b c d e
a b c b 3 b c d e
b c d e c 3 b c d e
c d e d 3 b c d e
e d f e 3 b c d e
GRAPH END f 1 a b c d e f
a
b
c
d
e
f

a

b
c

d
e

f

c 3 b c d e

2010 Maryland High School Programming Contest 6

5 Floating Mountain Stability

After receiving your program from Problem 1, the scientists used it to try to verify their conjecture
(that the sizes of stacked floating mountains formed a generalized Fibbonacci sequence). However,
although they were able to verify the conjecture for a large number of cases, they discovered that there
were stacked structures that did not satisfy the property. Further, they also discovered that floating
mountains may have negative weights (they conjecture that this has to do with some unique properties
of “Unobtainium”).

The scientists now believe that the sizes of the stacked mountains did follow generalized Fibbonacci
sequence property originally (when they were formed), but they believe that some of the mountains
in the structures may have been destroyed or may have drifted apart. They further observed that at
most 9 consecutive mountains in the stack may be removed without compromising the stability of the
structure. They are now trying to verify this new conjecture.

You are to write a program for this purpose. Specifically, given a sequence of numbers, some
of which may be negative, you must determine if the numbers are part of a generalized Fibbonacci
sequence (let’s call it the original sequence), such that all consecutive pairs of numbers in the input
sequence are less than 10 apart (i.e., fewer than 9 items between any consecutive pair of numbers) in
the original generalized Fibbonacci sequence.

As an example, the sequence: 0 6 16, follows this property because the numbers are from the
following generalized Fibbonacci sequence:

0 2 2 4 6 10 16
and 0 & 6 are only 4 numbers apart in the generalized sequence.

As another example: the sequence -22 8 77 125, also satisfies the property. Here is the corresponding
generalized Fibbonacci sequence:

37 -22 15 -7 8 1 9 10 19 29 48 77 125

Input/Output Format:

Input: The first line in the test data file contains the number of test cases, n. After that, each line
contains one test case. The test case begins with the number of elements in the sequence, k (k < 50),
and then we have k numbers which form the sequence. Assume the numbers are all > −230 and < 230.
Output: For each test case, you are to output ”STABLE” (if the sequence satisfies the property)
followed by the first five elements of the generalized Fibbonacci sequence (beginning with the first
number in the input sequence), or ”UNSTABLE” (if it does not). If multiple generalized Fibbonacci
sequences are possible, select the sequence with the smallest gap (i.e., number of missing numbers)
between the first two numbers.

Examples:

Input: Output:
3 STABLE 0 2 2 4 6
3 0 6 16 STABLE -22 15 -7 8 1
4 -22 8 77 125 UNSTABLE
4 1 1 1 1

2010 Maryland High School Programming Contest 7

6 Aim It Right!

There are many similarities between the human and the Navi cultures and lifestyles. For instance,
their sports and boardgames bear similarities to different sports and games on Earth. But at the same
time, there are significant differences (e.g., instead of water polo, they play air polo on their Banshees).
There is also a version of Billiards, which is quite similar to our version, but with the difference that
their Billiards table has a large circular hole right at the center (see figure). Of course, a person who
hits the ball into that hole immediately loses.

Jake and Tsu’tey start a friendly game of Billiards which soon turns into a not-so-friendly game
with possibly the leadership of the Omaticaya at stake. In each round, they take turns. At each turn,
an impartial judge places the cue ball at one location on the table (call it point A) and another ball
somewhere else (call it point B). The person whose turn it is, must hit the ball at point B from point
A with minimum number of rebounds off the walls of the table (see figure).

Your goal is to help Jake win the game and retain his leadership (otherwise he will have to try to
tame Toruk once again, and only so many times you can survive that). Given the input parameters,
you are to find the minimum number of rebounds needed to get from point A to point B (or declare
that it is not possible to do so). Assume the board is perfectly frictionless and the walls are infinitely
elastic. So a ball hit at an angle θ1 will rebound in the opposite direction at exactly the same angle.

Input/Output Format:

Input: The Billiards table is a square with dimensions 100 by 100. Assume that the center of the table
(and hence the center of the hole at the middle) is at (0, 0). You are given the x and y coordinates
of the points A and B, and also the radius of the hole in the middle (r). The first line of the input
file is the number of test cases. Each line contains 5 integers: Ax, Ay, Bx, By, r, where (Ax, Ay) are the
coordinates of point A, and (Bx, By) are the coordinates of point B. The value r denotes the radius.
You can assume that neither point A nor point B are in the hole, and that r < 50.
Output: For each test case, you are to find the minimum number of rebounds needed to reach from
point A to point B. If it is less than 10, output on a single line ”REBOUNDS” followed by the number
of rebounds needed. If it is not possible to hit point B from point A in < 10 rebounds, output on a
single line ”NOT POSSIBLE”.

Examples:

Input: Output:
2 REBOUNDS 2
16 -14 38 -27 13 NOT POSSIBLE
21 44 -38 -17 38

θ1 θ1
A

B

2010 Maryland High School Programming Contest 8

7 Navi Navigation

The Navi villages on Pandora are part of gigantic hometrees. Hometrees specialize in producing
different types of fruits that Navi like to eat. Neytiri’s mother Mo’at asks her to calculate the shortest
path between two given hometrees that allows Mo’at to collect every different type of fruit exactly
once. Your goal is to help Neytiri calculate these paths. Warning: since there are many hometrees on
Pandora, you will not be able to simply examine all possible paths and select the least expensive.

Input/Output Format:

Input: Paths between hometrees are described beginning with the line “GRAPH BEGIN”. Additional
lines lists individual hometrees (nodes), the type of fruit produced by the hometree, the distance to the
neighboring hometrees, followed (on the same line) by their neighboring hometrees (edges). The line
“GRAPH END” ends the list of connection descriptions. The next lines describe pairs of hometrees
for which answers need to be calculated, each on a single line. Following these lines, a completely new
instance of the problem can be given, starting from scratch.

You may assume any hometree can reach any other hometree by some path. Each hometree will
be listed at least once as the first item on some line between the GRAPH BEGIN and GRAPH END.
The same hometree can be listed more than once with different distance values, but it must always
have the same type of fruit assigned to it. Individual connections can appear at most once. It is valid
to list only a hometree and its color (specifying no new connections).

Fruit names will be integers. Not all integers have to be used, however. Your path need only try
to collect fruits that at least one tree grows.
Output: Your output should consist of pairs of hometrees in the same order as in the input, followed
by the length of the shortest path between them that collects each type of fruit exactly once. If such
a path does not exist, you should output “NONE”.

In the first example below, the path a → b → c → d collects all the fruit types (1, 2, 3, and 5) and
the path has length 4.0. No good path exists between a and c, however: the path a → b → c → d → c
would collect all the fruit types, but it collects fruit 1 twice!

2010 Maryland High School Programming Contest 9

Examples:

Input: Output:
GRAPH BEGIN a d 4.0
a 3 1 b e a c NONE
b 2 2 c h e 6.0
c 1 1 d
d 5
e 2
GRAPH END
a d
a c
GRAPH BEGIN
e 1 2 f
e 1 3 g
f 2
g 2
h 3 4 g f
GRAPH END
h e

a b c d1 2 1

3 2 1 5

e

1 2

Shaded boxes give the type of fruit grown at each node.

2010 Maryland High School Programming Contest 10

8 Locate Mining Center

As part of a peace treaty with the Navi, the humans are allowed mine for Unobtainium in a remote,
deserted area of Pandora. The scientists have identified many possible excavation sites, and are now
trying to figure out where to place the Mining Center. The placement of the mining center is further
constrained by the fact that the robots that will carry the Unobtainium from the excavation sites to
the mining center can only walk along prespecified Grid lines (see figure). The goal is now to find the
location of the mining center so that the maximum distance to the excavation sites is minimized. You
are to write a program for finding that location.

Specifically, you are given the x- and y-coordinates of the excavations sites, (x1, y1), (x2, y2), ...(xn, yn)
(n denotes the number of excavation sites). You are to find the coordinates for the Mining Center,
(x0, y0), so that the maximum of the distances between the mining center and the excavation sites is
minimized. All coordinates must be integers. The distance metric to be used is the rectilinear distance
(also called Manhattan distance). Specifically, the rectilinear distance between (x0, y0) and (xi, yi) is:

|xi − x0|+ |yi − y0|

Further, if there are multiple locations which qualify, then you must find the location that is closest
to the origin by Euclidean distance metric. Since origin is at (0, 0), this corresponds to minimizing√

x2
0 + y2

0.

In other words, given the input (x1, y1), ..., (xn, yn), your goal is to find (x0, y0) such that:

max
i

(|xi − x0|+ |yi − y0|)

is minimized, and if there are multiple answers, then
√

x2
0 + y2

0 is the smallest among all such answers.

2010 Maryland High School Programming Contest 11

Input/Output Format:

Input: The first line in the test data file contains the number of test cases, n. After that, each
line contains one test case. The test case begins with the number of mines, followed by the x and y
coordinates of each mine. All coordinates must be integers. Very large coordinate values may be used
(million+), so brute force methods will not work.
Output: For each test case, you are to output a line beginning with ”LOCATION”, followed by the
x and y coordinates of the mining center. All coordinates must be integers.

Examples:

Input: Output:
2 LOCATION 45 0
4 100 0 40 0 -10 0 20 0 LOCATION -121 -120
3 245 692 -772 -647 330 526

2010 Maryland High School Programming Contest 12

Practice 1 Checkerboard Rows

Colonel Quaritch is playing checkers one day, and decides it would be interesting to write a program
to calculate the maximum number of pieces on a single row.

Input/Output Format:

Input: Checkerboards are 8x8 boards with positions between (1,1) and (8,8). The input begins with
the number of boards. Each board is on a separate line and begins with the number of pieces, followed
by the column and row positions of each piece.
Output: For each checkerboard, your program should output the maximum number pieces on any one
row.

Examples:

Input: Output:
2 1
3 1 1 2 6 8 8 3
4 2 3 1 3 1 4 5 3

2010 Maryland High School Programming Contest 13

Practice 2 Mining Maps

Administrator Selfridge is analyzing possible mining routes on Pandora. He has collected some data
in the form of a graph. Your goal is to help him collect some information about each graph.

Input/Output Format:

Input: Connections between mines are described beginning with the line ”GRAPH BEGIN”. Ad-
ditional lines lists individual mines (nodes), followed (on the same line) by their neighboring mines
(edges). The line ”GRAPH END” ends the list of path descriptions. The entire problem may be
repeated as desired, starting from scratch each time. Some mines may appear only as neighboring
mines, without being described on a separate line.
Output: Your output should consist one line (for each graph analyzed), consisting of ”NODES”
followed by the number of nodes, followed by ”EDGES” and the number of edges in the graph.

Examples:

Input: Output:
GRAPH BEGIN NODES 3 EDGES 2
a b NODES 6 EDGES 7
b c
GRAPH END
GRAPH BEGIN
a b c
b c d
d e f
e f
GRAPH END

a

b c

d

e f

2010 Maryland High School Programming Contest 14

Practice 3 Hauling Ore

Administrator Selfridge is analyzing possible mining routes on Pandora. He has collected some data
in the form of a graph. The latest ore carriers can visit exactly 3 mining camps. Your goal is to help
him find out which mines may be visited from other mines with 2 stops (but not fewer).

Input/Output Format:

Input: Connections between mines are described beginning with the line ”GRAPH BEGIN”. Ad-
ditional lines lists individual mines (nodes), followed (on the same line) by their neighboring mines
(edges). The line ”GRAPH END” ends the list of path descriptions. The next lines list mines for
which answers need to be calculated, each on a single line. Following these lines, a completely new
instance of the problem can be given, starting from scratch.

Some mines may appear only as neighboring mines, without being described on a separate line.
Mine names can be arbitrary strings, as long as they don’t contain any whitespace.
Output: Your output should consist one line (for each mine analyzed), consisting of the name of the
mine, followed by the mines, in alphabetical order, that can be visited with exactly 2 stops but not
fewer, starting from the given mine.

Examples:

Input: Output:
GRAPH BEGIN d
a b c e f
b c d d
d e f a c
GRAPH END b f
a b e
b
c
d
e
f

a

b c

d

e f

