2016 High School Programming Contest

2016 University of Maryland High School
Programming Contest

1. Jedi Crystals

2. Aligned Gaps in Asteroid Field
3. Forced Cards

4. Legal Moves in Go

5. Scavenger One

6. Tree Ragnorianism

7. Combination Puzzle

8. Opening Doors

9. Winning a Cards Game

12

14

17

19

21

2016 High School Programming Contest 2

2016 High School Programming Contest 3

1. Jedi Crystals

A new Kyber crystal mine has been started on Dantooine. These are the crystals for lightsabers, and
the mine owner has been mining red, blue, and green crystals. Periodically, the mine owner pauses
the mining to put together all the crystals found till then, and ships them out to lightsaber factories (yes,
they exist!). For reasons of superstition, he only does this when an equal number of crystals of each
color has been collected from the mine (i.e., when there is “balance”). However, since he has no control
over which color crystal is found next, he wants your help to decide when balance is reached.

The program will read in a list of letters representing the color of each crystal that comes out of the
mine. When a balance (greater than 0,0,0) has been achieved, the program will stop reading and print
"Balance achieved at " followed by the number of red crystals that came out (which of course would be
the same as the number of blue and the number of green crystals).

The provided skeleton handles the input of the values and the output messages. You need to
implement the method

achi eveBal ance(Scanner sc)
which returns an

i nt
when balance has been achieved. The entire input may not be read in the first call -- instead, the
function is called repeatedly in order to read all the input.

Input/Output Format

Input:

The first line in the test data file contains the number of test cases. After that, for each test case
there will be one letter (R,G,B) per line representing the color of the crystal that just came out.

Output:

For each test case, the program will display the "balance" number. You can assume that for the
given input file, balance will be achieved exactly as many times as the number of test cases listed,
and also that there will be no more lines in the input after the last balance.

Note:

We have provided a skeleton program that reads the number of test cases and opens the input
stream. It also prints the output based on the achi eveBal ance() method that you need to
implement.

2016 High School Programming Contest 4

Examples:

The output is shown with extra blank lines so that the output is shown aligned with the appropriate input
line; those blank lines should not be present in the actual output. (The provided skeleton code handles
that for you).

Input Output:

3

R

G

B Bal ance achieved at 1
R

R

G

G

B

B Bal ance achi eved at 2
R

G

R

G

R

G

B

B

B Bal ance achi eved at 3

2016 High School Programming Contest 5

2. Aligned Gaps in Asteroid Field

Poe and Finn have escaped the Finalizer and are trying to run away, chased by several enemy ships.
Poe notices that they are approaching an asteroid field at

a very fast pace, the pace at which their spaceship is z
incapable of maneuvering and must go in a straight line.

There are gaps in the asteroid field, but Poe can’t tell i
whether they are in a straight line for him to be able to go
through all the way. You are to help Poe decide whether a . 2, y2, 22)
particular set of gaps is aligned (collinear) or not. WIS i

x3, ¥3, z3)

The location of each gap is given in the form of its (x, y,z) X ,f"
coordinates. Your program should compute whether the
set of gaps is collinear, i.e., whether they lie on a single straight line. Any two points are collinear since
we can just draw a straight line between them. One approach for deciding whether three points (x1, y1,
z1), (x2 ,y2, z2), and (x3, y3, z3) are collinear, is to check whether there exists a number r such that all
of the following are true:
(x3-x1) =r(x2-x1), (y3-y1)=r(y2-y1), (z3-z1)=r(z2-21)
Specifically, we will follow the following steps to decide if a set of n distinct points is collinear.
(1) Compute xdiff = x2 - x1, ydiff = y2 - y1, and zdiff = z2 - z1.
(2) Say xdiff has the largest absolute value among those three (i.e. |xdiff| > |ydiff|, |xdiff| > |zdiff])
(38) Fori=3ton:
(a) Compute r = (x3 - x1)/xdiff
(b) Check whether |(y3 - y1) - r * ydiff | < EPSILON, where EPSILON is very small value
to handle errors in dealing with floating point numbers (use EPSILON = 0.00001). |x|
denotes the absolute value of x.
(c) Similarly: check if |(z3 - z1) - r * zdiff | < EPSILON.
(d) If both of them are true, then point 3 is collinear with points 1 and 2.
(4) If ydiff or zdiff are the largest, the above steps change accordingly.
(5) The above steps fall in the degenerate case when all of xdiff, ydiff, and zdiff are O (i.e.,
points 1 and 2 are identical), because of a divide-of-zero. But since we assume all the n
points are distinct, this is not an issue for us.
(6) Return true if all the other points are collinear with points 1 and 2; return false otherwise.

Input/Output Format

Input:

The first line in the test data file contains the number of test cases, and then the test cases are listed
one by one. The first line of a test case contains the number of gaps n, and after that the coordinates
of the n gaps/points are listed (as 3 doubles each) on one line each. Assume n <= 100.

2016 High School Programming Contest 6

Output:

For each test case, your program should output whether the gaps are aligned (collinear) or not using
the inequalities listed above.

Note:

We have provided a skeleton program that reads the input and prints the output based on the
following ar eGapsAl i gned() method.
private static bool ean areGapsAl i gned(doubl e coordi nates_x[],
doubl e coordinates_y[], double coordinates_z[])

Examples:

The output is shown with extra blank lines so that each test case input is aligned with the output; the
blank lines should not be present in the actual output.

Input: Output:

2

3 Gaps are aligned.

1.0 1.0 1.0

2.0 2.0 2.0

3.0 3.0 3.0

3 Gaps are NOT aligned.
1.0 1.0 1.0

2.0 2.0 2.0

3.0 3.0 4.0

2016 High School Programming Contest 7

3. Forced Cards

Poe Dameron and BB-8 are in a little hot water. They need to win money to buy parts for Poe's
X-Wing. There's a local card game where a random group of cards (at least one with a positive value,
but some could have negative values) are selected and then shuffled. The player begins by giving a
number. The casino then starts to deal out the cards face down. The player watches the cards coming
out and says "start" on one card and then "stop" on another card. Then the casino adds up all the card
values between where the player called start and where the player called stop (including the two cards);
if this total is identical to the number that the player called out, the player wins that amount of money.

BB-8 is able to scan the deck while it is face down, and knows all of the values of the cards and the
sequence. What he doesn't have is a method where he can pass in the values and get back the
start/stop points that would give the biggest win possible, i.e., the start/stop points that will give the
highest total.

The program will read in list of card values. It will then print the start and stop points with the highest
total, as well as the total between those points.

Input/Output Format

Input:

The first line in the test data file contains the number of test cases. After that, for each test case
there will be an integer saying how many cards there are, and then each line after that will be the
value of a card. Assume the number of cards in any test case is <= 100.

Output:

For each test case, the program will display the start and stop points as well as the total between
those points for that deck. If there are multiple answers (i.e., multiple start/stop pairs with highest
total), your code should return the one with the earliest start point; if there are multiple start/stop
pairs with highest total that start at the same point, it should return the one with the smallest stop
point.

Note:

We have provided a skeleton program that reads the input and prints the output based on the
best Pl ay() method that you need to implement. The method takes as input the sequence of card
values, and returns an array of 3 integers (start/stop/total).

private static int[] bestPlay(int[] deck)

2016 High School Programming Contest 8

Examples:

The output is shown with an extra blank line so that each test case input is aligned with the output; the
first blank line should not be present in the actual output.

Input: Output:

1
7 Start/ Stop/ Val ue: 0/ 3/ 104
99
3
-17
19
-96
2

2

2016 High School Programming Contest 9

4. Legal Moves in Go

BB-8 is continuing to learn the game of Go so he can win against Chewbacca by employing the
strategies of AlphaGo, the neural network-based Go engine that was recently developed. The rules of
Go are very confusing though, and BB-8 would like your help.

Go is played on an n-by-n board (typically 19-by-19, but 5-by-5 is used for teaching) as shown below,
and the two players (one playing white stones, and the other playing black stones) take turns placing
stones on the board. Stones cannot however be placed arbitrarily. To begin with, a stone can only be
placed at a position if the position is empty. Further, the position must have an adjacent “liberty”, i.e.,
another open position that it is connected to. The simplest case is when the one of the immediately

“ 0

adjacent positions is also open (e.g., either of the two positions labeled “e” below satisfy this condition).

However, two stones of the same color that are adjacent to each other “share” their liberties. To define
this more formally: two stones are called “connected” if they are of the same color, and they are on
adjacent locations. A “chain” is a set of one or more stones (necessarily of the same color) that are all
connected to each other. In the example figure (i) below, the different chains are shown by using
numbers, i.e., all stones in the chain are given the same number. For example, there is a chain of 3
black stones (numbered 1) at the top-left corner.

(i) Chains and Liberties (ii) Legal Move through Capture

o
80 Solnr SHise v
€ e E) «E)' d Before Black plays After removal

All the stones in a chain share liberties. For example, the position marked “d” (bottom-right) is
considered a “liberty” of all stones numbered 6, even though several of those are not adjacent to it.

Given this, we can now more fully define a “legal” move in Go. A stone can be placed in a position only
if that stone (after placing it) will have a liberty (either directly adjacent or shared through a chain). For
example, a white stone can be placed in the position labeled “d” because it has an adjacent liberty
through either of the two chains numbered 6 or 7. Similarly, a black stone can be placed in position
labeled “a”.

2016 High School Programming Contest 10

However: considering this rule alone, in the second example (Figure (ii)), a black stone is not allowed to
be placed in position “a”. However, Go has a notion of “capturing” stones. If a chain is enclosed on all
sides by stones of the other color, then the stones in that chain are “captured” and removed from the
board. In the example (ii), after placing a black stone in position “a”, the three white stones will be
removed, thus satisfying the “adjacent” liberties rule (in other words: the position “a” was the only liberty
for those three white stones, and hence it was a legal placement for a black stone).

Input/Output Format

Input:

The first line in the test data file contains the number of test cases, and then the test cases are listed
one by one. The first line of a test case contains the size of the board, n; a single character B or W,
indicating whether BB-8 is playing black stones or white stones; and a pair of numbers indicating the
position of interest. The position (0, 0) refers to the top left corner of the board, and (7, 0) refers to
the position to the right of it. After that, the current state of the board itself is listed on n lines, each of
which contains a single string of length n. The string uses characters B, W, and . (dot) to indicate the
state of any specific position. Assume n <= 20.

Important note: Do not assume that the provided board is valid according to these rules; e.g., it may
contain captured stones that haven’t yet been removed.

Output:

For each test case, your program should output whether the intended move is “Legal” or “lllegal”,
along with an brief explanation (as shown below).

Note:

We have provided a skeleton program that reads the input and prints the output based on the
following checkLegal i t y() method. checkLegal i t y() is passed the n strings as an array, a
character (‘B’ or ‘W’), and the position of interest as two numbers. It should return one of the four
constants defined in the file (NOT_EMPTY, LEGAL_ADJACENT_LIBERTY,
LEGAL_THROUGH_CAPTURE, ILLEGAL).
private static int checkLegality(String board[], char c,
int pos_x, int pos_y)

Examples:

The output is shown with extra blank lines so that each test case input is aligned with the output; the
blank lines should not be present in the actual output.

Input: Output:

2016 High School Programming Contest

3 W0 O Move W in position (0, 0) is illegal - the position is not empty.

3 wll1l Move W in position (1, 1) is legal - there is an adjacent (shared) liberty.

11 Move B in position (1, 1) is illegal.

'sw:
.

3 wll1l Move W in position (1, 1) is legal - there is an adjacent (shared) liberty.

s
S

3 B22 Move B in position (2, 2) is legal through capture of opponent's stones.
. BB

BW

2016 High School Programming Contest 12

5. Scavenger One

Rey has a variety of scavenged items she can bring to Plutt each day. On any given day she will have
no more than around 30 or 40 such items. She knows her speeder's weight capacity; each morning
she weighs herself and knows exactly how many pounds of scrap she can bring back. If she can't bring
back exactly that much, she'll go into the ships and find more things to try to get a combination of items
that's just the right weight.

The program will read in a weight capacity for the day and a list of item weights based on what's
available to bring back from the ships. It will then either print a list of the weights of the items that she
should load up or a message letting her know that the exact capacity can't be reached. The provided
skeleton handles the input of the values and the output messages. You need to implement the method
bestltens
which returns a
int[]

Input/Output Format

Input:

The first line in the test data file contains the number of test cases. After that, for each test case
there will be an integer capacity, an integer value saying how many items there are, and then each
line after that will be the weight of an item.

Output:

For each test case, the program will display the list of item weights for the run, or a message saying
the exact capacity can't be reached.

Note:

We have provided a skeleton program that reads the input and prints the output based on the
best |t enms() method that you need to implement.

Examples:

The output is shown with an extra blank line so that each test case input is aligned with the output; the
first blank line should not be present in the actual output.

Input: Output:

2016 High School Programming Contest

100 This runis: 96, 2, 2
99

96

Cannot fill to capacity.

=000 HA~NOGIN

2016 High School Programming Contest 14

6. Tree “Ragnorianism”

BB-8 is carrying a partial map that supposedly leads to Luke Skywalker. But unfortunately the map is
not only incomplete but has also been scrambled to make it difficult to interpret. Han Solo thinks that he
can figure out which part of the galaxy corresponds to the incomplete map by examining structural
features of the map. Specifically: he converts the map into a “tree”, where the “nodes” of the tree
correspond to landmarks on the map and there is an edge between two nodes if they are connected by
a road. (He only keeps enough edges to ensure that the structure he draws is a valid tree). Similarly he
takes a part of the galaxy and constructs a similar tree for that. However, in order to decide if those two
are equivalent, he needs to find a “Ragnorianism” between them, i.e., a one-to-one mapping between
the nodes that allows converting one tree into the other. Two trees are called Ragnorianic if such a
mapping exists. See examples below.

Han would like your help with finding such a mapping, if one exists. Your program should take as input
two rooted trees. The nodes in each tree are labeled from 0 to n-1, with 0 always being the root. For
each non-root node, the “parent” of the node is provided. The figure below shows 4 trees on 5 nodes,
and the input representations of those trees.

5 0 5 o 5 e 5 o

10 10 10 i
21 (%) 21 30 54
32 30 O © 33 (3) 0 F@ @

(i) Tree 1 (i) Tree 2 (iii) Tree 3 (iv) Tree 4

The first two of these trees are Ragnorianic -- the root of the first tree maps to either node 2 or node 4
in the second tree. Tree 3 and Tree 4 are similarly Ragnorianic -- root of the first tree maps to node 3 in
the second tree. However, there is no such correspondence between Tree 1 and Tree 3 (or any other
pair of the trees).

Input/Output Format

Input:

The first line in the test data file contains the number of test cases, and then the test cases are listed
one by one. The first line of a test case contains the number of vertices, n (assume n <= 500). The
next n-1 lines contain the first tree; specifically, each line contains two numbers a b, where a is the id

2016 High School Programming Contest 15

of a vertex, and b is its parent. The next n-1 lines contain the second tree. The roots of both the
trees are vertex 0. You are guaranteed that each of the provided inputs is a valid tree.

Output:

For each test case, your program should output whether the trees are Ragnorianic or not. If they are
Ragnorianic, you are also to list which node in the second tree maps to the node labeled 0 in the first
tree (i.e., the root of the first tree). If there are multiple different mappings, you should return the
smallest of such nodes (e.g., 2 in the example above, where there two different mappings).

Note:

We have provided a skeleton program that reads the input and prints the output based on the
following f i ndRagnor i ani sn() method. f i ndRagnori ani sn{) is passed the 2 trees as int
arrays. It should return -1 if the trees are not Ragnorianic; otherwise, it should return the node from
the second tree to which the root of the first tree maps to in the Ragnorianism (smallest one if there
are multiple mapping).
private static int findRagnorianisn(int[] parents_treel,
int[] parents_tree2)

Examples:

The output is shown with extra blank lines so that each test case input is aligned with the output; those
blank lines should not be present in the actual output.

Input: Output:

5 The trees are Ragnorianic -- root of the first tree maps to node 2 of the
10 second tree.

21
32
43
10
21
30
43
4 The two trees are not Ragnorianic.
10
20
30
10
21
32

