0 Detecting Double Letters

Some words in have adjacent repeating letters. For example, the word “tomorrow” has a double
t’. In comparison, the two u’s in the word “future” do not count as double letters because they
are not adjacent. For this problem, you must write a program that reads a list of words and print
which words have double letters.

Input Format

The input will consist of a list of words. There may be multiple words on each line. The input will
be terminated by a line containing only —1.

Output Format

For each line in the input, your program should output a separate line containing “yes” or “no” for
each word in the line (in order), depending on whether the word contains any double letters.

Example

Input: Output:
We are testing no no no
your programming no yes
skills today yes no

-1

1999 Maryland High-school Programming Contest 2

1 Computer Networks

You are designing a computer network to control trading on the international currency market.
Because hundreds of millions of dollars, euros, and yen are being traded each day, you must ensure
that data is transmitted correctly between computers.

One technique for ensuring data is being transmitted correctly is to compute and send a check-
sum, a small integer value representing the data transmitted. The receiving computer can then also
compute its own checksum. If the checksums match, the data is probably correct. The IP (internet
protocol) algorithm for computing a checksum is treat the data as a series of 16-bit numbers, add
the numbers using one’s complement arithmetic, then take the one’s complement of the result.

In your network, data is being sent in packets of four 8-bit numbers (i.e., numbers between 0
and 255). The fourth number in each packet is a checksum for the packet. Your job is to compute
a 8-bit checksum for each packet and verify the packet is correct. You can compute a checksum as
follows:

1. Calculate X, the sum of the first three 8-bit numbers in the packet.
2. While X > 256, subtract 256 from X.

3. Subtract X from 255.

The resulting value for X should be a 8-bit number. Compare the checksum calculated with the
checksum transmitted in each packet to verify transmission worked properly. Print out a warning
for invalid data packets so the currency traders can resend data. The fate of the world economy is
in your hands, so be careful!

Input Format

The input will consist of a number of packets, each on a separate line. Fach packet will consist of
four 8-bit numbers, where the fourth number is the checksum transmitted. The list of packets will
be terminated by a line containing only —1.

Output Format
For each packet, output "valid” or ”invalid”. /_\‘
PN 2 R NE
Example r) %' f‘*‘ N \(‘
Input: Output:

000 255 valid

123 249 valid o II.IIJLLL
100 20 35 100 valid :

10 12 14 200 invalid 200100 200; 11 :

200 100 200 11 valid
-1

/

1999 Maryland High-school Programming Contest 3

2 Sequence of Differences

Consider a circular list with four integers, e.g., (0,1,4,11). For small non-negative integer values,
repeatedly taking the absolute values of the differences of adjacent numbers eventually results in a
list with identical values in each position.

(0,1,4,11) -> (1,3,7,11) -> (2,4,4,10) -> (2,0,6,8) -> (2,6,2,6) -> (4,4,4,4)

In this case, we needed five steps to reach a list with identical values. We could have started with
smaller integer values and still needed five steps to reach a list with identical values.

(03031:3) 4 (031:2:3) -> (1,131:3) 4 (0303232) 4 (0323032) 4 (2,2:2:2)

This sequence of five steps started with a list of non-negative integer values, each of which was less
than or equal to 3. However, if all the list values were less than 3, no sequences of five steps would
occur.

You are to write a program that computes the smallest maximum integer value needed in order
to ensure that a sequence of N steps is used to reach a list all of whose elements have identical
values. To make the problem simpler, you may assume N is 10 or less.

For example, to ensure a sequence of 3 steps, the value 1 is needed. The value 0 is not sufficient,
since the sequence (0,0,0,0) already has identical values. The value 1 is sufficient, since we can find
a four-member list consisting of 0’s and 1’s which will require 3 steps to reach identical values.

(1303030) 4 (1303031) -> (1303130) 4 (1,13131)
In comparison, to ensure a sequence of 4 steps, the value of 1 is not sufficient since all four-member
lists consisting of 0’s and 1’s will reach identical values in 3 or fewer steps.
Input Format

The input will be the value N, the number of steps needed to reach identical values.

Output Format

The output should produce one line of output containing N, the number of steps, and the smallest
maximum integer value needed to create a four-member list which requires N steps to reach identical
values.

Examples
Input 1: Output 1: Input 2: Output 2:

3 3 1 5 5 3

1999 Maryland High-school Programming Contest 4

3 Sparse Vectors

A vector is a one-dimensional array of elements. The natural C4++ implementation of a vector is
as a one-dimensional array. However, in many applications, the elements of a vector have mostly
zero values. Such a vector is said to be sparse. It is inefficient to use a one-dimensional array to
store a sparse vector. It is also ineflicient to add elements whose values are zero in forming sums
of sparse vectors. Consequently, we should choose a different representation.

One possibility is to represent the elements of a sparse vector as a linked list of nodes, each of
which contains an integer index, a numerical value, and a pointer to the next node. Generally, the
entries of the list will correspond to the non-zero elements of the vector in order, with each entry
containing the index and value for that entry. (This restriction may be violated if a zero value is
explicitly assigned to an element).

Your goal is to write a program to add pairs of sparse vectors, creating new sparse vectors. The
results of addition should not include any elements whose values are zero. You should then print
the resulting vectors with elements in ascending order of index (from smallest index to largest).

Input Format

The input will be several pairs of sparse vectors, with each vector on a separate line. Fach sparse
vector will consist of a number of index-value pairs, where the first number in each pair is an integer
representing the index (location), and the second number is a floating-point number representing
the actual value. You may assume all index locations are non-negative. Elements will be entered
in ascending order of index. The list of vectors is terminated by a line containing only —1.

Output Format

The output will be sparse vectors representing the sum of each pair of input vectors, each on a
separate line. Vector elements should appear as pairs of indices and values, separated by a comma
and a blank and enclosed in square braces. Vectors should appear as lists of elements separated
by commas. The vector elements must be printed in ascending order of index. Vectors with no
elements should appear as the string "empty vector”.

Example

Input: Output:

3 1.0 2500 6.3 5000 10.0 60000 5.7

1 7.5 3E.7 2500 -6.3 (1, 7.51, [3, 6.71, [5000, 10], [60000, 5.7]

[15000, 6.7]
empty vector

10 0.0
15000 6.7
100 -1.0
100 1.0
-1

(1.0, 6.3, 10.0, 5.7) + (7.5, 5.7, -6.3) = (7.5, 6.7, 10.0, 5.7) Values
A4 4 A b4 1 LU SR

3 2500 5000 60000 1 3 2500 1 3 5000 60000 Position

1999 Maryland High-school Programming Contest 5

4 Line Drawing

A small company is developing a brand new computer system from scratch based on some brand
new, but completely backwards-incompatible technology. They know that any new computer must
support graphics, and since their technology is all new, they don’t have access to the standard
graphics packages. So, they came to you for your expert help.

A basic part of all graphics programs is to render graphical elements onto the screen, such as
lines, rectangles, and polygons. It turns out that rectangles, polygons, and even circles can be
drawn by connecting several short line segments, so all that is required at this point is to draw a
line segment.

Since the hardware guys don’t have the high-resolution mode on the monitor working yet, we
only have access to text output - and so we will test the line drawing routine you are writing
with text. Create an internal array of 50x20 characters to represent the screen, and clear all the
characters to " to represent black. Then, your job is to take two points (x1,y1) - (x2,y2), and fill
in the characters in your array that connect those points with ’X’. Then, print the array when you
are finished to show that your routine works.

Note that this problem is slightly harder than it first appears because lines that are mostly
horizontal or vertical should appear with all the X’s inbetween the points filled in without any gaps.
When you are computing which points to fill in, you may use floating point numbers internally.
When you go to fill in the array, you must round your floats to the nearest integer.

Input Format

The input consists of a number of line specifications, each on a separate line. Each line has 4
numbers that represents the two points of each line segment (x1 y1 x2 y2). All X coordinates are
guaranteed to be in the range [0, 49] and all Y coordinates are guaranteed to be in the range [0,
19] The list of lines is terminated by a line containing only —1.

Output Format

The output should be the 50x20 grid that represents the line connecting the two points with "X’s
on a background of .’s

1999 Maryland High-school Programming Contest

Examples
Output 1:

Input 1: utpu

4 2 10 2

10 2 10 5 e

f12 105 B © 0. 0.0 0. O
..... e
....... S
......... I
Output 2

Input 2 utpu

2 291313 X..X.... .. oo oo, oo,
X..X.... .. oo oo, oo,

Z 2961390 X..X.... .. X.ooooo... XX oo, XX oo,

10 0 15 19 X..X..... X000 XX oo, XX oo,

15 19 21 0 X..XX X000 XX oo X Xooooooon,

51 0 28 19 X.X.X XX, X Xooooooo X Xooooooon,

58 19 36 0 X.X.X X..X...... X Xoooooooo oo, oo

36 0 45 19 X.X.X....X..X...... X Kooooo, oo, oo

1 X.X.X...X..X..... oo, oo oo, oot
X.X.X...X..X..... oo, oo, Xoooo... oot
X..X..X....X oo, oo, D oo,
X..X..X....X oo, ..., oo, oo,
1.9 QNS G SRV X Xoooo... ..., oo, Xoooo...
1.9 QNS G SRV X D X oo, Xoooo...
KXV XKLL .. X0, X oo oo,

XKoL X000t Xo.Xooooooot oo,

1999 Maryland High-school Programming Contest 7

5 Seating Diplomats

As the Secretary General of the United Nations, you are responsible for keeping everyone in the
world relatively happy with each other and avoiding friction as much as possible. Since the United
Nations has a lot of conferences which involve eating, you must seat all the ambassadors around a
circular table without seating people in such a way that political friction might spring up. Your
staff gives you a list of how many ambassadors there are and who must not be seated next to whom.

In order to make sure your decisions are foolproof, you write a program which you figure to
be faultless to figure out the seating arrangements for you. Good luck with your conference and
remember — the fate of the world is in your hands!

Input Format

The input will first consist of a line containing the total number of diplomats, followed by lines
containing pairs of diplomats who must NOT be seated together. The list will be terminated by a
line containing only —1.

Output Format

The output should be a sequence of numbers representing one possible correct seating of the diplo-
mats (based on the input). The diplomats must be numbered from 1 to N (where N is the total
number of diplomats given in the input). If no seating arrangement is possible, the program prints
a 0 (zero).

Examples

Input 1: Output 1: Input 2: Output 2:
11 19741158210 3 86 3 0

14 12

17 -1

57

10 7

10 8

B 1 10

1999 Maryland High-school Programming Contest 8

6 Quaternion Calculator

Quaternions are a generalization of the complex number system, developed by Sir William Hamilton
in the mid 19th century. Today quaternions are used in computer graphics and robotics, since a
quaternion naturally encodes a rotation in 3-space, and multiplication of quaternions corresponds
to composition of rotations. For our purposes, a quaternion is defined to be a quadruple of numbers

q0
q1
92
q3

where ¢; is of type double. Given two quaternions, ¢ and p, their sum, product, and negation are
defined as follows:

g0 + Po qoPo — G1P1 — 92P2 — 43DP3 —qo
@+ p, qop1 + q1Po + q2pP3 — 43P2 -

—|— = >k = — =
aTp q2 + P2 1P qoP2 — q1P3 + q2po + 431 1 -
43+ 3 qoP3 + q1p2 — G201 + 43P0 —q3

The objective of this problem is to design a simple calculator for quaternions. The calculator
has 10 registers, numbered 0 through 9, each of which holds a single quaternion. Initially they are
all set to zero. Your calculator will input a sequence of commands, each consisting of an operator
followed by one or more arguments, and it will output the result of each operation.

Input format

Each line will contain a single character “opcode” followed by one or more arguments, all separated
by spaces. Here are the possible opcodes, and their action. The values ¢, j, and k are integers in
the range 0 through 9 (inclusive) and the values ¢; are of type double. You may assume that the
input is in this format (e.g. you will not be given any illegal opcodes).

Command line: | Meaning

=qo q1 92 g3 ¢ | Create quaternion (qo,q1,4z,¢3) and store in register ¢.

+17k Add quaternions in registers ¢ and j and store result in register k.

x1 7k Multiply quaternions in registers ¢ and j and store result in register k.
-1 Negate the quaternion in register ¢ and store result in register j.

Q Terminate the program.

Output format

With the exception of the ‘Q’ opcode, each operation that is executed outputs the result of the
operation in the following format [7] (¢o ¢1 ¢2 g3), where 7 is the index of the register into which
the result was stored.

1999 Maryland High-school Programming Contest

Examples

Input 1:

I % + 0 0

o

H OO R K

[o =Y

0
1

0
0

©O© O N = O

Output 1:

fol (
[11 (
[21 (
fol (
fol (

[R Y

-
=

i)
=
-+
[\V]

O ¥ ¥ + |

B ONWOO R

O O =

O = W

O = O O
= O O O

B PO wwNN O

Output

Lol
(1]
2]
(3l
(3l
Lel
(4]
(4]

NN AN N AN AN SN N

1999 Maryland High-school Programming Contest 10

7 The Spy’s Escape Route

This problem involves computing shortest path subject to motion constraints, as is common in
robotics applications.

A spy is trying to find her way home from her secret hangout to her home base. The streets
of the city are laid out on a square grid. Some intersections cannot be visited, because they have
surveillance cameras. She can only change directions when she comes to an intersection. To avoid
detection, she intentionally avoids walking straight whenever possible. For example, if she enters
an intersection from its south side, then she must leave by going either east, west or back south
again, but she cannot continue straight north. The spy is allowed to visit the same intersection
more than once.

Write a program which determines whether the spy can make it home subject to these restric-
tions, and if so, outputs such a path. The figure below shows some possible situations. Notice that
the path may backtrack at some points. In the situation in the lower right there is no path, because
any path must go straight through the intersection at (2, 1), and this is forbidden. The spy always
starts in the lower left corner and goes to the upper right corner.

he|ght24 O ,,,,,, e End here

Forbidden intersection

o - Endhere
O
: : : : : : ‘ O 0 1 2 ‘3 4 ‘5 idth
C . S = Wi
Start here” 0 1 2 3 4 5 6 7 8=width Start here ”

Input format

The first line of input contains two integers, giving the width w and height h of the grid. There
are h+ 1 east-west streets with y-coordinates ranging from 0 to h, and there are w4+ 1 north-south
streets, with coordinates ranging from 0 to w. The remaining lines contain the integer x and y
coordinates of the forbidden intersections. They are not given in any particular order. The list is
terminated by a line containing only —1. The spy starts her walk in the lower-left corner (with
coordinates (0,0)) and ends in the upper-right corner (with coordinates (w,h)). You may assume
that w and h are each in the range from 0 to 100.

1999 Maryland High-school Programming Contest 11

Output format

If there is no path from the start to end or if any such path would require walking straight through
an intersection, then output “no-path” on a single line. Otherwise if there is a path, output “path”
on one line. Fach of the remaining lines of output contains the # and y coordinates (separated by
spaces) of the intersections along the path, starting with (0,0) and ending with (w,h). The path
does not need to be the shorest possible.

Example

The example below shows the input and output for the situations shown in the above figure on the
right.
Input 1: Output 1: Input 2: Output 2:

ath 4 no-path

o

a0 NN O OO
WNOWNB -
adE NDNDDNDDND OO
W= P WwN O

|
-
GO b b wdh P wwNNRE, R, R, O

B PR wWwwwNDNNNERr s, OO O
1
-

1999 Maryland High-school Programming Contest 12

8 Comparing Trees

You work on a submarine and have just received an updated version the submarine’s manual, which
is several gigabytes in size. The captain doesn’t want the crew to waste time leafing through the
new version trying to figure out how it differs from the one they read in training. On the other
hand, she would hate to accidentally launch a missile when trying to turn on the microwave. As the
grunt on board, you’re assigned the task of comparing the old and new versions and marking how
they differ from each other. For this task, the captain graciously provides you with a highlighter
and lots of coffee.

You have a better idea. Since both versions are available in electronic form, you think of
writing a program that would compare them automatically. The manual is organized hierarchically
in volumes, chapters, sections, subsections, paragraphs, etc., so you model it using a tree (described
below). All you need to do now is write a program that takes two trees and outputs a description
of how they differ.

Figure 1: Comparing Trees

Trees

We use the term tree to mean a rooted, ordered, labeled tree, such as those depicted in Figure 1.
(Computer scientists like to draw their trees upside-down.) Fach tree has a unique “top” node
called its root. In the figure, the node numbered 1 is the root of tree 73. (The node number is used
to identify a node and is indicated within the circle representing the node.) Each node in a tree
also has a label, which is indicated next to that node in the figure. For this problem, we assume
that labels are real numbers. For example, the label of node 4 is 4.40. Fach node except the root
also has a unique parent node. In the figure, we connect a node to its parent (depicted above the

1999 Maryland High-school Programming Contest 13

node) using a line. For example, the parent of node 7 is node 1. A node is called it’s parent’s
child. Nodes that do not have any children are called leaf nodes; the rest are called interior nodes.
The children of each interior node are ordered, and the figure depicts the children of each node
left-to-right in this order. For example, the children of node 2, in order, are 3, 4, and 6.

All the nodes that lie on the path (of length zero or more) from a node to the root are called
that node’s ancestors. Note that every node is its own ancestor. If a node ny is the ancestor of
node ng, then ng is called a descendant of ny. The tree consisting of all the descendants of of a
node n is called its subtree. The length of the path from a node to the root is called that node’s
depth. Thus, the depth of the root is always 0. In our example, the depth of node 4 is 2.

The preorder list of a tree consists of the root followed by the preorder list of the subtrees rooted
at its children, in order. For example, the preorder list of tree 77 is (1,2,...,9). The preorder list
of tree T3 is (13, 11, 14, 15, 19, 12, 16, 17, 18).

Editing Trees
Given such a tree, we can edit (modify) it using the following three kinds of edit operations:

o An update operation can be used to change the label of a node. For example, we can change
the label of node 3 to 3.41 by using the operation upd(3,3.41). That is, the operation upd(n,!)
changes the label of node n to [.

o A delete operation can be used to remove any subtree from a given tree. For example, we can
remove the subtree rooted at node 4 by using the operation del(4). That is, the operation
del(n) applied to any tree containing n all of n’s descendants (including n) from the tree.

o An insert operation can be used to attach one tree at some point in another tree. Refer to
Figure 2. The third arrow in Figure 2 depicts the tree T’ being attached as the second child
of the node 2 in tree T by using the operation ins(T’,5,2). That is, an operation ins(T,n, 1)
makes T’ the ith child of node n.

An edit script is a sequence of such edit operations. An edit script is applied to a tree by
applying the operations one after another in the order they are listed. Figure 2 depicts the edit
script (upd(1,1.12), upd(3,3.41), del(4), ins(1’,2,2), upd(7,7.77), upd(8,8.20)) applied to tree T}
from Figure 1. Note that the resulting tree is identical to the tree T (except for node identifiers).
We say that our edit script transforms Ty to 1.

Costs
Each edit operation has a cost associated with it as described below:

e The cost of an update operation is simply the absolute value of the difference between the old
and new labels. Thus updating a label 1.11 to 1.12 costs 0.01 units and updating a label 9.99
t0 99.9 costs 89.91 units.

e Fach node has a deletion cost that depends on its label and that is specified as part of the
input. In Figure 1, the deletion cost of a node is indicated in parentheses next to the node.
If no such number appears next to a node, its deletion cost is 1 unit by default. The cost of
a delete operation is the sum of the costs of deleting all the nodes in the deleted subtree. For
example, the operation del(4) in our example costs 0.4 + 0.1 = 0.5 units.

1999 Maryland High-school Programming Contest

upd(1.1.12), upd(3.3.41)

Figure 2: Transforming a tree using an edit script

14

1999 Maryland High-school Programming Contest 15

e Similarly, each node has an insertion cost that depends on its label and that is specified as
part of the input. In the figure, the insertion cost of a node is indicated in square brackets
next to the node. If no such number appears next to a node, its insertion cost is 1 unit by
default. The cost of an insert operation is the sum of the insertion costs all the nodes in the
inserted subtree. For example, using the costs indicated in Figure 1, the cost of the operation
ins(T',2,2) in earlier example is 4.4 + 0.13 = 0.53 units.

The cost of inserting or deleting a node whose label does not appear in any of the input trees
is 1 unit by default.

The cost of an edit script is the sum of the costs of the operations it contains.

Goal

Your goal is to write a program that takes as input two trees (and the node insertion and deletion
costs) and produces as output the cost of a minimum-cost edit script that transforms one tree to
another. (You need not compute such a minimum-cost edit script; you only need its cost.) As was
the case for the trees in Figure 1, there is no correspondence between the node identifiers in the
two trees; thus they are not specified in the input. You are also required to pretty-print the input
trees as described below.

Input format

The input file first lists the nodes in the first tree in preorder, one per line. For each node, the
input file contains a line with three numbers that are separated using spaces. The first number
is the depth of the node. The second is that node’s label. The third is that node’s deletion cost.
After all the nodes in the first tree are listed in this manner, the input file contains a line “-1 0
0”7 to denote the end of the tree’s listing.

Next, the input contains a blank line followed by a listing of the second tree. The second tree is
listed using the method described above, the only difference being that the third number on each
line is now the node’s insertion cost. This listing of the nodes in the second tree is also followed by
aline “-1 0 0” to denote the end of the listing.

Assume that all real numbers in the input are in the range [0,99.99] (inclusive).

Output format

The output consists of two parts. First, you pretty-print the two input trees. Second, you report
the cost of a minimum-cost edit script that transforms the first tree to the second.

You must first output the first tree by listing one node per line, in preorder. Each such line
must begin with 4d space characters, where d is the depth of the node. Next, it contains the node’s
label, with two digits before and two digits after the decimal point. If the label is less than 10,
include a leading space character. Thus, 9.87 is output as “,9.87” where |, denotes the ASCII
space character. This label is followed by a single space character, followed by the node’s deletion
cost listed in the same format as that used for the label.

Next, you must output a blank line, followed by the listing of the second tree in the above
format (with the deletion cost replaced by the insertion cost).

Finally, you output a blank line followed by a line containing the string “Distance:” followed
by a space character followed by the the cost of the minimum-cost edit script. For outputting this

1999 Maryland High-school Programming Contest

16

cost, use the same format you used for the tree labels. (You can assume that the cost will always
be a real number in the range [0,99.99].)

Do not include anything else in your output, not even blank lines.

Example

For the trees depicted in Figure 1, the input and output is shown below. (For clarity, we use the
character to denote the ASCII space character.) Note that the space characters at the beginning of
lines in the input are optional; your program should work whether or not they occur in the input.
As it turns out, the edit script depicted in Figure 2 is a minimum-cost edit script for this input,
and its cost is 6.28, as reported in the output.

Input 1:

Opl.11,1.01
uulp2.56,3.29
uuuu203.14.1
uuuu2u4.4,,0.4
Luooow3ul30.1
uuuu206.18,,0.11
uuln7ul
uuuu2u8ul
Luuuu2u99.99.41
-1,0,0

0,1.12,1.20
uulyu2.56,2.39
uuuu2,3.41,2.9
uuuu2,44.44.4 .4

uuuuon3u13.13,0.13

LLLL206.18,11.0
Lulu7. 7701
LuLu2u8 . 201
LLLL2099. 99,1
-1,0,0

Output 1:

ul.11,,1.01
Luuuu2.56,3.29
vuuuououn3-14,,1.00
vuouuuonu4 - 40,040
uuuouuuuuouu13.00,,0.10
wuouuoonu® - 185,0. 11
uuuuu? .00,,1.00

uuuuuuuuus-oouui-oo
uuuuuuuu99-99uu1-00

ul.12,,1.20
Luuun2.564,2.39

UUUUUUUUU3'41UU2-90
UUUUUUUU44'44UU4-4O

UUUUUUUUUUUU13'13UUO-13
UUUUUUUUU6'18U11-OO

UUUUUUUUUUUU13'13UUO-13
UUUUUUUUU6'18U11-OO

uuuuu?.??uui.oo

UUUUUUUUU8'2OUU1-OO
uuuuuuuu99-99uu1-00

Distance:,6.28

Input 2:

oyt

uuln3ul
wlp2.21.1
oun203.14,,1.73
Luun207.840.5

UU1U1U1
_1u0uo

oyt

uuln3ul
elp2pt.t
oun203.14,,1.73
Luun208.7,0.3

UU1U1U1
_1u0uo

Output 2:

u1.00,,1.00
uuuuu3.00,,1.00
uuuuu2-2041.10
vuuouuoou3 - 144,1.73

puuuuouou? - 804,050
uounpl . 00,1.00

11.00,,1.00
uouun3-00,,1.00
uouun2.00,,1.10

UUUUUUUUU3'14UU1-73

puuuuouou8. 705,030
uounpl . 00,1.00

Distance:1.00

