
Sketch of Solutions for UMD HSPC 2016 

1.	  Jedi	  Crystals	  	  	  	  (omi2ed) 

2.	  Aligned	  Gaps	  in	  Asteroid	  Field	  	  (omi2ed) 

3.	  Forced	  Cards 

4.	  Legal	  Moves	  in	  Go 

5.	  Scavenger	  One 

6.	  Tree	  Ragnorianism 

7.	  CombinaIon	  Puzzle 

8.	  Opening	  Doors 

9.	  Winning	  a	  Cards	  Game	  (omi2ed) 

 
 
 

(By: David Mount, Evan Golub, Amol Deshpande) 



3. Forced Cards  

Problem: 
–  Given an array of (possibly negative) numbers deck[n], find the 

subarray deck[start..end] that has the maximum sum 
Solution: 

–  There are many solutions. This one is quick, but not very efficient. 
start = 0; end = -1; maxSum = 0;  // initialize default solution 
for (i = 0; i < n; i++) {   // try all possible starts 

sum = 0; 
for (j = start; j < n; j++) {  // try all possible ends 

sum += deck[j]   // update sum 
if (sum > maxSum) { start = i; end = j; maxSum = sum; } 

} 
} 
 

–  This takes O(n2) time.  
 



3. Forced Cards  

Problem: 
–  Given an array of (possibly negative) numbers deck[n], find the 

subarray deck[start..end] that has the maximum sum 
Solution: 

–  The approach presented on the previous page takes O(n2) time.  
–  The problem can be solved in O(n) time.  To approach solving this 

problem in linear time, consider that as you pass through the 
information you can make some local decisions. 

•  For inspiration, consider minimum finding.  You can call the first element 
in the smallest so far and store it.  Then, as you traverse the rest of the 
list, if you see something smaller, then it is the smallest so far so you 
should store that instead.  Due to transitivity, you never have to “look 
back” with this.  At the end, the smallest so far is the true smallest. 

•  Something useful to think about for this problem includes the fact that 
if you have a running sum from a starting point, if it ever goes negative 
then you’ve passed the best ending point for that starting point. 

 
 



4. Legal Moves in Go  

Problem: 
–  Given a board configuration in Go, is a proposed move legal? 

Solution: 
–  Each square is labeled as White, Black, or Empty. 
–  Suppose that the move is White (since Black is symmetrical) 
–  If any of the four neighbors is empty, this move is legal 
–  Otherwise, set this square to White, and start a recursive function 

to check for liberties: 
•  If any neighboring square is empty, return true 
•  If not, mark this square as visited, and recurse on all unvisited neighbors 
•  If for any unvisited white neighboring stone, the recursive call returns a 

“true”, then return “true” 
•  If for any unvisited black neighboring stone, the recursive call returns a 

“false”, then return “true” 
•  If neither of the above is true, return “false” 

–  Some more bookkeeping needs to be done to return why the move is 
legal 



5. Scavenger One  

Problem: 
–  Given a list of the weights of 30 to 40 items and a cargo capacity, 

what is the combination of items that gets you that exact weight? 
Solution: 

–  The most straight-forward approach is to create a recursive helper 
method and essentially at each point through the recursion you’ll ask 
two questions if you aren’t down to having just one item to consider: 

•  Can I get that weight using the first item in the list I have and then ask 
the question on the remainder of the list and the capacity minus the 
weight of this first item. 

•  Can I get that weight without using the first item on the list I have and 
then ask the question on the remainder of the list and the current value 
for the capacity limit. 

–  Yes, this has an exponential explosion of calls possible but that’s why 
the number of items was limited.  In fact, a polynomial solution for 
this type of problem is currently an open question. 



6. Tree Ragnorism  

Problem: 
–  Given two trees, are they isomorphic? 

Solution: 
–  Fix the first tree, and try all choices of root node for the second 

tree. Then apply the procedure below for rooted tree isomorphism. 
–  Label nodes by their level, where the root is at level 0. If both trees 

have different numbers of levels, then fail. 
–  Starting at the lowest level, label all nodes with the same label (0). 
–  Apply the following process recursively: 

•  For each node, sort its children by label number and form a sequence 
•  Sort these sequences, and assign all sequences with the same value the 

same (new) label value 
–  If the roots have the same label, then the trees are isomorphic 



6. Tree Ragnorism 



7. Combination Puzzle  

Problem: 
–  Set a number of dials to 0, where turning one dial automatically 

turns the next dial in the opposite direction 
Solution: 

–  Let dial[i] be the initial dial setting (0..9) 
–  Let x[i] denote the number of increments of dial i (mod 10) 
–  Incrementing dial i-1 causes dial i to decrement: 

•  (x[i-1] - x[i] = dial[i]) mod 10  implies (x[i] = x[i-1] – dial[i]) mod 10 
–  Suppose that we know x[0]. We infer the remaining dial increments: 

•  x[1] = (x[0] - dial[1]) mod 10 
•  x[2] = (x[1] – dial[2]) mod 10 

–  We will guess all possible choices for x[0] and work the others out 
–  The number of moves for dial i is min(x[i], 10 – x[i]) 
–  Take the choice for x[0] that leads to the lowest cost 



8. Opening Doors  

Problem: 
–  You have a set of m switches, each toggles a subset of n doors. You 

want to set the toggles to open a given set of doors 
Solution: 

–  Suppose there are 5 doors. Write each switch as a binary vector: 
  0 1 2 3 4  Doors 
  1 1 0 1 1  {0, 1, 3, 4} – Switch 1 
  0 1 1 0 1  {1, 2, 4} – Switch 2 
  0 1 0 1 0  {1, 3} – Switch 3 
  … 

–  Let A be an m × n matrix, where Ai,j = 1 if switch i toggles door j 
–  Let x be a binary m-vector, where xi = 1 if we select switch i 
–  Let b be a binary n-vector, where bj = 1 if we want door j opened 
–  We seek a 0-1 vector x such that x ⋅A = b (using arithmetic mod 2) 
–  We can solve this using Gaussian elimination (over integers mod 2) 



 
 
 
 

Thanks!  
Questions? 


