

ABSTRACT

Title of Document: ON THE FOUNDATIONS OF DATA

INTEROPERABILITY AND SEMANTIC
SEARCH ON THE WEB

 Hamid Haidarian Shahri, Doctor of Philosophy,

2011

Directed By: Professor Donald Perlis

Department of Computer Science

This dissertation studies the problem of facilitating semantic search across

disparate ontologies that are developed by different organizations. There is

tremendous potential in enabling users to search independent ontologies and discover

knowledge in a serendipitous fashion, i.e., often completely unintended by the

developers of the ontologies. The main difficulty with such search is that users

generally do not have any control over the naming conventions and content of the

ontologies. Thus terms must be appropriately mapped across ontologies based on

their meaning. The meaning-based search of data is referred to as semantic search,

and its facilitation (aka semantic interoperability) then requires mapping between

ontologies.

In relational databases, searching across organizational boundaries currently

involves the difficult task of setting up a rigid information integration system. Linked

Data representations more flexibly tackle the problem of searching across

organizational boundaries on the Web. However, there exists no consensus on how

ontology mapping should be performed for this scenario, and the problem is open.

We lay out the foundations of semantic search on the Web of Data by comparing it to

keyword search in the relational model and by providing effective mechanisms to

facilitate data interoperability across organizational boundaries.

We identify two sharply distinct goals for ontology mapping based on real-

world use cases. These goals are: (i) ontology development, and (ii) facilitating

interoperability. We systematically analyze these goals, side-by-side, and contrast

them. Our analysis demonstrates the implications of the goals on how to perform

ontology mapping and how to represent the mappings.

We rigorously compare facilitating interoperability between ontologies to

information integration in databases. Based on the comparison, class matching is

emphasized as a critical part of facilitating interoperability. For class matching,

various class similarity metrics are formalized and an algorithm that utilizes these

metrics is designed. We also experimentally evaluate the effectiveness of the class

similarity metrics on real-world ontologies. In order to encode the correspondences

between ontologies for interoperability, we develop a novel W3C-compliant

representation, named skeleton.

ON THE FOUNDATIONS OF DATA INTEROPERABILITY AND SEMANTIC

SEARCH ON THE WEB

By

Hamid Haidarian Shahri

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Donald Perlis, Chair
Professor Mark Austin
Professor Amol Deshpande
Professor Tim Finin
Professor Jennifer Golbeck
Professor Adam Porter

© Copyright by
Hamid Haidarian Shahri

2011

 ii

To my parents and brother

 iii

Acknowledgements

First, I express my deep gratitude to Dr. Don Perlis, my advisor. Don gave me

the freedom to pursue my research interests, and provided guidance and

encouragement throughout my studies at Maryland. His insight, communication

skills, and patience have always amazed me. I have learned many life lessons from

him that will help me put things in perspective in the future. Also, I am grateful to the

members of my committee Drs. Mark Austin, Amol Deshpande, Tim Finin, Jennifer

Golbeck, and Adam Porter for their suggestions and kind support.

I appreciate the suggestions that I received about this work from Jim Hendler,

Hugh Glaser, and Philip Bernstein. Many friends have helped me in my graduate

studies. I would like to thank Shomir Wilson, Wikum Dinalankara, Greg Sanders,

Vladimir Kolovski, Christian Halaschek-Wiener, Taowei Wang, Ron Alford, and

others I may have forgotten. I also thank the members of the ALMECOM research

group: Michael Anderson, Michael Cox, Scott Fults, Darsana Josyula, Tim Oates, and

Matt Schmill. Thanks to my past mentors: Ahmad Abdollahzadeh, Hossein Pedram,

Mahmoud Naghibzadeh, Mohsen Kahani, and Mohammad Hossien Yaghmaee.

My family in the US have been very caring and supportive, especially Saied,

Mehdi, and Mina. Mehdi is the person that I can always turn to, when I am facing

unfamiliar and difficult situations. I am truly indebted to my brother, Saied, for his

kindness, willingness to help, and technical expertise.

Finally, I am grateful to my parents for their unconditional love and support,

and for all the sacrifices that they have made so that I get the best education. I

appreciate all the opportunities they made available to me.

 iv

Table of Contents

Acknowledgements.. iii
Table of Contents... iv
List of Tables ... vi
List of Figures ... vii
Chapter 1: INTRODUCTION... 1

1.1. Contributions.. 5
1.2. Organization... 7

Chapter 2: THE AUTOMATED INFORMATION ASSIMILATOR.......................... 9
2.1. Overview.. 9
2.2. Toward a Solution.. 13
2.3. Natural Language Interface.. 16

2.3.1. Motivations for a Dialogue Agent .. 17
2.3.2. Overview of the Needed Architecture .. 19
2.3.3. Examples of Anomalies in Dialogue .. 24

2.4. English Generation... 27
2.4.1. Information Extraction.. 27
2.4.2. Language Generation .. 29

2.5. Envisioned Architecture at User Level .. 30
2.6. User Intentions and Semantic Search .. 32

2.6.1. Overview... 32
2.6.2. Semantic Search.. 34
2.6.3. Keyword Search.. 37
2.6.4. Research Challenges ... 39
2.6.5. Summary of Semantic Search... 41

2.7. Summary of TAIA ... 42
Chapter 3: ONTOLOGY MAPPING.. 44

3.1. Overview.. 44
3.2. Ontology Mapping: Problem Definition.. 47
3.3. Goals of Ontology Mapping .. 48

3.3.1. Ontology Mapping for Ontology Development.. 49
3.3.2. Ontology Mapping for Interoperability .. 52
3.3.3. Contrasting the Goals at a Glance... 3
3.3.4. Implications of Context on Ontology Mapping .. 6

3.4. Preliminaries for Formalization ... 14
3.5. Class Matching: A Critical Part of Facilitating Interoperability...................... 17

3.5.1. Information Integration in Databases.. 18
3.5.2. Interoperability.. 19
3.5.3. Expression of Simple Facts in the RDF Model .. 21
3.5.4. Expression of Simple Facts in the Relational Model................................ 22
3.5.5. The Analogy between the RDF and Relational Models 23
3.5.6. Class Matching: Why.. 25

3.6. Categorization of Class Similarity Metrics.. 27
3.7. Reasoning for Class Matching ... 32

 v

3.8. Instance Matching.. 33
3.9. Summary .. 35

Chapter 4: ALGORITHMS AND EXPERIMENTS .. 36
4.1. Class Matching Algorithm... 36
4.2. Skeleton Assessment.. 37
4.3. Experimental Methodology ... 44

4.3.A. General Methodology Background.. 44
4.3.B. Specifics in Our Case ... 51
4.3.C. Other Issues .. 54

4.4. Experimental Evaluations .. 55
4.4.A. Four Near-Ideal Pairings.. 56
4.4.B. University Ontologies .. 61
4.4.D. Business Ontologies... 72
4.4.E. Ontologies from Other Domains .. 74
4.4.F. Queries.. 82
4.4.G. Broader Interpretation .. 84

4.5. Summary .. 86
Chapter 5: RELATED WORK .. 87

5.1. Dialogue Agent .. 87
5.2. Semantic Search... 91
5.3. Linked Data.. 94
5.4. Ontology Integration (Development)... 95
5.5. Schema Matching and Information Integration ... 101
5.6. Duplicate Elimination and Data Cleaning in Databases 103

Chapter 6: CONCLUSIONS AND FUTURE DIRECTIONS................................. 106
6.1. Conclusions.. 106
6.2. Future Directions ... 112

6.2.1. Effective User Interfaces... 112
6.2.2. Ranking of Results and Data Quality.. 113
6.2.3. Dealing with Distributed and Dynamic Data.. 114
6.2.4. Scalability of Storage and Retrieval ... 115

Bibliography ... 117

 vi

List of Tables

Table 3.1. A brief overview of the ontology mapping goals across
different dimensions.

Table 4.1. The results of our MATCH algorithm on the OAEI
Benchmark.

Table 4.2. The mean of results of the 3XX OAEI Benchmark
ontologies, for our MATCH algorithm.

Table 4.3. Comparison of results of six matching tools on the 3XX
OAEI Benchmark ontologies.

Table 4.4. Statistical tests for comparison with other tools.
Table 4.5. The characteristics of the university ontologies.
Table 4.6. The characteristics of the languages ontologies.
Table 4.7. The characteristics of the company ontologies.
Table 4.8. The names of various ontologies and their features.
Table 4.9. The results of the MATCH algorithm on different pairs of

ontologies from diverse domains, with different levels of
expressivity, and created by independent organizations.

 vii

List of Figures

Figure 2.1. A schematic view of The Automated Information
Assimilator (TAIA).

Figure 2.2. Overview of the needed architecture, which shows the
communication between human user and robot via a dialog agent.

Figure 2.3: (a) Users querying their own ontology. (b) System
administrator creates the skeletons, and then users can query
multiple ontologies transparently.

Figure 2.4. Two different entities with the same name “Michael
Jordan,” represented in the RDF data model. Each entity has a
different set of properties and property values. The nodes represent
the entities. The edges represent the properties, which hold
between the entities.

Figure 3.1. Two ontologies O1 and O2, and the merged (integrated)
ontology Omerged.

Figure 3.2. Ontologies O1 and O2, which belong to two different
autonomous organizations, are shown in (a) and (c). Skeleton S,
connecting the ontologies, is shown in (b), in the middle. The
concepts in ontology O1 (shown in the figure) are the
organizational units within University1. The instances in ontology
O1 (not shown in the figure) are the courses that are offered by the
organizational units within University1. Each concept in skeleton S
is connected to its corresponding concepts in the original
ontologies O1 and O2, with a subclass relationship.

Figure 3.3. Different ways of creating the skeleton for multiple
ontologies.

Figure 3.4. Example of the information integration problem in
databases. The goal is to generate a mapping between columns
(Town and City) in different local schemas (S and T), by mapping
them to some global schema. The local schemas usually reside in
separate autonomous data sources (DataSource1 and DataSource2).

Figure 3.5. Correspondence between the RDF and relational models.
(a) The predicate hasAuthor, which is the relationship between the
instances of class Book and the instances of class Author, in the
RDF model. (b) The table hasAuthor, which has two columns,
namely Book and Author, in the relational model.

Figure 3.6. The correspondence between classes (in the RDF model)
and columns (in the relational model). There is also a
correspondence between instances of a class (in RDF) and column
values (in relational).

Figure 3.7. A more general correspondence between the RDF and
relational models. (a) The three classes in RDF are Book, Author,
and Publisher. The name of the two predicates (hasAuthor,
hasPublisher) in RDF is arbitrary and could be anything. (b) A

 viii

table in the relational model, which has three columns, namely
Book, Author, and Publisher. The name of the table (TableName)
is arbitrary.

Figure 4.1. The shape of the hierarchy of skeleton S is shown in (a)
and (b), respectively, when using ontologies O1 and O2, for the
shape of the skeleton.

Figure 4.2. Performance of various string similarity measures for
finding corresponding classes in ontologies, based on name.

Figure 4.3. Running time of computing the lexical similarity of
classes using various string similarity measures.

Figure 4.4. Detection of more matching concepts using additional
concept similarity metrics, such as extensional, extensional closure,
and global path.

Figure 4.5. Running time of computing lexical, extensional,
extensional closure and global path similarity metrics.

Figure 4.6. Using extensional, extensional closure and global path
similarity metrics, in addition to lexical, increases the recall and F1
quality measure.

Figure 4.7. The number of matches found using different class
similarity metrics for two ontologies in different languages.

Figure 4.8. While the lexical similarity metric can not find any
matches, the use of the extensional class similarity metric enhances
the recall and F1 quality measure.

Figure 4.9. The effect of the number of instances on the recall of
extensional similarity metric, when removing instances from both
ontologies.

Figure 4.10. The effect of the number of instances on the recall of
extensional similarity metric, when removing instances from one
ontology.

Figure 4.11. The number of matches found using different class
similarity metrics for the two company ontologies.

Figure 4.12. The use of the extensional class similarity metric
enhances the recall and F1 quality measure.

Figure 4.13. A reasonable threshold like 0.9 performs very
differently on different ontologies.

Figure 4.14. The probability of achieving an F1 value that is above a
given level, using our class matching algorithm.

Figure 4.15. The time that was required for a human to answer ten
different queries, without using a skeleton and class matching.

Figure 4.16. The time that is required for a human to find the
matching classes vs. the time that is required to execute the class
matching algorithm and create a skeleton.

 1

Chapter 1: INTRODUCTION

This dissertation studies the problem of facilitating semantic search across

disparate ontologies, i.e., enabling the search of data across organizational

boundaries. Today, users need to search, browse, and discover knowledge stored in

different ontologies (knowledge bases), where in general, the ontologies are

developed independently by different organizations and maintained autonomously.

Hence, users do not have any control over the content of the ontologies, and there are

no unifying standards that the ontologies must follow, making such search difficult.

In particular, the same term may be used for different entities in different ontologies,

and different terms for the same or similar entities. Thus terms must be appropriately

mapped or associated across ontologies; any search that ignores meaning will in

general perform poorly.

The meaning-based search of data is referred to as semantic search (refer to

Section 2.6), and its facilitation (aka semantic interoperability) then requires ontology

mapping (refer to Chapter 3). There are then two underlying issues to semantic

interoperability: (i) mapping (based on meaning), and then (ii) capturing the results of

such mapping in a useful representation.

 2

There is tremendous potential in enabling users to browse and discover

knowledge from independent knowledge bases in a serendipitous fashion, i.e., often

completely unintended by the developers of the knowledge bases, at the time when

the knowledge bases were designed (at design-time). One simple example in the

health care domain is as follows: If we are looking at Alzheimer’s disease, for drug

discovery, there is a large amount of Linked Data which is just coming out, because

scientists in that field realize that this is a great way of getting out of their data silos,

i.e., scientists had their genomics data in one database in one building, and they had

their protein data in another. Now, they are exposing their data in Linked Data format

and they can ask: “What proteins are involved in signal transduction and also related

to pyramidal neurons?” We can type that question into Google. Of course, there is no

one page on the Web which has answered that question, because nobody has asked

that question before. From a Google search, we get 223000 hits, but not results that

answer the question. We query the Linked Data, which they have now put together,

and we get 32 hits, each of which is a protein which has those properties. Now, we

have found the proteins that we were looking for. This searching of data across

organizational boundaries enables us, as scientists, to answer questions that we were

not able to answer before -- questions which actually bridge across different

disciplines [Ber09]. In order to perform such a search, however, we need semantic

mappings between different data sources.

Applications of semantic mappings: Data can be represented in different ways,

for example in relational schemas, ontologies, and XML DTDs. In many applications,

there is a need for finding semantic mappings between different representations of

 3

data. Finding such semantic mappings is necessary for enabling the manipulation,

translation, and querying of data, as explained below. These applications have been

studied actively in the database and AI communities.

In databases, one of the earlier applications, which has been studied since the

80’s, is in schema integration where a set of schemas are merged into a global schema

[Bat86, She90, Par98]. Another application is in data translation between databases,

where data from different databases needs to be transformed to conform to a single

target schema to allow further analysis. Data translation is one of the critical steps in

data warehousing and data mining [Mil00, Rah01].

In recent years, data integration systems which provide a unified query interface

to a number of data sources are becoming ubiquitous [Gar97, Ive99, Lam99, Hal05,

Hal06]. This unified query interface is achieved by posing the query against a

mediated schema that has mappings to the local data sources. There has also been

considerable attention on model management, which aims to create tools to easily

manipulate models of data, e.g. data representations and ER diagrams [Ber00, Rah01,

Ber07]. Matching is a key operation in these data model manipulations.

In the field of AI, building new knowledge bases based on existing ones has

been of interest since the 80’s. In such knowledge base construction applications it is

necessary to find matching entities and relationships [Hef01, Bro01, Ome01, Mae01].

In the last decade, with the start of the Semantic Web efforts, there is a move towards

publishing data on the Web (Linked Data) and annotating Web pages [Ber01, Biz09,

Mul10, Hea11]. Many of the applications that work with Linked Data and annotated

 4

Web pages need to find correspondences between ontologies in order to facilitate

access to independent data repositories.

Challenges: When finding semantic mappings between data representations,

each element from one representation needs to be compared to all the elements of the

other representation. This exhaustive nature of the search can be a limiting factor in

some applications. Often, in the matching process, there is no access to the creators of

the representations and the documentation that describes the data representation.

Creators may have moved to other organizations and documentations may be old and

out of date. So the elements need to be matched based on similarity metrics, but any

such metric is unreliable. For example, area and location can mean the same thing in

one scenario, but they can mean different things in another scenario. In other words,

there is an inherent uncertainty involved in the matching process. Finally, matching

itself can be subjective, i.e. different users may have different opinions about whether

two elements correspond or not.

In relational databases, searching across organizational boundaries currently

involves the very tedious and difficult task of setting up and maintaining a rigid

information integration system, which is confined to some pre-determined and

specific domain, for example a flight reservation system such as Expedia. As another

example, in a project in the GTE communications company, the goal was to integrate

40 databases that have a total of 27000 attributes in relational tables. The estimated

time required to find and document the correspondences was more than 12 person-

years [Li00].

 5

Linked Data representations for the Web, like RDF, have been developed and

standardized recently, to more flexibly tackle the problem of searching across

organizational boundaries – searching the data in an ad hoc and serendipitous fashion

[bus07]. However, there exists no consensus on how ontology mapping should be

performed for this scenario, and the problem is open [van08, Mil10]. That is, there are

no good current methods to solve this problem. In this dissertation when we use the

term ontology, we are primarily referring to Linked Data in the form of RDF(S).

Traditional Web search engines, like Google, only perform relevance ranking

and largely ignore this Web data. They primarily focus on the shallow Web (Web of

documents – unstructured data), which is free-formed text, and not the deep Web

(Web of Data – semi structured data), which is data stored in databases or ontologies.

Also, traditional relational databases can process expressive queries but do not

attempt to work on Web data.

1.1. Contributions

The central focus of this dissertation is to lay out the foundations of semantic

search on the Web of Data by comparing it to keyword search in the relational model

and by providing effective mechanisms to facilitate data interoperability across

organizational boundaries.

I demonstrate the advantages of using semantic search on Linked Data by

comparing it to keyword search on the relational data model. Then, some of the

crucial research challenges of semantic search on Linked Data are presented. I

develop a suitable representation that enables users to discover knowledge from

 6

different knowledge bases, more generally and effectively than existing alternatives. I

refer to this representation as a skeleton and design the necessary algorithms for

creating the skeleton. More specifically, the skeleton provides a uniform

representation of mappings across ontologies and is stored independently of those

ontologies. A user’s search may then be largely guided and managed via the uniform

skeleton representation, freeing the user of the burdensome and time-consuming task

of mapping during the search.

The key contributions of this dissertation are as follows:

 I provide an overarching definition of ontology mapping that allows the

systematic analysis and distinction of different goals of ontology mapping. I

clarify the relationship between ontology merging and facilitating

interoperability through precise use cases. Then, different implications of the

goals are collectively analyzed. These implications serve as a guideline for

performing ontology mapping, and they influence the design of tools and

algorithms for ontology mapping.

 I rigorously compare facilitating interoperability between ontologies with

information integration in databases. Based on this comparison, class

matching is emphasized as a critical part of facilitating interoperability, and

various class similarity metrics are formalized and evaluated on real-world

ontologies.

 I design algorithms for class matching and creating a novel W3C-compliant

representation, named skeleton, to encode the correspondences between

 7

ontologies and facilitate interoperability between them. These algorithms are

compared to existing approaches.

1.2. Organization

The rest of the dissertation is organized as follows. Chapter 2 describes a

detailed map of a system architecture for answering questions using semi-structured

data on the Web. We call such a system The Automated Information Assimilator

(TAIA). TAIA receives a query from a user. The query is narrowed down to

determine what the user is really asking. Relevant data sources are accessed, and the

results are packaged and presented back to the user. In Section 2.3, we consider how a

user query can be mapped to the specific pieces of information that the user is asking

for. In Section 2.4, we describe how the result of a query can be presented to the user

in natural language. Section 2.6 demonstrates how the sources of information can be

narrowed down, so that the results match the user’s intention. We compare semantic

search in Linked Data with keyword search in the relational model to show the

advantages of semantic search. Then, we outline some of the crucial research

challenges of semantic search.

In Chapter 3, the ontology mapping problem is defined, elaborated, and key

algorithms are provided. In Section 3.3, we put the ontology mapping problem in

context based on its use cases. With the use cases, we distinguish the ontology

development goal from facilitating interoperability. Section 3.4 provides the formal

definitions for the necessary terminology. In Section 3.5, the ontology mapping

problem for interoperability is compared to the information integration problem in

 8

databases. We describe the processes involved in information integration and

interoperability in databases. Then, we describe how facts are expressed using the

RDF and relational models and compare the models. Finally we illustrate that class

matching is a critical part of ontology mapping for facilitating interoperability. In

Section 3.6-3.8 we formalize four different class similarity metrics and describe the

role of the ontology reasoner.

In Chapter 4, we present the algorithms and experiments. Section 4.2 assesses

the skeleton for interoperability between ontologies and presents the algorithm for

creating the skeleton. Then we discuss the experimental methodology and evaluation.

Chapter 5 describes the related work from different areas, including: dialogue

agents; semantic search; Linked Data; ontology integration; schema matching and

information integration; and data cleaning in databases. Chapter 6 concludes with a

summary of the dissertation and directions for future research.

Parts of the work described in this dissertation have been published in conferences.

The work on dialogue agent in Chapter 2 is published in [Hai08a, Hai10b]. The work

on semantic search in Chapter 2 is published in [Hai10c]. The work on data

interoperability on the Web in Chapter 3 and 4 is published in [Hai08d, Hai10e].

 9

Chapter 2: THE AUTOMATED INFORMATION

ASSIMILATOR

2.1. Overview

Humans are inundated with vast amounts of information, today. This

information can come from many distributed sources and is far beyond what we can

deal with on our own. As a result, there is an increasing demand for (semi)automated

systems that sort through and assimilate this “information glut” for us. The high-level

goal is to create an assimilator that is a go-between humans and the information. The

assimilator would get the queries from a human and then gather information from all

relevant sources, by culling through it, as accurately as possible. It pulls together all

that bears usefully on what the human wants to know and provides the human with a

coherent solution that corresponds to the human’s intent.

By analogy, the assimilator is somewhat like the President’s chief of staff,

deciding which of the very many, eagerly presented, inputs get through to the

President. This should be done in an order and form most useful to the President’s

concerns. However, the ordinary query from the ordinary human is actually

 10

confronted with a much harder problem than that of the chief of staff. The latter may

have to deal with several hundred or even a thousand potential inputs per day, from

various sources of information. But, the ordinary person with an ordinary question is

faced with many millions of potential inputs, and growing daily. This is far beyond

the ability of any human “chief of staff” to manage.

The task of gathering information from different sources is performed by many

real-world applications, which are sometimes referred to as information integration

applications. For instance, if we want to buy a plane ticket for Chicago on Saturday,

we would go to a site, like Expedia, to pose our query and get the price for all

available flights from different airlines, e.g. United, Delta, American Airlines, etc.

Similar to the Expedia site for the airline domain, there are also online shopping

(ecommerce) sites, like pricegrabber.com, which sell products on the web from

hundreds of vendors, through a uniform query interface.

Example: Consider the following motivating example, which illustrates the

applications of information gathering on the Web. Barbara is a sophomore math

major at the University of Maryland. She is considering taking a math course next

semester. She also has access to The Automated Information Assimilator (TAIA).

She asks, “What Algebra course will be offered next semester?” There could be many

different courses, named Algebra, which are being offered by different universities.

These courses may lead to results that are not what Barbara intended. TAIA would

need to only return the results that match Barbara’s intention. Also, there is an issue

of time, i.e. TAIA would need to know when the courses are being offered, in order to

only return the courses that will be offer “next” semester. TAIA would need a correct

 11

interpretation of current time, so that it can return accurate results. Barbara, however,

may have different questions about various things. For instance, right now she wants

to find out about Algebra courses offered for the next semester. Later on, she may

want to know what flights to Chicago are available for this weekend. Still later, she

may want general information about Rhesus monkeys, Michael Jordan, and then

about a particular local restaurant.

Currently, for each of the above topics, there are useful websites (e.g. an online

campus schedule of courses, Expedia, Wikipedia, campusfood.com, etc.) that may

provide some answers. In other words, there are general-purpose online information

sources (e.g. Wikipedia), databases specific to a particular narrow topic (e.g. a

campus course schedule), and sometimes even a specialized collection of databases

for a given topic (Expedia, campusfood.com). Expedia has the additional feature of

handling queries across databases -- Barbara need not specify an airline -- whereas for

campusfood.com, she is directed to a particular campus and cannot easily get

information about, for instance, French-Japanese fusion restaurants near West Coast

campuses.

These websites, however, have some limitations. The questions and answers are

often not in natural language. Also, these sites usually use relational databases, and

not more expressive data representations, i.e. ontologies. More importantly, current

sites only work for questions that have been anticipated by the site’s developers. In

addition, the sites only answer questions that are related to a specific domain. Barbara

has to juggle different search engines and/or databases: Expedia, campus schedules,

Wikipedia, and campusfood.com. This is just the beginning: other questions she may

 12

have will require additional resources. Instead of having the user know about all the

(changing) engines and databases, why not automate this? Why not a general-purpose

integrated multiple-database search -- combining the features of Wikipedia and

Expedia: The Automated Information Assimilator? TAIA would free the user from

any need to know about what sources and query interfaces are available, let alone

which pertain to which topic.

Building TAIA presents a whole host of issues. The Web overall is far too large

for any set of mappings to be even remotely close to being complete. The Web is

largely unstructured, so that disparate sources (sites) may be in various forms (e.g.

natural language, images, tables, etc.). Meanings of a given expression can change

from one source to another, within one source at different times, and even within one

source in different contexts. The aims of the user (who queries the system) are not

always clear -- intentions sometimes must be inferred based on world-knowledge and

context that are not present in the query itself. The enormous abundance of data on

the Web can lead to more results than a human user can digest, which raises the need

for appropriate ranking and summarization. The results may be in so many disparate

forms that they will confuse the user, again requiring suitable “packaging” and/or

explanation. There may be significant gaps, redundancies, and inconsistencies in the

available data, which might mislead the user, if not pointed out.

These days, a considerable amount of data is available on the Web.

Consequently, the problem of answering questions using data sources on the web, is

gaining great interest and attention in the database community. This interest may also

have been fueled in part by the Semantic Web (Data Web) and Linked Data research

 13

efforts. For example in 2009, the 35th International Conference on Very Large Data

Bases (VLDB) dedicated two panels to this problem. One panel was titled

“Answering Web Questions Using Structured Data - Dream or Reality?” and the

other was titled “How Best to Build Web-Scale Data Managers?”

In a recent work, van Harmelen states that with the rapid growth of the Internet

and the Web, more principled mechanisms to facilitate semantic interoperability (i.e.

facilitate querying of data) across organizational boundaries have become necessary

[van08]. He emphasizes that despite many years of work on the semantic

interoperability problem, this old problem is still open, and has acquired a new

urgency, now that physical and syntactic interoperability barriers have largely been

removed. Physical interoperability between systems has been solved with the advent

of hardware standards, such as Ethernet, and with protocols, such as TCP/IP and

HTTP. Also, syntactic interoperability between systems has been largely solved by

agreeing on the syntactic form of the data that we exchange, particularly with the

advent of eXtendible Markup Language (XML). For semantic interoperability

between systems, we not only need to know the syntactic form (structure) of the data,

but also the intended meaning of the data. Note that the skeleton (refer to Chapter 3)

is a solution to the semantic interoperability problem, i.e. the skeleton enables users to

query the data across organizational boundaries.

2.2. Toward a Solution

Ideally, TAIA would perform the following tasks:

 14

(i) Accept and parse a question in ordinary natural language,

(ii) Narrow this down to an interpretation of what the human is

really asking (her intention),

(iii) Decide what sources are most relevant,

(iv) Access those sources and cull through their responses for

useful results,

(v) Package those results succinctly, and

(vi) Format and present it back to the human in natural language.

Figure 2.1 shows the schematic view of TAIA.

Figure 2.1. A schematic view of The Automated Information Assimilator

(TAIA).

 15

Let us see what these six tasks amount to in terms of the state of the art today.

Tasks (i), (ii), and (vi) are related to natural language processing problems, on which

much progress has been made. Of these, (iii) and (iv) are perhaps the thorniest at

present, and requires more work for creating more useful assimilators. Tasks (iii),

(iv), and (v) require “world knowledge” about existing sources and their levels of

relevance and accuracy, and also a solution to “the mapping problem:” different

sources tend to use different formats and terminology, making it hard to know when

Abstract Algebra from University of Maryland means the same as Modern Algebra

from Stanford. This problem also crops up in (ii), since the human may also use

different forms and terms from other humans or even from himself at some other

moment; as such this is also an NLP problem: that of word sense disambiguation. For

tasks (iii) and (iv), TAIA may need to deal with the redundancy of results from

different sources, inconsistency of results, and also gaps, i.e. information that could

be missing.

The human questioner may at times want not simply some general information,

but details about some specific one, which may well be reliably available only from

special sources; thus if TAIA simply jams together everything that comes back from a

query on Algebra, much of it may be irrelevant or misleading. In particular, if one

wants to know whether Algebra is a required course for Maryland math majors, the

information about Algebra for math majors at other institutions is not relevant; hence

queries sometimes either explicitly or implicitly contain contextual constraints that

the assimilator may have to ascertain, as in task (ii). In addition, TAIA must have

access not merely to a vast compendium of courses, but of where a given course is

 16

taught -- which bears on tasks (iii) and (iv). While this may sound simply like more

data, traditional data representations often make this difficult or impossible.

This dissertation, in Chapter 3, primarily focuses on deciding what sources are

most relevant to a user’s query and accessing those sources and culling through their

responses for useful results, i.e. tasks (iii) and (iv). In Section 2.6, we also study the

narrowing down of the question according to user’s intent and packaging of results,

i.e. tasks (ii) and (v).

The DeepQA project is a recent research effort at IBM that is relevant to TAIA

[Dee]. It shapes a grand challenge in Computer Science that aims to illustrate how the

wide and growing accessibility of natural language content and the integration and

advancement of Natural Language Processing, Information Retrieval, Machine

Learning, Knowledge Representation and Reasoning, and massively parallel

computation can drive open-domain automatic Question Answering technology to a

point where it clearly and consistently rivals the best human performance. A first stop

along the way is making a formidable Jeopardy contestant named Watson. Jeoperdy

is a game in which humans compete against each other to answer a series of questions

correctly and quickly.

2.3. Natural Language Interface

In the Barbara example in Section 2.1, task (i) is to accept and parse a question

in natural language from user. In this section, we further investigate task (i) and

describe how a dialogue agent can parse the user’s utterance. In essence, TAIA works

 17

in a fashion that is similar to a dialog agent, i.e. TAIA needs to engage the user in a

dialogue and find the correct answer to the user’s question.

2.3.1. Motivations for a Dialogue Agent

Software agents and computer systems are all around us nowadays and we, as

humans, need to interact with such systems on a daily basis. These interactions are

rapidly increasing, especially with the spread of pervasive and ubiquitous computing

paradigms. In many cases, we do not sit in some specific place to interact with a

computer that has the traditional keyboard and monitor. Ideally, we would like the

human-computer interaction to be a constituent part of our daily activities. The most

intuitive way of communication between human beings is via a conversation and

other artificial forms of communication with devices (e.g. configuring and

programming them) are usually cumbersome. For example, consider an automobile

that turns the stereo on and off or adjusts the temperature, by receiving commands,

instead of pushing of buttons. This interaction can be more than issuing of simple

commands, and could be a robust dialog with an agent, with the objective of “the

agent realizing the needs of the human user.”

Applications of a dialog agent that converts user utterances into machine

understandable commands are endless. Some examples of these applications are the

following: A robot that provides services to patients in hospitals or performs routine

tasks for the elderly at home, would be much more usable, if it interacts with ordinary

people through a meaningful conversation; An online shopping bot that interacts with

a user to determine his preferences and then finds the requested item, by searching

 18

various sites; A PDA and schedule planner that communicates with users through a

built-in dialog agent; A GPS route planner that negotiates with users, about different

routes and priorities, instead of the user trying to find out how to operate the device

and configure his preferences. Regardless of how tech-savvy we are, we have all had

the personally frustrating experience of figuring out the way to operate some new

device, flipping through user manuals, and asking technicians for support.

A basic dialog agent must deal with syntax, which determines the structural

relationship between words. A more flexible system also involves semantics, which is

knowledge about the meaning of words, usually represented using a lexicon or

dictionary, i.e. a simple ontology. Humans have an amazing and innate ability to

engage in free-ranging conversation. They have the ability to recognize an unknown

concept and to engage in learning by listening, appropriate questioning, and venturing

tentative opinions. This ability, also called conversational adequacy, has been studied

by [Per98] and seems fundamental to human dialog and more generally to human

reasoning. The principles of conversational adequacy are largely cognitive and not

specific to conversation.

Considering the numerous applications and advantages of communicating with

devices through a flexible agent, instead of learning the exact operation of a device by

human, Perlis et al. are building a cognitive dialog agent that processes the human

utterance, to disambiguate and make sense of the concepts that a human user relates

to [Hai10b]. After processing user’s utterance and collecting the required information,

the agent sends the commands to the device. In essence, the dialog agent allows a

more meaningful human-device interaction. Notice that semantic knowledge about

 19

concepts is usually represented using an ontology. In order for the dialog agent to

have a meaningful communication with devices in various domains, it needs to have a

mapping between the concepts that are understandable for the agent and the concepts

that are understandable for the device. Therefore, the dialog agent requires an

algorithm to find the matching concepts in two ontologies.

We design this essential matching algorithm for the dialog agent in Chapter 4.

The effectiveness of the algorithm is evaluated experimentally through different

experiments. Using this algorithm, the dialog agent interweaves the individual threads

of meaning between the human and device. In fact, a correct mapping of concepts

facilitates a “meeting of minds” and prevents miscommunication between human and

device.

2.3.2. Overview of the Needed Architecture

Our design for the dialog agent is in the context of a much broader project to

tackle the brittleness problem and build intelligent systems that are more robust

[And05]. In this project, in order to make autonomous systems more robust and

tolerant to perturbations, a metacognitive loop is built into the system, which

monitors performance and alters its own decision-making components, when

necessary [And08]. Contiguous to tackling the brittleness problem, one consideration

in the design of our dialog agent is to create cognitively plausible natural language

processing systems. In this section, we provide a brief overview of the system

architecture, and how the dialog agent interacts with other components in the system.

The general goal of the dialog agent is to facilitate the communication between

 20

human users and devices. We provide a novel algorithm for finding matching

concepts in the agent’s ontology and the device ontology.

Note that our design for the dialog agent is domain-independent, i.e. the dialog

agent can be used for interacting with any domain. That is because the ontologies can

model various domains and be specified using the RDF or OWL languages, for

example. An RDF ontology mainly consists of three entities, namely instances,

concepts and relationships. Basically, the things about which we want to represent

knowledge are called instances. Instances are grouped into concepts. The

relationships are specified among pairs of instances. More formal definitions are

provided in Section 3.4 and also available in [RDFp, OWLg].

One of the domains and experimental test beds that we are using for the dialog

agent is a Mars rover application. The general architecture of the system is depicted

in Figure 2.2. A human user needs to interact with a robot (i.e. Mars rover), which is

situated on Mars. The user interacts with the agent via a dialog, and the agent

eventually converts user’s utterances into commands that are comprehensible by the

robot. The dialog agent essentially acts as a mediator, to facilitate the human-robot

interaction.

The robot gradually creates and maintains a model of the environment (Mars),

as it discovers new facts (shown in Figure 2.2). The commands of the robot are

represented in the form of an ontology. The ontology contains a semantic

representation of different information, for example, it specifies what are the various

ways an action can be performed, what parameters and information are required for

 21

carrying out a specific action, what are the preconditions and considerations involved

in planning for some course of action, etc.

The dialog agent is a complex component and handles many issues. It has a user

model (lexicon) to keep track of user’s utterances and requests (refer to Figure 2.2).

The dialog agent starts with a simple ontology. It may augment the ontology with

various terms, as the conversation proceeds, since the human may use some

vocabularies in his utterance, which do not exist in the agent ontology. Over the

course of the conversation, the agent receives user’s utterances and processes them.

The agent also asks further questions by using its ontology, to clarify user intensions

and specify missing information (such as missing parameters). Finally, the dialog

agent needs to map the concepts in its ontology to the concepts in the robot ontology,

before sending commands to the robot for execution. Notice that the dialog agent

relieves users from the burden of acquiring that knowledge, which is necessary for

operating the robot (device).

 22

Figure 2.2. Overview of the needed architecture, which shows the

communication between human user and robot via a dialog agent.

 23

The dialog agent can similarly be used in the online shopping and e-commerce

domain. In the Barbara example in Section 2.1, consider that Barbara specifies

through a conversation, in natural language, with the dialog agent that she is looking

for some “magazine.” The dialog agent understands this concept, i.e. its ontology

includes the term “magazine.” When the dialog agent searches the ontology of

different vendors on the Web, to find the requested item, in some other ontology the

term “journal” may be used instead of “magazine”. Now the dialog agent needs to

match the two concepts using any available similarity metric, and this mapping of

concepts is essential for communication between the human user and different

vendors on the Web.

An effective algorithm for finding similar concepts in different ontologies

should exploit various concept similarity metrics. The concept matching algorithm is

provided in Chapter 4. In a nutshell, the dialog agent needs to discover the correct

sense of a concept and disambiguate it, and the concept similarity metrics serve as

evidence to decide whether two concepts match or not. This mapping of similar

concepts is critical to achieving semantic convergence and attaching meaning to

terms, which could be used differently in the agent’s ontology and the domain

(robot’s) ontology. Sometimes, the concepts that are being compared may not even

have similar lexical representations, while they are semantically equivalent, which

makes the matching process more difficult.

In the Barbara example in Section 2.1, an example query in the university

domain could be “What are all the courses that are offered in the Math department?”

 24

TAIA would respond “The courses are Modern Algebra, Abstract Algebra, and

Geometry.” Another example could be “Who is the instructor for Modern Algebra

course?” TAIA would ideally respond “The instructor is Prof. Knuth.” However, in

the latter example, the ontology may not contain the term “instructor.” This can be

noticed by the metacognitive loop, and a response could be “I do not understand

instructor.” The user can reply “I mean teacher.” TAIA would respond “The teacher

is Prof. Knuth.”

2.3.3. Examples of Anomalies in Dialogue

Some of the anomalies that may arise between the user and the natural language

dialogue agent, depicted in Figure 2.2, are as follows.

LEXICAL LEARNING (learning an unknown word):

USER: Move to the hilltop.

AGENT: What location is hilltop?

USER: Hilltop is at location 3.

AGENT: <moves rover to location 3>

NOVEL GRAMMATICAL CONSTRUCTION/ELLIPSIS:

USER: Explore crater.

AGENT: What location is crater?

USER: 5.

AGENT: <sends rover to explore location 5>

 25

MILD GRAMMATICAL PROBLEMS:

USER: 3 Move to.

AGENT: Do you want me to move the rover to 3?

USER: yes.

AGENT: <move the rover to 3>

MISSING INFORMATION (learn default values):

USER: Explore.

AGENT: What location should I explore at?

USER: 3.

AGENT: <send rover to do science at location 3>

USER: Move to 3.

AGENT: <moves the rover to 3>

USER: recharge.

AGENT: <tells the rover to recharge at current location, 3>

COMPOUND TASKS:

USER: TakePanoAt 6

AGENT: What command is TakePanoAt?

USER: TakePanoAt is MoveTo and then TakePano

AGENT: <moves the rover to location 6 and takes a panoramic picture there>

 26

REPORT CAPABILITIES (basic and situational):

USER: TakePano

AGENT: I cannot TakePano until I Recharge.

USER: What can we do at location 6?

AGENT: The rover can DoScience, Calibrate, or Recharge at location 6.

USER IDIOSYNCRACIES:

USER #1: MoveTo hilltop

AGENT: <moves the rover to location 1>

USER #2: MoveTo hilltop

AGENT: <moves the rover to location 2>

CONTEXTUAL POLYSEMY, SNYNONYMY:

This is similar to lexical learning.

ANAPHORA:

USER: MoveTo 3

AGENT: <sends rover to location 3>

USER: DoScience there

AGENT: <does science at location 3>

 27

2.4. English Generation

In the Barbara example in Section 2.1, in task (vi), TAIA needs to format and

present the results of a question back to the human in natural language. In this

section, we further describe this task. For example, in response to a question like:

“What are the courses offered in the Math Department at the University of

Maryland?” the system can provide a list of courses, or it can generate a sentence in

English and state that: “The courses offered at the University of Maryland are x, y and

z.”

Generating such English sentences may be desirable in various application

settings, e.g. story telling, question answering for children, and generating news. Note

that language generation can be essentially viewed as the reverse direction of

information extraction from text. Each of these issues will be discussed next.

2.4.1. Information Extraction

It is generally accepted that the deep web (which contains structured and semi-

structured data) is significantly larger than the shallow web (which contains

unstructured or free-formed text). The issues discussed in Section 2.6 and Chapter 3

are addressing the access and retrieval of information on the deep web (also known as

the Web of Data). Nonetheless, the unstructured information that available on the

Web of documents (as opposed to the Web of Data) is useful as well. Unfortunately,

this information is only comprehensible and accessible for humans (not machines),

since it is expressed in natural language.

 28

Today, what we can do with the prevailing state of the art technology is to use

Web search engines (like Yahoo, and Google) to perform keyword search on the Web

of documents. In Section 2.6, we demonstrate how semantic search is more robust

than keyword search. However, in order to perform semantic search on top of natural

language text (which is the ultimate goal of some search engine developers), we need

to extract semi-structured information from the natural language text on the Web of

documents.

For example, consider that Barbara wants to know about the “boring” courses

offered next semester, in order to avoid those courses. It is quite likely that no

officially announced, structured data source would contain such information. But

there could be a blog by a student, named Sam, which provides information on this

issue. Sam’s blog could read: “I have taken some course in the University of

Maryland Math department. I think x, y and z are very boring courses. So much that I

had a hard time staying awake, when taking those classes.” Now, we can process this

unstructured information, and extract some triples in RDF (semi-structured format). If

this semi-structured information is stored in an ontology, we can then use the

techniques described in Section 2.6 and Chapter 3 to effectively access this kind of

information, which originally used to reside in text. Note that information extraction

is an active area of research, which involves language understanding and probabilistic

models to deal with the uncertainty of the information being extracted from text

[Sar08, Doa06, Etz05].

 29

2.4.2. Language Generation

The task of generating natural language from a machine representation, such as

a knowledge base or a logical form, is often referred to as Natural Language

Generation (NLG). In some sense, NLG is similar to machine translation, as they may

both need to convert a computer-based representation into a natural language

representation (e.g. English sentences). Natural language generation may be viewed

as the opposite of natural language understanding. In natural language understanding

the system needs to disambiguate the input sentence to produce the machine

representation. In natural language generation, the system needs to make decisions

about how to put a set of facts into sentences.

In the Barbara example, if the underlying information being used, to answer a

question, is represented in RDF format, then simple English sentences can be

generated relatively easily by concatenating the subject, predicate, and object of the

RDF triple. A triple in RDF could state that “Course x, isOfferedBy, Math

Department.” Concatenating these three parts creates a comprehensible sentence for

the user. Of course, if the middle part of the triple (isOfferedBy predicate) has a label

that is more user-friendly, the resulting sentence, which is generated by concatenating

the three parts of the triple, would be more comprehensible to the human user.

Some other examples of natural language generation systems are the ones that

generate letters in standard forms. Such systems do not typically involve grammar

rules, but generate a letter to a consumer, e.g. stating that a credit card spending limit

is about to be reached. More complex natural language systems dynamically create

sentences to meet a communicative goal. As in other areas of natural language

 30

processing, this can be done using either explicit models of language (e.g. grammars)

and domain knowledge, or using statistical models derived by analyzing texts written

by humans.

2.5. Envisioned Architecture at User Level

Here we sketch the ideas that the next chapters develop, namely class matching

and the skeleton representation. In Figure 2.3(a), users are situated at their

organization and are able to use their ontology to search for items in their

organization. However, they are not able to retrieve results from other organizations

(ontologies). That is because the matches or correspondences between ontologies are

not available. System administrators, who control these ontologies, can find the

correspondences between them and create a skeleton to represent these

correspondences. After the skeleton is created, users can retrieve more results, and the

results come from different ontologies, as shown in Figure 2.3(b).

 31

Figure 2.3: (a) Users querying their own ontology. (b) System administrator

creates the skeletons, and then users can query multiple ontologies transparently.

In order to create the skeleton, the administrator can use two operators. The first

operator is for finding the matches between two ontologies A and B, which is denoted

as Match (A, B). The algorithm for this operation is presented in Section 4.1. The

second operator is for creating a skeleton using the found matches, which is denoted

as Skeleton (A, B). The algorithm for this operation is presented in Section 4.2. Note

that the Match operator is commutative, i.e. Match (A, B) = Match (B, A). For

facilitating interoperability between ontologies A and B, both Skeleton (A, B) and

Skeleton (B, A) can be used, but the shape of the skeleton may be slightly different in

these two cases, as discussed in Section 4.2. In other words, the Skeleton operator is

not commutative.

 32

2.6. User Intentions and Semantic Search

2.6.1. Overview

In the Barbara example in Section 2.1, in task (ii) for the information

assimilator, Barbara needs to narrow down the solutions to a question according to

her intention, in order to collect the necessary information. In this section, we further

investigate task (ii) and describe how the interpretation of a query can be narrowed

down accurately.

When using TAIA, Barbara could ask “What are all the courses related to

Algebra, offered next semester?” As described in the work of Grice [Gri], what the

question is stating is different from the semantics of this question (i.e. Barbara’s real

intention). A correct answer to this question may include a course named Modern

Algebra, offered at Stanford. However, Barbara’s intention is probably not all the

Algebra courses that are offered in all universities in the world, i.e. Barbara is only

interested in the courses offered at University of Maryland, since she is a student

there.

We use the term keyword search, when the search is performed on data stored in

the relational data model, as in traditional relational databases, and examples of

keyword search in databases are [Hri02, Say07]. This should not be confused with the

popular keyword search that is used in current Web search engines, like Google.

Keyword search on the relational model is in fact inspired by the success and user-

friendliness of keyword search in Web search engines, on the Web of documents.

We use the term semantic search, when the search is performed on data stored

in the RDF data model. Note that when the data is modeled in RDF, it inherently

 33

contains explicit typed relations or semantics (refer to Section 3.5), and hence the use

of the term “semantic search.”

The central idea of the relational model is to describe a database as a collection

of predicates over a finite set of predicate variables, describing constraints on the

possible values and combinations of values. The content of the database at any given

time is a finite (logical) model of the database, i.e. a set of relations, one per predicate

variable, such that all predicates are satisfied. A request for information from the

database (a database query) is also a predicate.

The purpose of the relational model is to provide a declarative method for

specifying data and queries: we directly state what information the database contains

and what information we want from it, and let the database management system

software take care of describing data structures for storing the data and retrieval

procedures for getting queries answered.

Resource Description Framework (RDF) is a framework and W3C

recommendation for representing information on the Web. More details about RDF

are provided in Section 3.4. RDF is designed to represent information in a flexible

way. The generality of RDF facilitates sharing of information between applications,

by making the information accessible to more applications across the entire Internet.

With semantic search, user’s intentions can be accurately narrowed down in a

more robust way than keyword search. Keyword search, popularized by the success

of Web search engines, has become one of the most widely used techniques for

finding information on the Web. However, the customary indexing of keywords, as

done by Web search engines, is only effective on text Web pages (i.e. unstructured

 34

data), which is also referred to as the shallow Web. It is generally accepted that the

deep Web, which contains structured and semi-structured data, is significantly larger

than the shallow Web. In other words, considerable amount of data is “locked away”

in databases in structured and semi-structured format.

In Section 2.6, we will focus on the deep Web and compare semantic search (in

the RDF model) with keyword search (in the relational model), to illustrate how these

two search paradigms are different. This comparison addresses the following

important questions:

 What can semantic search achieve that keyword search can not (in terms of

semantic search behavior)?

 Why is it difficult to simulate semantic search with keyword search on the

relational data model (i.e. enabling features in RDF that explain the

behavior)?

Let us begin with an example, to illustrate the differences between semantic

search and keyword search.

2.6.2. Semantic Search

Recall from Section 2.1 that the Algebra course could appear in many forms,

with different variations, all of which may not be relevant to Barbara’s question. Let

us illustrate semantic search with another similar example. Consider that we want to

know more about “Michael Jordan.” This entity of type Person could be the

Professor, who teaches Computer Science and is affiliated with UC Berkeley. It could

also be the Basketball Player, who plays for the Chicago Bulls and is in the NBA

 35

league. A close analogy from the unstructured Web of documents is that a Google

search for “Michael Jordan” returns hundreds of pages, most of which are irrelevant

to the Berkeley Professor. Most of the results and the top ranked ones refer to the

Basketball Player, which may not be our intended entity for the search.

Although the use of additional terms like “Berkeley” will help us in finding our

intended entity, we may not know which university he is affiliated with. We might

actually be performing the search to find this piece of information. Figure 2.4

demonstrates the two different entities and the information related to these entities, in

the RDF model. The nodes represent the entities. The edges represent the properties,

which hold between the entities.

Figure 2.4. Two different entities with the same name “Michael Jordan,”

represented in the RDF data model. Each entity has a different set of properties and

property values. The nodes represent the entities. The edges represent the properties,

which hold between the entities.

 36

With semantic search, in the RDF model, users can iteratively refine their

search; navigate through the initial results and filter out the results (entities), which do

not have the properties that they are looking for. In fact, the explicit representation of

properties in RDF (which does not exist in the relation model) facilitates this

refinement of search results. In Figure 2.4, the user could search for “Michael Jordan”

and the instances, which match the search string, will be shown to the user. Now,

since the user knows that he is looking for a Professor, he could select the teaches

property from all the available properties, which refines the search to the entities that

have a teaches property. This way, the Professor entity, which he is looking for, is

found. If the user does not know what Michael Jordan teaches, he can find out the

answer to this question by seeing the value for the teaches property, which is

Computer Science. On the other hand, if he knows this fact, he can add the teaches

property and the Computer Science property value, to further refine the result of the

search if necessary.

Intuitively, humans specify their intended entities in this fashion. In other

words, they define an entity by iteratively specifying extra properties about an entity,

until the desired entity is uniquely identifiable, for example, “Michael Jordan,” the

one who teaches Computer Science and is affiliated with UC Berkeley, etc.

Subclasses and other properties help in the search refinement process. Moreover,

once the desired entity is uniquely identified, we can browse its various unknown

properties, depending on what property we are looking for. A number of interesting

open source browsers for RDF data, which follow the semantic search paradigm, have

 37

already been implemented, e.g. [Ber06, Huy]. In spirit, these browsers enable users to

navigate through “sets of entities of the same type” and gradually refine these sets.

2.6.3. Keyword Search

With keyword search in the relational model, it is very difficult to perform the

semantic search behavior, which was described in Section 2.6.2. This difficulty is in

part due to the fact that the semantics are not encoded explicitly in the relational

model. Consequently, it is difficult to incorporate metadata information (i.e. column

names) into the keyword search process, as described below.

While recent research in the database literature has attempted to retrofit

keyword search onto relational databases, there are various scalability issues in

performing keyword search. For now, ignoring the computational cost (which will be

discussed later), in theory, a keyword search like “Michael Jordan” and “Computer

Science” is possible. However, this keyword search can only be performed, when we

assume that the user knows the property values (i.e. Computer Science) that would

sufficiently refine the search. Clearly, this is not always the case. In other words, the

user can not browse the available properties (like teaches) and navigate through sets

of entities, as in semantic search. Notice that in keyword search, unlike semantic

search, we are not dealing with the teaches property, and instead need to use

Computer Science, which is a property value for the teaches property.

In addition to this limitation in navigation, performing keyword search on top of

relational databases is computationally expensive, especially when the keywords (i.e.

property values) appear in various tables, or there is a long list of keywords, since this

 38

requires many joins. In general, the keyword search process requires various steps,

including: finding keys in tables, finding joinable attributes, generating foreign key

join candidates, and removing semantically incorrect candidates [Say07]. Moreover,

enumerating all possible candidate networks, which may contribute to the results, is

computationally expansive [Hri02].

On the other hand, in semantic search, user’s knowledge of the domain can be

utilized effectively to navigate through sets of entities, and refine the search results.

In fact, this “user-driven” navigation in semantic search, replaces the enumeration of

candidate networks in keyword search (which is computationally expensive). In other

words, while it is unacceptable to ask the user to provide a series of joins and SQL

operations that are necessary for finding the correct results in the relational model, it

is quite acceptable to ask the user to provide additional properties and property values

to refine the search, as described in Section 2.6.2.

Another issue with performing semantic search on the relational model is

related to physical implementation. The physical implementation of most relational

databases follows their logical description, i.e. each table (relation) is stored in its

own file, or collection of files, on disk. Such an implementation is effective for

queries that filter, or aggregate, large portions of a single table. It provides reasonable

performance for queries that join many tuples from one table to another table

[Mar08]. However, this implementation is much less effective for semantic search,

which requires join queries that follow paths from a small number of tuples of one

table to another table. Note that semantic search queries try to accumulate facts about

a small set of entities (e.g. all the cities in a country). Answering such queries requires

 39

one, or more, random I/Os for each table that is used in the path. Therefore, semantic

search queries perform poorly on the traditional physical implementation in the

relational model.

Aside from the explicit encoding of semantics, another advantage of the RDF

model is the global referencing of entities on the entire web, which does not exist in

the relational model. For example, the “Michael Jordan” entity, who is a basketball

player, is specified by a link (or URI) and can be uniquely referenced by different

organizations, across the web. Now assume that different kinds of information about

the health information and the financial information of “Michael Jordan” are stored in

different organizations. With semantic search in RDF, a user can access all this

information from various organizations. Note that we are not designing or planning

for any specific queries in advance, when the health and financial organizations are

being constructed. In other words, the aggregation of information is achieved in an ad

hoc manner.

The global referencing of entities in RDF is vital to facilitating interoperability

and aggregation/reuse of knowledge across organizational boundaries. Consider that

in the relational model, facilitating interoperability across distributed and

heterogeneous databases is quite difficult, which is partly due to the lack of such a

referencing mechanism.

2.6.4. Research Challenges

Storage and retrieval of data in the relational database model has become highly

optimized over the last three decades. Similar performance levels are necessary for

 40

RDF to enable large-scale semantic search. Considering that the representation of

data in the RDF and relational models are different (refer to Section 3.5), there are

fundamental database research issues that need to be studied for achieving better

performance. The semantic search example, described in Section 2.6.2, clarifies some

of these issues, which include: native storage mechanisms for RDF or efficient

storage of RDF in the relational model, indexing and retrieval of RDF data,

optimization of queries specified in SPARQL, and ranking of entities in search

results.

Research efforts along this line are underway, e.g., [Aba07] studies the physical

design issues and proposes the vertical partitioning of data in the relational model, for

RDF storage. [Neu09] focuses on join processing, since the fine-grained and schema-

relaxed use of RDF often entails star-shaped and chain-shaped join queries with many

input streams from index scans.

From a human-computer interaction standpoint, there are several issues that

need to be studied to enable semantic search, including: effective presentation of sets

of entities, user interactions to support the selection of some of the entities from the

result of a query, presentation of relationships (at both class and instance level), and

intuitive interfaces for specifying SPARQL queries (perhaps similar to query-by-

example models). Each of these issues becomes clearer, when considered in the

“context” of the precise examples, provided in this section, which describe the desired

semantic search behavior.

 41

2.6.5. Summary of Semantic Search

With semantic search, user’s intentions can be accurately narrowed down in a

more robust way than keyword search. The comparison of semantic search in RDF

and keyword search in relational model, in this section, clarified the advantages of

using RDF instead of the traditional relational data model. We demonstrated that it is

difficult to retrofit a robust semantic search behavior on the relational data model and

find answers to questions about an entity (as available in RDF). In semantic search,

typical users (who have not had any special training) can interactively explore the

data and navigate through sets of entities, by utilizing their knowledge of a domain.

Also, they do not need to use unintuitive and complex SQL statements (as in the

relational model) – statements which are only understood by people with database

training.

We demonstrated why it is difficult to simulate semantic search with keyword

search on the relational data model. In other words, the explicit encoding of semantics

(via typed relations) and the global referencing of entities in RDF (via links or URIs)

are the two critical enabling features that make RDF suitable for robust search and

information integration across different enterprises. The comparison also revealed

some of the crucial research challenges that need to be addressed for scalable

semantic search.

 42

2.7. Summary of TAIA

Considering the numerous data sources that are becoming available on the Web,

the problem of answering questions using this data is gaining great interest. In this

chapter we provided a detailed map of the various components that are necessary for

creating The Automated Information Assimilator that is a gofer between humans and

the information. TAIA would get the queries from a human and then gather

information from all relevant sources, by culling through it, as accurately as possible.

It pulls together all that bears usefully on what the human wants to know and

provides the human with a coherent solution that corresponds to the human’s intent.

We described the design issues of a natural language interface for TAIA, in the

context of a broader project for building a dialogue agent. The dialogue agent engages

the user in a conversation, parses the user’s utterance, and then sends commands to a

robot. This robot can execute different tasks in the Mars domain. We also provided

some examples for the anomalies that arise in a dialogue with a robot, in the Mars

domain.

TAIA does not yet exist. Its full design and implementation present a very

challenging task involving many advances. This dissertation primarily addresses a

few of these advances in Section 2.6 and Chapters 3 and 4. In Section 2.6, we will

study the narrowing down of a question according to user’s intent and packaging of

results. In Chapters 3 and 4, we focus on deciding what sources are most relevant to a

 43

user’s query and accessing those sources and culling through their responses for

useful results.

 44

Chapter 3: ONTOLOGY MAPPING

In the Barbara example in Section 2.1, in task (iii) and (iv), the information

assimilator needs to decide what information sources are most relevant to a query,

and then access those sources and cull through their responses for useful results, in

order to collect the necessary information to answer the query. In this section, we

further investigate these two tasks. In order to find the relevant sources of information

for answering a query, we need to map between different ontologies, in which the

information resides.

3.1. Overview

As more and more information goes online, the capacity to answer queries using

these distributed data sources becomes more important. In the Barbara example in

Section 2.1, TAIA needs to gather information from these sources in a general way,

and not with a particular query in mind. It should provide access to data, and also

integrate results, from many relevant sources. However, the data sources are not

static; in particular, they can grow, by incorporating additional classes, properties,

and instances, often borrowed from other data sources. For instance, data source A

might be enlarged to include aspects of data source B. (This is sometimes called

 45

merging, although the end result is not that A and B become a single combined data

source; rather it is A that grows by copying some aspects of B, while B remains

unchanged.) In order for such merging to occur, it is necessary for entities in B to be

properly related to ones in A, in particular so that “matching” entities are determined

(the movie class in A might be matched with the video class in B, etc.).

A similar issue arises in integrated multiple-database search. In order for the

system to adequately respond to a query, it must relate entities across the multiple

databases that it consults. The query “Which videos did John Wayne appear in?” will

have to treat video in B and movie in A as the same concept. This is sometimes

referred to as the “integration” part of integrated multiple-database search. Since in

general any given search engine has no control over the organization and terminology

used within databases (which typically are not owned by the owner of the search

engine), the search engine must perform “matching” (i.e. interpret the disparate data),

to obtain the most accurate and complete results relevant to a given query -- not to

mention that this must be repeated frequently, to keep up with changes within

individual data sources.

However, despite the similarity of the growth and querying issues, which both

depend on matching, these are highly distinct applications:

(i) Growing one data source (A) by incorporating aspects of another (B), after

determining suitable matches between the two.

(ii) Extracting query-relevant data from two data sources (A and B), again after

determining suitable matches the two (e.g. video and movie).

 46

Therefore, matching is fundamental in different applications of multiple data

sources, whether for the purpose of building a larger combined data source, or for

responding to a query by consulting multiple data sources. Yet, these two applications

are very distinct; “growing” is a data source development task, whereas “extracting”

does not change, build, merge, or enlarge any data source, but rather allows sensible

simultaneous use of data sources -- what is known as interoperability. (More

generally, interoperability of systems refers to their simultaneous use without

conflicts of terminology, access policies, resources, etc.)

Let us sum up via an example. On one hand, each airline maintains its own data

source of flight information, which not only changes specific flight instances due to

changes in scheduling, but also which can dynamically add, remove, or alter classes

and properties (via merging from another data source, if for instance one airline buys

out another through acquisition), which requires careful attention to interpretation

issues. On the other hand, TAIA (similar to Expedia) provides interoperable search

across these disparate data source of different airlines, and also depends on the same

kinds of interpretation issues, yet while not altering the data sources at all.

Hence, integrated across-database interpretation is fundamental and has two

fundamentally different use cases with respect to multiple databases: internal database

development (merging, with “write-permission”), and external “read-only” access to

databases. Expedia is an example of the latter; it does not change the data, and does

not even have permission to do so.

Consider another example, outside the realm of computing, where the

interoperability problem arises. In the 19th century many different railroad

 47

transportation companies started, but they tended to use different “gauges” (widths)

of track for their own trains; this created a mess -- to ship something from New York

to California, one might have to use perhaps four companies (e.g. New York to

Pittsburg, Pittsburg to Chicago, Chicago to Santa Fe, and Santa Fe to Los Angeles),

because no one company had tracks that went the whole distance. This would not be

such a problem if the gauges were not different: one could use the same train all the

way and just pay the companies for whatever length that their track was used. But

because the gauges were not the same, one had to change trains each time, meaning

moving the shipment from one train to another four times, which was a huge cost in

labor and time. In other words, the rail systems were not interoperable except at huge

inefficiency. Finally, as a solution, the companies agreed on a gauge and rebuilt their

tracks and trains so all were compatible (except for the lucky few that already had

that gauge). In essence, by standardizing the gauges in this setting, the trains were

able to move and operate across different railroad transportation companies (i.e.

organizational boundaries). In the next section, we explicitly define the ontology

mapping problem.

3.2. Ontology Mapping: Problem Definition

The “ontology mapping” procedure for two separate and autonomous

ontologies, O1 and O2, consists of the following steps:

 Step 1: Finding corresponding entities in ontologies O1 and O2.

 Step 2: Representing the found correspondences, and using it to achieve some

goal.

 48

For Step 1, the main ontology entities that can be considered, when finding

correspondences between ontologies O1 and O2, are: classes (concepts), individuals

(instances), and properties (relations). For Step 2, for using the found

correspondences, the correspondences need to be represented in a suitable form.

Note that the goal of ontology mapping determines what candidates to consider,

when we are finding the correspondences. The goal also determines how to represent

the correspondences. This definition of ontology mapping is overarching, such that it

encompasses the different goals of the problem. This definition does not imply any

transformations from a source to a target, as described in Section 4.2.

The terms “alignment,” “matching,” “merging” and “integration” have also

been used in the literature, with different interpretations. In the rest of this

dissertation, (i) we will avoid using “alignment,” (ii) “matching” is the process of

finding “correspondences” between two entities, and (iii) “merging” and “integration”

of two ontologies have the same meaning and might be somewhat vague now, but

will be clear, after we state the goals of ontology mapping in Section 3.3.

3.3. Goals of Ontology Mapping

Currently, there are various ontologies that are being used in different

organizations. Often, they have been designed by different communities. Hence, there

is a need for a mapping between these ontologies. Based on the definition of the

ontology mapping problem (refer to Section 3.2), in order to lay out the foundations

of the problem, we start with the goals of ontology mapping. We identify two quite

 49

distinct goals for ontology mapping, based on real-world use cases, and illustrate

them with motivating examples.

One possible goal of mapping is ontology development; that is when an

ontology is being designed or engineered by an organization. The other possible goal

of mapping is interoperability; that is when there are various parties, which are using

different ontologies, and the users need a mechanism to be able to query the

information, which resides in the ontologies. Many ontology mapping applications fit

into one of the two goals above, even if the terminology used in some application

domain is slightly different.

3.3.1. Ontology Mapping for Ontology Development

Ontology is an abstraction for representing conceptual knowledge. All concepts

are covered by the domain of human knowledge and these concepts are connected

together in some fashion. Hence, it is hard to limit an ontology in terms of what it

should represent. This decision is usually made, based on the business needs of an

organization, i.e. the ontology designer decides not to include some concepts, as they

seem irrelevant to current organizational demands. Ontology design (also known as

ontology development/engineering) is a complex and subjective issue, similar to

database design, and requires a human in the loop.

Assume that an organization is currently using an ontology, C. Over time, as

organizational models change, business processes evolve and are extended. Therefore

the ontology C, which models one organization’s business processes, also needs to be

changed and often extended. Sometimes, the new business models (or some

 50

fragments of the changes) that are required in the current ontology have already been

captured by ontologies that are being used in other organizations. In this case, the

required extensions to the current ontology C are present in some other existing

ontology, E. Now, the ontology designer of C needs to:

 Step 1: Find the correspondences between ontologies C and E

 Step 2: Decide on what concepts, instances and relations of the existing

ontology E, need to be added to the current ontology C, based on the changes in the

business model and the correspondences found in the previous step.

Note that the existing ontology E remains the same, while current ontology C

will change (and be replaced in fact). This use case closely resembles the problem

that has been analyzed in the context of merging/integrating two ontologies in the

literature [McG00, Noy00, Stu01].

Motivating Example 1: Consider two organizations (supermarkets), Org1 and

Org2, offering various products, and using two different ontologies, O1 and O2, shown

in Figure 3.1. O1 is shown with white rectangles, while O2 is shown with grey

rectangles. Some classes (i.e. concepts), namely Sale Items and Videos, in O1 have

corresponding classes (Products and Movies) in O2. In Figure 3.1, since class Videos

in ontology O1 is defined in a similar context to class Movies in ontology O2, it is

conceivable to merge the two ontologies and produce a more comprehensive

ontology. In essence, O1 is being extended with O2 and the merged ontology is a mix

of white and grey rectangles, as shown in Figure 3.1.

It is crucial to note that in our scenario, the business model in Org1, which was

using ontology O1, has changed. For example, Org1 gradually needs to develop a

 51

more comprehensive ontology for its ecommerce operations. Therefore Org1 will now

be using the merged ontology Omerged, which is the result of extending O1 with some

existing ontology O2. This is while Org2 will keep using O2 without any changes to its

business model.

This is not relevant to the “ontology development” scenario, however, consider

that if Org2, which is now using O2, also plans to use the merged ontology (for some

reason, perhaps for “interoperability” with Org1), then both organizations (Org1 and

Org2) will need to make changes in their operations, to use the merged ontology

Omerged. Furthermore, merging can be problematic, if the ontologies are defining the

classes in different contexts, as merging would easily lead to irresolvable

inconsistencies. Hence, “interoperability” should be facilitated by means other than

merging, as examined in Section 3.3.2. We return to these implications and elaborate

in Sections 3.3.3 and 3.3.4, after introducing the second goal, in Section 3.3.2.

 52

Figure 3.1. Two ontologies O1 and O2, and the merged (integrated) ontology

Omerged.

3.3.2. Ontology Mapping for Interoperability

Different enterprises use their own proprietary systems and are usually not

willing to change their business models and operations. However, they also need to

exchange information with other enterprises. Hence, interoperability between

enterprises needs to be facilitated across organizational boundaries. That is, in many

circumstances, users need to query different ontologies (distributed and autonomous

sources of information) and retrieve data from all of them, as if all the information is

residing in a unified source.

 53

Let us define this scenario more formally. Two different ontologies, O1 and O2

are designed separately and are being used by two autonomous organizations, also

known as parties. Each ontology is designed based on the business model that

governs the operations of the organization that it belongs to. Hence, the ontology

being used by each party can not be changed or extended, as we did for the merging

use case in Section 3.3.1. To facilitate interoperability between the organizations in

this scenario, two steps are required:

 Step 1: Finding the correspondences between ontologies O1 and O2

 Step 2: Representing the correspondences in a suitable structure, which we

call skeleton S.

The skeleton is described using another motivating example, next.

Motivating Example 2: Consider two universities in which faculties, and

departments within the faculties, are organized differently. Ontologies O1 and O2 are

shown in Figure 3.2(a) and 2(c), respectively. Ontologies O1 and O2 represent the

organizational hierarchy of University1 and University2, and are depicted with

rectangles. There are six corresponding concepts in O1 and O2, namely: University,

Science, Maths, CS, Physics, and Chemistry, shown with a white color. These six

concepts appear in different places in O1 and O2. The skeleton S consists of these six

concepts, as shown in Figure 3.2(b), and depicted with ovals.

 54

Figure 3.2. Ontologies O1 and O2, which belong to two different autonomous

organizations, are shown in (a) and (c). Skeleton S, connecting the ontologies, is

shown in (b), in the middle. The concepts in ontology O1 (shown in the figure) are the

organizational units within University1. The instances in ontology O1 (not shown in

the figure) are the courses that are offered by the organizational units within

University1. Each concept in skeleton S is connected to its corresponding concepts in

the original ontologies O1 and O2, with a subclass relationship.

 1

When creating a skeleton, first, we need to know the shape (i.e. class hierarchy)

of the skeleton. The shape of the skeleton governs the relationship between the

concepts in the skeleton. The shape of the skeleton is determined by the ontology of

one of the parties (i.e. O1 or O2). In Figure 3.2, the shape of the skeleton is the same

as ontology O1. Each concept in skeleton S is connected to its corresponding concepts

in the original ontologies O1 and O2, with a subclass relationship.

Note that Figure 3.2 shows such connections for the University concept, only.

The University concept in the skeleton is connected to concepts University1 and

University2 in ontologies O1 and O2, with blue dotted arrows. Other such connections

are not shown in the figure for more readability. In Example 2, the ontology of each

organization (i.e. O1 and O2) remains intact, unlike Example 1. There is no change in

the business models (structures) of the universities, at all. However, both universities

(parties) can be queried using the skeleton, which provides interoperability between

them, as described next.

3.3.2.A. Multiple Ontology Case:

In Figure 3.2, we create a skeleton for two ontologies, and the skeleton enables

the querying of the two systems and facilitates interoperability between them. The

algorithms for finding the matching classes and creating the skeleton are presented in

Sections 4.1 and 4.2.

If there are more than two ontologies involved, we can similarly create the

skeleton for pairs of ontologies. For example for ontologies A, B, and C, we can

create Skeleton (A, B), and Skeleton (B, C). Then another skeleton can be created for

 2

the resulting skeletons, i.e. Skeleton (Skeleton (A, B), Skeleton (B, C)), as

demonstrated below. The resulting structure enables users to start from their own

ontology and move up to the skeletons to retrieve results from other ontologies, when

there are more than two ontologies involved. This is shown in Figure 3.3(a).

An alternative that we call n-mode is to create one skeleton any matching within

the ontologies, i.e. Skeleton (A, B, C). Then the skeleton would be connected to each

ontology and enable the users of each ontology to retrieve results from the other

ontologies. This is shown in Figure 3.3(b).

The algorithm for finding the common classes between ontologies and creating

the skeleton can easily be performed on more than two ontologies, similar to the case

of two ontologies. Any matches between classes in the prime ontology and any other

ontology are recorded. Then skeleton can be run over and over or just once, as shown

in Figure 3.3. More details about this will be discussed later.

Figure 3.3. Different ways of creating the skeleton for multiple ontologies.

3.3.2.B. All Subclasses Option for User:

 3

In Figure 3.2, in ontology O1 Science and Mathematics are in the same level,

but in ontology O2 Science is a superclass of Maths. Now consider that a user queries

ontology O2 for Science and expands that query to also get Maths instances in

ontology O2. Then the user moves to ontology O2 to get corresponding instances of

Science, he will not see instances of Mathematics under Science in ontology O1.

If the user wants to see those instances of Mathematics under Science in

ontology O1, then each of the subclasses of Science in ontology O2 should be

considered separately, and for all those subclasses, we can move across to ontology

O1, using the skeleton, and retrieve the corresponding instances for those subclasses.

3.3.3. Contrasting the Goals at a Glance

In Sections 3.3.1 and 3.3.2, we clarify that interoperability may not always be

facilitated by ontology merging. This clarification is a side effect of distinguishing the

goals of ontology mapping. In principle, the two use cases in Sections 3.3.1 and 3.3.2

are very different. In Figure 3.2, the concepts in ontologies O1 and O2 are the

organizational units within University1 and University2. Each concept contains

various instances. The instances are the courses that are offered by an organizational

unit (concept). For example, the Computer Science department (concept) in O2

contains the courses (instances) that are offered in that department.

Here, we describe interoperability explicitly. In the interoperability use case, we

would like to query for all courses related to computer science, and retrieve the

results from both universities (i.e. across organizational boundaries). In Figure 3.2,

with the skeleton, we can query for CS courses in ontology O1, and using query

 4

expansion, we move to the corresponding concept in the skeleton (which is CS), and

then also retrieve the relevant courses from the Computer Science concept in ontology

O2. Therefore, the query would return the results, as if all data resides in a unified

source. In essence, the skeleton increases the recall of queries by enabling users to

retrieve results from distributed sources, under a unified framework.

 5

In Figure 3.2, let us assume (incorrectly) that we want to merge the ontologies

(O1 and O2) to facilitate interoperability. Consider that course abc is offered in the CS

department in O1, while a different course, named xyz, is offered in the Computer

Science department in O2. Merging of these two departments by stating that the two

concepts (CS and Computer Science) are equal (similar to but not exactly like Figure

3.1, for the ontology development goal) would imply that instances of one concept

are also a member of the other concept. In this example, after merging the CS and

Computer Science concepts, the ontology reasoner would infer that course abc is a

member of both CS department in University1 and Computer Science department in

University2, and is offered by both departments. Also, course xyz is offered in both

departments, which is obviously not correct.

Similarly, in the OWL language (W3C recommendation), using the

owl:equivalentClass construct for the merging of two concepts (CS and Computer

Science), instead of creating a skeleton, for the purpose of interoperability, is not

acceptable for the same reason. In other words, stating that Class1 and Class2 are

equivalent classes using owl:equivalentClass, implies that every instance of Class1 is

also a member of Class2. This is a very strong statement, and not generally applicable

for facilitating interoperability between two systems.

Additionally, in Figure 3.2, when facilitating interoperability between parties,

the parties are autonomous, and the data in the ontologies are often separate. While

the parties need a mechanism for querying, we can not change the ontologies

(business models) of either party, as we did in Figure 3.1 for Organization1 by

merging. In Figure 3.2, ontologies O1 and O2, and skeleton S are isolated and being

 6

administered independently in different namespaces (refer to OWL terminology). The

ontology of each party does not change at all, and the skeleton is created separately,

to connect the existing parties.

Up to now, we have distinguished the two goals (i.e. ontology development vs.

interoperability), and also clarified that ontology merging is for ontology

development and may not always be used for facilitating interoperability. Notice that

merging was originally proposed for ontology development (refer to our explanation

of [McG00, Noy00] in Chapter 5).

3.3.4. Implications of Context on Ontology Mapping

Traditionally, ontologies have been used for creating intelligent/expert systems.

Those systems were often deployed by a limited number of experts, in constrained

domains. The design of suitable ontologies in such systems required tools and

expertise. As a result, the ontology development goal (Section 3.3.1) was at the focus

of attention, e.g. [McG00, Noy00]. Nowadays, with the advent of the Semantic Web,

the need for interoperability (Section 3.3.2) between systems/ontologies is becoming

more visible.

Furthermore, we showed that interoperability is different from merging. In order

to explore the requirements of the interoperability goal, we carefully probe the above

use cases. This will illustrate how ontology mapping should be performed, to achieve

interoperability. In this section, we study the ontology mapping goals, across seven

dimensions, namely: representation, inconsistency, automation, isolation, class

matching, tractability, and the relationship with the Semantic Web. The dimensions

 7

serve as a guideline for the ontology mapping task, and they influence the design of

tools and algorithms for this task. Table 3.1 provides a brief overview of the ontology

mapping goals, across different dimensions.

Table 3.1. A brief overview of the ontology mapping goals across different

dimensions.

Dimensions

Goal 1: Ontology
Development

Goal 2:
Facilitating

Interoperability

Representation
Merged ontology
represents the
correspondences.

Skeleton
represents the
correspondences.

Inconsistency
Inconsistencies
arise from
merging.

There is no
inconsistency with
the skeleton.

Automation
Merging should be
semi-automated.

Skeleton creation
is fully automated.

Isolation
With merging,
isolation is not
preserved.

With skeleton,
ontologies reside
in separate
namespaces and
are isolated.

Class Matching

Matching process
should consider all
entities in the
ontology.

Class matching is
critical, as it
directly facilitates
interoperability.

Tractability
Merging requires a
human in the loop.

Skeleton creation
can be tackled
algorithmically.

Semantic Web Not applicable.

Facilitating
interoperability
between data
sources is a
primary design
goal of the
Semantic Web
vision.

 8

A. Representation: Obviously, the goals of ontology mapping should propel

the solution forward. Based on the definition of ontology mapping provided in

Section 3.2, Step 1 (i.e. finding correspondences) is similar for achieving either goal

of ontology mapping. In Step 2, for representing the found correspondences between

two ontologies, we need a suitable representation. The question of how to represent

the correspondences can be studied more concretely, in light of the distinction that we

made about the goals of mapping. For developing and merging ontologies, the

merged ontology is in fact the representation for the found correspondences (refer to

Omerged in Figure 3.1). This is similar to the work of [McG00, Noy00].

As described in Section 3.3.3, merging of ontologies does not create a suitable

representation for facilitating interoperability between two systems, in the general

case. For interoperability, we present a novel W3C-compliant representation, named

skeleton, to encode the correspondences between ontologies and facilitate

interoperability between them, as shown in Figure 3.2. In Section 4.2, we provide an

algorithm for creating the skeleton and also examine why the skeleton is a suitable

representation. In Figure 3.2, there is no merging involved, and O1, O2 and S reside in

different namespaces.

B. Inconsistency: When merging ontologies for ontology development (Section

3.3.1), various inconsistencies can arise and the task involves complex decision

making, since there may be various ways to avoid the inconsistencies. For example,

in Figure 3.1, consider the class Videos in ontology O1 and class Movies in ontology

 9

O2, and instances of both these classes, which are movies, categorized using genres

from the YahooMovies website. Consider that in ontology O1, there is a cardinality

restriction for instances of Videos, such that each instance of Videos has exactly one

genre from the YahooMovies website. However, in ontology O2, there is a cardinality

restriction for instances of Movies, such that each instance of Movies has exactly two

genres from the YahooMovies website. Now, if we merge the classes for Videos and

Movies (as we did in Figure 3.1 for Omerged), it is not obvious how to handle this

cardinality inconsistency. There are various options and the ontology designer has to

make these decisions at design time, when developing the new ontology. Handling

these complex issues is an integral part of the ontology development process, as

outlined in the first goal.

For another example of inconsistency in Figure 3.1, assume that in addition to

the Toys class which is a subclass of Products in O2, the Electronic Equipment class

in O1 also has a Toys class as subclass. Now, the resulting merged ontology would

have two Toys concepts, one of which is a subclass of Sale Items (shown in Omerged in

Figure 3.1) and the other is a subclass of Electronic Equipment (not shown in Omerged).

Even combining the two Toys concepts may not have the desired effect, since other

conflicts could arise, similar to the cardinality problem, as mentioned previously.

Additionally, the nature of the merging problem is such that the current ontology is

not only being extended, but also needs to evolve, to accommodate the neighboring

classes of the corresponding class in the existing ontology. For example, in Figure

3.1, if the class Movies did not have a parent class, a simple extension would have

 10

sufficed, but now that it has a Products class as its parent, we must accommodate the

Products class as well, when merging Movies into O1.

Considering our small example in Figure 3.1 and the various inconsistencies

that could arise from merging, it is obvious that ontology merging is usually not a

scalable process and should be performed in the context of developing a new

ontology, to meet the new business demands of an organization. It is certainly not

suitable for creating a global system to facilitate interoperability between parties. On

the other hand, using a skeleton for interoperability does not create such

inconsistencies, since the ontologies of the organizations are kept separately in

different namespaces, as shown in Figure 3.2.

C. Automation: For both goals of ontology mapping, Step 1 (i.e. finding the

correspondences), should have a human user in the loop (unless the results are

approximate). Notice that the issue of representing the correspondences is dealt with

separately, in Step 2, after the correspondences are given/determined.

As for Step 2 (creating a suitable representation for the correspondences), when

merging ontologies for ontology development, there is a potential for inconsistencies

to arise. Ontology design (similar to database design) involves subjective decisions.

Hence, the merging process can only be “semi-automated” at best. Ontology merging

algorithms should have a human user in the loop, as in the PROMPT Suite [Noy00].

Moreover, the process should be interactive, to allow the changes to the ontology to

be verified at each step, by the human ontology designer. The designer should be

familiar with ontologies and domain knowledge modeling.

 11

On the other hand, when creating the skeleton representation for facilitating

interoperability, as long as the correct set of corresponding concepts between the

parties is given, as input, the skeleton can be created using a fully automated

algorithm (refer to Section 4.2), since the process does not create inconsistencies.

D. Isolation: Let us revisit the two steps in Section 3.3.1 and the two steps in

Section 3.3.2. For the ontology development goal, we must consider the changes in

the business model of an organization (Org1 in Example 1) to guide the ontology

development process. However, for the interoperability goal, there is no change in the

business models of the organizations (universities in Example 2), at all. Creating a

skeleton to represent the mappings for interoperability is more flexible than ontology

merging. With the skeleton, the ontologies (parties) are isolated from any changes.

Isolation is very desirable, since autonomous organizations, which are using the

ontologies, are usually not willing to change their business practices for the sole

purpose of communicating with other organizations. Therefore, interoperability must

be facilitated by some means other than by changing the ontology (as in merging).

The isolation of parties also eliminates inconsistencies.

E. Class Matching: In Step 1 of ontology mapping, when finding the

correspondences between two ontologies, various entities in the ontology (e.g.

classes, individuals, and properties) could be considered. For ontology merging, all

entities are important for correspondences. In Section 3.5, we compare the

information integration problem in databases to the interoperability goal in ontology

 12

mapping. The comparison shows that finding corresponding classes, is a critical part

of ontology mapping for facilitating interoperability. However, this does not imply

that matching of individuals is not important. In fact, matching of corresponding

individuals provide auxiliary information for the ultimate task of class matching. Note

that the skeleton representation (Figure 3.2) is actually geared towards capturing class

correspondence, as well.

F. Tractability: The ontology merging process causes inconsistencies and can

not be automated. However, the creation of a skeleton for interoperability is more

tractable, since it does not create inconsistencies, and it can be automated. An

algorithm for creating the skeleton is provided in Section 4.2. Generally, skeleton

creation can be streamlined and tackled algorithmically, without a human in the loop.

This is an important issue for the use case of creating scalable information integration

systems, using ontologies.

G. The Relationship with the Semantic Web: By carefully examining the

design goals of the Semantic Web, we illustrate that there is a close relationship

between the ontology mapping problem for interoperability and the Semantic Web

vision. The design goals of the Semantic Web include [Ber01, OWLu, OWLr]:

Using shared ontologies

Supporting ontology evolution

Ontology interoperability

Inconsistency detection across ontologies

 13

Balance of scalability and expressivity in creating ontologies

Ease of use

Compatibility with other standards

Supporting internationalization.

We will use the item numbers to reference the eight goals, above. By focusing

on the ontology mapping problem with an emphasis on interoperability (refer to

Section 3.3.2), as opposed to the ontology merging emphasis (refer to Section 3.3.1),

we also address the core design goals of the Semantic Web.

Note that in Figure 3.2, allowing various autonomous (isolated)

organizations/parties to create and adopt their own ontologies as a community, is in

agreement with goal 2 (supporting ontology evolution). Facilitating interoperability

between these isolated parties using the skeleton is in agreement with goal 3

(ontology interoperability). In Section 3.6, when presenting the class similarity

metrics, we demonstrate how goal 1 (using shared ontologies) supports the class

matching process for interoperability. Altogether, this neatly ties the ontology

mapping problem for interoperability to the first three design goals of the Semantic

Web. The idea of having distributed modular ontologies (adopted by different

communities), and providing links between these ontologies to support

interoperability is inline and tightly coupled with the spirit of the Semantic Web.

H. Discussion: In this section, we provided a framework to distinguish the

goals of ontology mapping. We clarified how ontology mapping should be performed

and represented, in different applications. Based on Section 3.3, it is clear that

 14

ontology development (as in ontology merging), and interoperability (i.e. information

integration) are two distinct goals of ontology mapping. We illustrated that ontologies

should not be merged for facilitating interoperability. We also investigated the

implications of context (i.e. goals) on the ontology mapping problem.

The above use cases and analysis demonstrate that interoperability is an

important goal of ontology mapping. By interoperability, we mean that users should

be able to query distributed information sources, as if the data resides in a unified

source. In Section 3.5, we focus on this goal; that is, independent of ontology

merging. We treat the interoperability goal more thoroughly, by comparing it with the

information integration problem in databases. The interoperability goal is quite

similar to what the database community is trying to achieve in the context of

information integration research and schema matching [Rah01, Len02, Hal05, Mel02,

Li00].

3.4. Preliminaries for Formalization

In this section, we provide a formal definition for the terminology used in

ontology mapping. Some understanding of these definitions was also necessary for

the previous sections; however, the definitions were delayed, not to obfuscate the

issue of distinguishing the ontology mapping goals and the implications of this

distinction. Nevertheless, the formalization is provided in this section for a thorough

and self-contained treatment. Additionally, this formalization will be required more

specifically in Section 3.5.

 15

These definitions are primarily based on Resource Description Framework

(RDF), which is a framework and W3C recommendation for representing information

on the Web. RDF is designed to represent information in a flexible way. The

generality of RDF facilitates sharing of information between applications, by making

the information accessible to more applications across the entire Internet. The

interoperability goal, as identified in the previous section, aligns well with RDF

design. Moreover, the Web Ontology Language (OWL) is based on RDF. Hence, this

discussion applies to OWL as well.

Definition 1 (Resource): All things described by RDF are called resources.

Definition 2 (Triple): Each triple represents the statement of a relationship

between the resources, denoted by the nodes that it links. Each triple has three parts: a

subject, an object, and a predicate that denotes a relationship.

The direction of the link is significant; it always points toward the object. An

RDF triple is conventionally written in the following order: subject, predicate, object.

Definition 3 (Property): The predicate is usually known as the property of the

triple.

Definition 4 (RDF Graph): An RDF graph is a set of RDF triples. The set of

nodes of an RDF graph is the set of subjects and objects of triples in the graph.

The graph can be illustrated by a node and directed-arc diagram, in which each

triple is represented as a node-arc-node link (hence the term “graph”). The assertion

of an RDF triple says that some relationship, indicated by the predicate, holds

between the resources denoted by the subject and object of the triple. The assertion of

 16

an RDF graph amounts to asserting all the triples in it, so the meaning of an RDF

graph is the conjunction of the statements corresponding to all the triples it contains.

Definition 5 (Class and Instance): Resources may be divided into groups called

classes. The members of a class are known as instances or individuals of the class.

Associated with each class is a set, called the extension of the class, which is the set

of the instances of the class.

Classes are themselves resources. They are often identified by URI’s and may

be described using RDF properties. The rdf:type property may be used to state that a

resource is an instance of a class. RDF distinguishes between a class and the set of its

instances.

If a class C is a subclass of a class C', then all instances of C will also be

instances of C'. The rdfs:subClassOf property may be used to state that one class is a

subclass of another. The term super-class is used as the inverse of subclass. If a class

C' is a super-class of a class C, then all instances of C are also instances of C'.

Definition 6 (Datatype): A datatype consists of a lexical space, a value space

and a lexical-to-value mapping. The lexical space of a datatype is a set of Unicode

strings. The lexical-to-value mapping of a datatype is a set of pairs whose first

element belongs to the lexical space of the datatype, and the second element belongs

to the value space of the datatype.

All datatypes are classes. The instances of a class that is a datatype are the

members of the value space of the datatype. Each member of the lexical space is

paired with (maps to) exactly one member of the value space. Each member of the

 17

value space may be paired with any number (including zero) of members of the

lexical space (lexical representations for that value).

Definition 7 (Ontology): An ontology is an RDF graph, which is in turn a set of

RDF triples.

3.5. Class Matching: A Critical Part of Facilitating Interoperability

Based on the definition of ontology mapping (in Section 3.2), in Step 1, the

correspondences between ontologies need to be determined, and the question is what

candidates to consider, when finding correspondences between ontologies. Now that

we have clarified the goals of ontology mapping (in Section 3.3), we are ready to

tackle the question of what candidates to consider. For the ontology development goal

and merging of two ontologies, all the entities in an ontology (i.e. classes, individuals,

and properties) are usually considered, so that the two ontologies can merged. In this

section, we show that for the interoperability goal, finding the corresponding classes

(i.e. class matching) is very critical.

Considering the similarity of the ontology mapping problem for facilitating

interoperability and the information integration problem in databases, we analyze and

compare them, in this section. First, the information integration problem in databases

is examined. Then, the RDF model for ontologies and the relational model for

databases are described. Finally, the models are compared. The comparison illustrates

that class matching is critical, when mapping between ontologies for facilitating

interoperability. This governs how ontology mapping should be performed for

 18

interoperability. Also, since OWL is based on RDF, our discussion applies to OWL as

well.

Note that in this section, we are not mapping between ontologies and databases,

i.e. there is no transformation involved between the two models. We are only

comparing the models to illustrate what should happen, when facilitating

interoperability between ontologies. The problem of facilitating interoperability

between databases has been studied for three decades in the context of information

integration in the database community [Ber81]. Hence, our comparison provides

insight and sheds light on the relatively newer problem of interoperability between

ontologies.

3.5.1. Information Integration in Databases

The problem of combining heterogeneous data sources under a single query

interface is commonly known as “data integration” or “information integration” in the

database community. A thorough and theoretical study of the problem is presented in

[Len02]. We base our discussion on [Doa01, Len02], while other interpretations may

exist. The main idea is to provide a uniform query interface over a mediated schema.

The query is then transformed into specialized queries over the original databases.

This process can also be called view based query answering, because we can consider

each of the data sources to be a view over the mediated schema. Formally, such an

approach is called Local As View (LAV), where “Local” refers to the local

sources/databases. An alternate model of integration is one where the mediated

 19

schema is designed to be a view over the sources. This approach is called Global As

View (GAV), where “Global” refers to the global (mediated) schema.

Figure 3.4 shows an example of the information integration problem in

databases. Here, the goal is to generate a mapping between columns (Town and City)

in different local schemas (S and T), by mapping them to some global schema. The

local schemas usually reside in separate autonomous data sources (DataSource1 and

DataSource2). Figure 3.4 illustrates one example mapping between schema S and

schema T. More details about the information integration process in databases can be

found in [Doa01, Len02]. This is a simple and important example that will be used

later in this section to demonstrate how ontology mapping should be performed to

facilitate interoperability, and how ontology mapping for interoperability relates to

schema mapping (i.e. information integration).

3.5.2. Interoperability

Following the description of information integration in databases, above, it is

important to point out that, the term “integration” might be vague to some extent,

since it might unintentionally be interpreted as some type of “merging” of schemas.

This is not what actually occurs in databases, as the schemas in each local data source

are handled autonomously and need to be kept separately. The local data sources are

often administered by different organizations, and are not merged (integrated). In fact,

organizations are not willing to change their business models and everyday

operations.

 20

The ultimate goal of information integration is to provide interoperability

between various systems, which is the exact same goal that we identified in Section

3.3.2. The term “interoperability” is clearer for describing the motivations and

objectives of the process. By analogy, there is no merging of ontologies involved in

ontology mapping, when we are trying to achieve interoperability between

organizations, which use different ontologies (refer to Section 3.3.2).

Figure 3.4. Example of the information integration problem in databases. The

goal is to generate a mapping between columns (Town and City) in different local

schemas (S and T), by mapping them to some global schema. The local schemas

usually reside in separate autonomous data sources (DataSource1 and DataSource2).

 21

3.5.3. Expression of Simple Facts in the RDF Model

Simple facts in the RDF model indicate a relationship between two resources.

Such a fact may be represented as an RDF triple, in which the predicate (i.e. property)

names the relationship, and the subject and object denote the two resources. Figure

3.5(a) shows the predicate hasAuthor, which is the relationship between the subject

and the object. The subject is an instance of class Book, while the object is an instance

of class Author. The classes are depicted as ovals. For example, The Art of Computer

Programming (which is a book) hasAuthor Donald Knuth (who is an author).

In contrast with the relational database model (Section 3.5.4), the use of

extensible URI-based vocabularies in RDF facilitates the expression of facts about

arbitrary subjects; i.e. assertions of named properties about specific named resources.

A URI can be constructed for any resource that can be named, so RDF facts can be

about any such resources. The use of Uniform Resource Identifiers (URIs) in the RDF

model provides a very powerful mechanism for facilitating interoperability on the

Semantic Web. Consider that the success and scalability of the current WWW

infrastructure is a vivid illustration of the tremendous potential of the idea of using

links or URIs (which seems like a simple idea at first glance).

 22

Figure 3.5. Correspondence between the RDF and relational models. (a) The

predicate hasAuthor, which is the relationship between the instances of class Book

and the instances of class Author, in the RDF model. (b) The table hasAuthor, which

has two columns, namely Book and Author, in the relational model.

3.5.4. Expression of Simple Facts in the Relational Model

A familiar representation of a fact in the relational model, in databases, is a row

in a table. The terms row and table are also known as tuple and relation, respectively.

A table has a number of columns (also known as attributes). Figure 3.5(b) shows the

hasAuthor table. The table has two columns, namely Book and Author. A row, for

example, indicates that, The Art of Computer Programming (which is a book)

hasAuthor Donald Knuth (who is an author).

 23

3.5.5. The Analogy between the RDF and Relational Models

By comparing the explanations of the RDF and relational models above, and by

observing Figure 3.4, we can infer that the classes Book and Author (in RDF)

correspond to the columns Book and Author (in relational). The correspondence

between classes and columns is an important one, and it will be used in Section 3.5.6.

The correspondence is also depicted in Figure 3.6. The other substantial

correspondence is between instances of a class in RDF, with column values in

relational.

In the above discussion, the description of the relational model was constrained,

such that a table only contained two columns. Now, we consider the general case,

where a table contains more than two columns. In Figure 3.7(b), the table in the

relational model has three columns, namely Book, Author and Publisher. Then, the

RDF model would also have three corresponding classes, as shown in Figure 3.7(a).

The correspondence between classes and columns still holds. It is essential to realize

that the name of the table in the relational model is arbitrary. We used TableName in

Figure 3.7(b). Additionally, two predicates, namely hasAuthor and hasPublisher, are

now used in the RDF model (Figure 3.7(a)). The name of the two predicates in RDF

is arbitrary and could be anything.

Notice that in Figure 3.5, we do not infer a correspondence between the name of

the table (hasAuthor in relational) and the name of the predicate (hasAuthor in RDF),

as this correspondence has no real substance. The comparison in Figure 3.7 actually

eliminates the role of the table name in the relational model. Therefore, the

 24

substantial correspondence is between classes and instances in RDF, with columns

and column values in relational, respectively. There is no correspondence for

predicate (i.e. property) names in the relational model. This is due to the fact that in

the RDF model, relations are encoded explicitly, in contrast with the relational model.

The explicit encoding of relations in RDF enables users to name the relations, in the

data, which gives rise to typed relations.

Figure 3.6. The correspondence between classes (in the RDF model) and

columns (in the relational model). There is also a correspondence between instances

of a class (in RDF) and column values (in relational).

 25

Figure 3.7. A more general correspondence between the RDF and relational

models. (a) The three classes in RDF are Book, Author, and Publisher. The name of

the two predicates (hasAuthor, hasPublisher) in RDF is arbitrary and could be

anything. (b) A table in the relational model, which has three columns, namely Book,

Author, and Publisher. The name of the table (TableName) is arbitrary.

3.5.6. Class Matching: Why

Section 3.5.1 showed that in databases, the final output of the information

integration process is a mapping between columns in different local schemas (refer to

Figure 3.4). In Section 3.5.5, we illustrated that columns in the relational model

correspond to classes in the RDF model (refer to Figure 3.5 and 4.6). Therefore, it is

clear that to facilitate interoperability between ontologies, the classes in the

ontologies need to be mapped to each other.

In RDF, the data is the instances of classes. The ultimate objective of

interoperability is to query and correctly retrieve these data instances, across various

 26

ontologies. The data resides in the classes in the ontologies. Notice that as long as the

correct mapping between the classes in the ontologies exists, users can query and

correctly retrieve the data instances, across various ontologies. For example, in Figure

3.2, users would like to retrieve course instances from both CS class in University1

and Computer Science class in University2. By analogy, in the relational model, the

data is the values stored in the columns. A correct mapping between the columns in

the schemas enables users to correctly retrieve the data (column values) across

various schemas.

In Figure 3.2, in order to more fully comprehend the interoperability use case,

as described in 4.3.2, one should consider a user interaction paradigm similar to the

MIT’s Tabulator project for the Semantic Web [Ber06]. Looking at Figure 3.2, users

can retrieve and view the course instances in the CS class in University1, using a

Linked Data browser like the Tabulator. They can also browse the properties of these

course instances in University1. In addition, if users would like to retrieve course

instances in the Computer Science class in University2, they can do that via the

skeleton. That is, when viewing the course instances in the CS class in University1,

using query expansion, we can move to the corresponding concept in the skeleton

(which is CS), and then also retrieve the relevant course instances in the Computer

Science class in University2. When viewing the course instances in the Computer

Science class in University2, again users can browse the properties of these course

instances.

Let us return to the question (raised in the ontology mapping definition in

Section 3.2) that what candidates should be considered, when finding

 27

correspondences between ontologies. Our detailed comparison in this section clarifies

that a critical part of ontology mapping for facilitating interoperability is the matching

of classes. The class matching objective directly facilitates interoperability.

This is one of the critical implications of focusing on the context of

interoperability in ontology mapping, as mentioned in Section 3.3.4.E. The class

matching objective does not imply that other entities are not used for class matching.

Matching of other entities is usually helpful for the matching of classes, as described

in Section 3.6. Basically, the question of how to find the matching classes is a

separate issue, addressed in the next section.

3.6. Categorization of Class Similarity Metrics

In the previous section, we identified that class matching is a critical part of

ontology mapping for facilitating interoperability. In this section, we provide an

algorithm for class matching (i.e. finding corresponding classes). The algorithm

utilizes various class similarity metrics. Each of the class similarity metrics is

formally defined and the time complexity of computing the metric is analyzed, which

is important for scalability in real-world settings. Then, the relationship between the

matching of classes and the matching of instances is clarified.

The class similarity metrics, formalized in this section, are inspired by various

works in the literature. However, those works are often different from ours. Some

works in the literature are in the context of ontology merging efforts, e.g. [Mc00,

Noy00, Stu01]. Some other works, which are not in the context of merging, are

addressing ontology matching only (i.e. Step 1, in Section 3.2). These works do not

 28

necessarily focus on classes only, and they consider other entities as well, e.g.

[Ehr04]. Also, for the class matching part, the work often attempts to find

subsumption relationships between classes in the ontologies (e.g. [Bou04]), which is

different from measuring class similarity. Our algorithm for class matching directly

measures class similarity. Note that measuring class similarity is necessary, in our

algorithm, since the output of the class matching algorithm (presented in this section)

is later used, as the input of the skeleton creation algorithm (presented in Section 4.2).

For the class similarity metrics, formalized in this section, we exploit the

information provided inside the ontology. Obviously, outside resources can be

utilized in various ways to help the class matching process. For example, resources

like dictionaries and thesauri can be used in this process. Also, a human expert (user),

who has knowledge about the domain, can make decisions about the matches.

Moreover, the expert’s knowledge and user interaction can potentially be captured, in

the form of labeled data and training examples, to facilitate machine learning.

Definition 8 (Mapping for interoperability): Let C1 be the set of classes of

ontology O1 and C2 be the set of classes of ontology O2. Map m is a total function

1 2: [0,1]m C C  , where 1 2C C is defined as the set of all distinct pairs of

elements of sets C1 and C2, that is: 1 2 1 2{(,) | , }C C a b a C b C    .

Definition 9 (Class Matching, Threshold, Similarity Value, Similarity Metric):

Class matching is the process of determining corresponding classes between

ontologies O1 and O2, which is specified using a threshold t. Map m assigns a

similarity value to each pair of classes. If the similarity value, defined by map m, is

greater than threshold t, then the classes match. We compute the similarity value by

 29

summing the result of the following four similarity metrics: lexical, extensional,

extensional closure, and global path, which are defined, later. In order to compute the

similarity value more effectively, a weighted sum of these metrics could be used, or

the result of each metric could be normalized.

In real-world applications, the issue of setting the threshold for identifying

corresponding classes is an important one, and it may require human judgment. As

mentioned in Section 3.3.4.C, in regard to automation, the merging of ontologies for

the ontology development goal can not be automated and needs a human user in the

loop. On the other hand, ontology mapping for the interoperability goal consists of

two steps (Section 3.3.2): finding the class correspondences (Step 1), and representing

the class correspondences using a skeleton (Step 2). For Step 1, human judgment may

be required for setting the threshold. The process of finding correspondences

inherently involves uncertainty; no algorithm can achieve one hundred percent

precision. However, if we allow approximate answers (similar to web search engine

results which are not always relevant), the threshold can be set automatically (using

machine learning techniques), or semi-automatically (with a human user

involvement). For Step 2, Section 4.2 provides a fully automated algorithm for

creating the skeleton.

Notice that skeleton creation (Step 2) is a separate issue from class matching

(Step 1), and happens after class matching. While class matching can only be semi-

automated, skeleton creation, which happens after a set of correspondences are given,

can be fully automated. Section 4.1 provides the class matching algorithm, and

 30

Section 4.2 provides the skeleton creation algorithm. Section 3.3.4.C and Section 3.10

further clarify the automation issue.

In principle, ontologies can cover any domain of knowledge, and the nature of

data instances is extremely diverse in different applications. Hence, it is difficult to

provide general guidelines on how to set the threshold for all ontologies/applications.

Essentially, the threshold needs to be determined experimentally for each application

and dataset.

Definition 10 (Lexical Similarity Metric): Let sC1 and tC2 be two classes in

the ontologies. The lexical similarity metric is a function that assigns a real-valued

number in the range of [0, 1] to the pair {s, t}, based on the closeness of the strings

representing the names of s and t.

Definition 11 (Extensional Similarity Metric): Let sC1 and tC2 be two

classes in the ontologies. The set of individuals, which are direct members of s and t,

are represented as e(s) and e(t), respectively. The extensional similarity metric for s

and t is computed as | () () | | () () |e s e t e s e t  . This is similar to computing the

Jaccard similarity coefficient of two sets.

Definition 12 (Extensional Closure Similarity Metric): Let sC1 and tC2 be

two classes in the ontologies. If class x is a subclass of class y, it is denoted as x y .

The extensional closure of s, denoted as ec(s), is computed as
1

() { () | }c
i C

e s e i i s


   .

The extensional closure similarity metric for s and t is equal to

| () () | | () () |c c c ce s e t e s e t  .

 31

This intuitively means that when comparing two classes, the extensional closure

considers, not only the individuals that are a member of class s, but also all the

individuals that are a member of the subclasses of class s.

Definition 13 (Global Path Similarity Metric): Let sC1 and tC2 be two

classes in the ontologies. Path of s, denoted as p(s), is the path that starts from the root

of an ontology and ends at s. The global path similarity metric for s and t is equal to

the score assigned to the similarity of p(s) and p(t). The score is based on the lexical

similarity of the classes that appear in the two paths.

Complexity Analysis (Lexical Similarity Complexity): The upper bound

complexity of computing the lexical similarity metric for ontologies O1 and O2 is

O(|C1|.|C2|). There is no need for ontology reasoning in the computation of this

metric.

Complexity Analysis (Extensional Similarity Complexity): The complexity of

computing the extensional similarity metric for classes s and t is O(|e(s)|.|e(t)|). The

set of individuals e is computed using the ontology reasoner.

Complexity Analysis (Extensional Closure Similarity Complexity): The

complexity of computing the extensional closure similarity metric for classes s and t

is O(|ec(s)|.|ec(t)|). The subclasses of a class, and their respective individuals, are

computed using the ontology reasoner.

Complexity Analysis (Global Path Similarity Complexity): If the length of the

path p(s) is denoted as ||p(s)|| (which is equal to the depth of the class hierarchy in the

worst case), then the complexity of computing the global path similarity metric for

 32

classes s and t is O(||p(s)||.||p(t)||). The class hierarchy is created from the subclass

relationships, using the ontology reasoner.

3.7. Reasoning for Class Matching

The role of a Description Logic reasoner is important in class matching for

ontology mapping, and this is one of the points that distinguish ontology mapping

from schema mapping in databases, as there are limited reasoning capabilities in

databases. Standard ontology reasoners provide the following services:

 Classification: Computes the subclass relations between every named class to

create the complete class hierarchy. The class hierarchy can be used to answer queries

such as getting all the subclasses of a class or only the direct subclasses.

 Realization: Finds the most specific classes that an individual belongs to; in

other words, computes the direct types for each of the individuals. Realization can

only be performed after classification, since direct types are defined with respect to a

class hierarchy. Using the classification hierarchy, it is also possible to get all the

types for an individual.

 Consistency checking: Ensures that an ontology does not contain any

contradictory facts.

 Concept satisfiability: Checks if it is possible for a class to have any instances.

If a class is unsatisfiable, then defining an instance of that class will cause the whole

ontology to be inconsistent.

 33

The computation of the extensional, extensional closure, and global path

similarity metrics require an ontology reasoner, while the lexical similarity metric

does not require any reasoning.

3.8. Instance Matching

Based on Definitions 11 and 12, instances within two classes need to be

matched, i.e. duplicate instances should be identified. This task is necessary for both

the ontology development goal and the interoperability goal. When merging

ontologies for ontology development, duplicate instances in corresponding classes

need to be detected and eliminated, so that the classes in the merged ontology would

only contain unique instances. When performing class matching for facilitating

interoperability, as discussed in Section 3.3.4.D (the isolation dimension), the

instances of classes are not merged. Nevertheless, duplicate instances may need to be

detected, in order to compute the intersection of instances of two classes correctly,

when computing the extensional and extensional closure similarity metrics.

There are various approaches that can be used for instance matching. One

simple approach is based on the assumption that if two instances in different

ontologies are the same, then they also use the same URI, which would help in

identifying the instances uniquely. This assumption is usually not applicable in

practical settings, since different organizations use different naming standards and

URIs. Another approach, which we also use in our experiments, is to identify

duplicate instances using approximate string matching techniques for the name of

 34

instances, similar to the lexical similarity metric used for the name of classes

(Definition 10).

In a more complicated approach, the domain knowledge about instances and the

facts stated in a knowledge base may also be used. As mentioned in Section 3.3.4.G,

some of the design goals of the Semantic Web (SW) are quite beneficial for instance

matching on the SW. Remember that design goal 1 was using shared ontologies. An

example of a shared ontology is FOAF. The Friend of a Friend (FOAF) project is

about creating a Web of machine-readable pages describing people, the links between

them and the things they create and do [FOAF]. If T. B. Lee and Tim Berners-Lee are

two instances and both have the same foaf:mbox property value (i.e. email address),

which is an owl:InverseFunctionalProperty, the ontology reasoner can infer that the

instances are duplicates. In other words, ontology inference helps in identifying

duplicate instances that may not be detected using approximate string matching.

Notice that in this example, the use of shared ontologies (e.g. foaf) helps in

instance matching, which is a part of the ontology mapping process. This approach,

for instance matching on the Web, has important applications for facilitating

interoperability in the Semantic Web vision.

Furthermore, there is an interesting analogy between instance matching in

ontologies and the problem of approximate duplicate elimination in data cleaning and

databases. There is a considerable amount of research on duplicate elimination in the

database literature. A recent survey on this problem is [Elm07]. Many of the

approaches developed for data cleaning in databases are potentially applicable to

 35

finding duplicate instances, when merging ontologies, and when computing

extensional similarity metrics for class matching.

3.9. Summary

Facilitating interoperability between different ontologies is one of the classic

and long-standing issues in AI. Over the last decade, however, the problem of

ontology mapping has attracted significant attention. This is partly due to the

deployment of ontologies (in the form of Linked Data) on the Web of Data. We

identified two sharply distinct goals for ontology mapping, based on real-world use

cases. These goals are: (i) ontology development, and (ii) facilitating interoperability.

We systematically analyzed these goals, side-by-side, and contrasted them. Our

analysis demonstrated the implications of the goals on ontology mapping and

mapping representation.

We showed the consequences of focusing on interoperability with illustrative

examples and provided an in-depth comparison to the information integration

problem in databases. The consequences include: (i) an emphasis on class matching,

as a critical part of facilitating interoperability; and (ii) an emphasis on the

representation of correspondences. For class matching, various class similarity

metrics were formalized and their time complexities were analyzed.

 36

Chapter 4: ALGORITHMS AND EXPERIMENTS

In this chapter, we provide the algorithms that were discussed in Chapter 3. We

present a methodology for performing the experiments. Then we experimentally

evaluate the algorithms using ontologies from various domains.

4.1. Class Matching Algorithm

For Step 1 in Section 3.3.2, we now present our class matching algorithm,

below. We call this algorithm MATCH. The class matching algorithm exploits the

class similarity metrics introduced in Chapter 3. Line 2 relates to Definition 10. Lines

3-5 compute the extensional similarity using the ontology reasoner, as in Definition

11. Lines 6-8 are based on the extensional closure similarity, as in Definition 12.

Lines 9-11 compute the global path similarity, as in Definition 13. Line 12 computes

the similarity value for classes and compares it to the threshold, as in Definition 9.

 37

Class-Matching Algorithm

Input:
O1, O2: Original ontologies
C1: Set of classes in O1
C2: Set of classes in O2

Output:
M: Set of matching class
 pairs (c1, c2), s.t. c1C1, c2C2

1. for all c1C1, c2C2
2. lexSim← lexicalSim(c1.name, c2.name)
3. c1.ex← reasoner.Extensions(c1)
4. c2.ex← reasoner.Extensions(c2)
5. extSim← extensionalSim(c1.ex, c2.ex)
6. c1.all← reasoner.AllExtensions(c1)
7. c2.all← reasoner.AllExtensions(c2)
8. extCSim← extensionalClosureSim(c1.all, c2.all)
9. c1.path← reasoner.GlobalPath(c1)
10. c2.path← reasoner.GlobalPath(c2)
11. gpSim← globalPathSim(c1.path, c2.path)
12. if (lexSim+extSim+extCSim+gpSim > threshold)
 then M ← M  (c1, c2)
13.end for
14.return M

4.2. Skeleton Assessment

In the Barbara example, in Section 2.1, in tasks (iv) and (v), the information

assimilator needs to access various information sources and package the results, in

order to collect the necessary information to answer the question. In this section, we

further investigate these two tasks. In order to return the results of a query from

distributed sources of information, we need to somehow consolidate the results of a

query. A suitable representation should help us in achieving this goal.

 38

The issue of representation is an important implication of focusing on the

context of interoperability in ontology mapping, as mentioned in Section 3.3.4.A.

Based on the definition of ontology mapping (in Section 3.2), in Step 2, the found

correspondences between the ontologies need to be represented. Now, the question is

how to represent them in a suitable format. For the ontology development goal, when

integrating ontologies, the outcome of the process is one merged ontology. This

merged ontology actually represents the correspondences between the ontologies.

For the interoperability goal, we should not merge the ontologies. Instead, we

provide a novel W3C-compliant representation, named skeleton, which enables users

to search and discover knowledge from different ontologies, more generally and

effectively than existing alternatives. More specifically, the skeleton provides a

uniform representation of mappings across ontologies and is stored independent of

those ontologies. A user’s query, in a Linked Data browser, may then be largely

guided and managed via the uniform skeleton representation, freeing the user from

the burdensome and time-consuming task of mapping during the querying process. In

this section, we provide an algorithm for creating the skeleton (refer to Step 2 in

Section 3.3.2).

Sections 3.3.2 and 3.3.3 described how the skeleton facilitates interoperability

between organizations. We also described the query expansion mechanism in

ontologies for query answering. As shown in Figure 3.2, the skeleton represents the

class correspondences between the ontologies of organizations. These

correspondences are essential for searching and query answering. The skeleton is a

suitable representation, as it allows query answering over various ontologies

 39

(organizations). The skeleton increases the recall of queries by enabling users to

retrieve results from distributed sources.

Note that a suitable representation for the matching classes should comply with

the W3C recommendations, like RDF and OWL, so that the representation can be

seamlessly deployed in different applications using existing tools, with little

implementation effort. Currently, there exists no such standard approach for

representing the matching classes between ontologies, as is necessary for facilitating

interoperability (refer to Section 3.3.2).

Our design for the skeleton representation is compliant with the W3C

recommendations. In other words, when using the skeleton, query answering and

query expansion can be performed using standard tools, without any ontology

reasoner adjustments and extra implementation effort. That is to say, all these issues

are handled by the ontology reasoner in a standard fashion.

Creating a skeleton isolates the original ontologies, and therefore each

autonomous organization will use its own business model for everyday operations

(Section 3.3.4.D). This isolation, in turn, eliminates the possibility of the

inconsistencies that arise, when ontologies are merged (Section 3.3.4.B). Moreover,

once the class matching is done and the correspondences have been determined, the

process of creating the skeleton is fully automated and performed using our

algorithm, without any human user involvement (Section 3.3.4.C).

It should be mentioned that the data exchange (or data transformation) work is

different from our skeleton mechanism. That is because the skeleton facilitates query

answering over various ontologies, while data exchange does not do that. Hence,

 40

transformations (functions) that manipulate the data of a source, to make the data

compatible with a target, are not the focus of our approach, when facilitating

interoperability between ontologies. However, in databases, such transformations and

functions (usually implemented using SQL) are of interest, for example in the Extract,

Transform, Load (ETL) process of data warehouses.

To describe the Skeleton-Creation algorithm, below, we use the motivating

example, depicted in Figure 3.2. The Class-Matching algorithm, introduced in

Section 4.1, is a prerequisite for the Skeleton-Creation algorithm. The output of the

Class-Matching algorithm is the set of matching class pairs (M) of the two ontologies.

This set (M) is the input of the Skeleton-Creation algorithm. In lines 1-5, for each pair

in set M, a class node is created in the skeleton. The name of the class in ontology O1

is assigned to the class in the skeleton. The class in the skeleton is connected to the

classes in the pair. In Figure 3.2, the classes in the skeleton are University, Science,

Maths, CS, Physics, and Chemistry, which are connected to their corresponding

classes in O1 and O2. Figure 3.2 shows such connections for the University concept,

only, i.e. the University concept in the skeleton is connected to concepts University1

and University2 in ontologies O1 and O2, with blue dotted arrows. In line 6, the

ontology reasoner infers the class hierarchy of ontology O1. In line 7, this hierarchy is

used for connecting the class nodes in the skeleton, to each other.

 41

Skeleton-Creation Algorithm

Input:
O1, O2: Original ontologies
C1: Set of classes in O1
C2: Set of classes in O2
M: Set of matching class
 pairs (c1, c2), s.t. c1C1, c2C2
 (same as the Output of the
 Class-Matching Algorithm)

Output:
S: Skeleton

1. for each pair (c1, c2) in M
2. Create a class node sS
3. s.name ← c1.name
4. Connect s to c1 and c2, using
 subclass relation
5. end for
6. H1 ← reasoner.ClassHierarchy(O1)
7. Create the same class hierarchy
 as H1, between all classes sS
8. Return S

Notice that in lines 6 and 7, the hierarchy of ontology O1 is used for creating the

hierarchy of the skeleton. However, the hierarchy of ontology O2 could also be used

for the skeleton. Then, the shape of the hierarchy of the skeleton may change,

however, interoperability would still be facilitated and the query answering process

would not change. To elaborate on this issue, we provide an additional example in

this section.

Consider that ontology O1 contains two classes, namely A1 and B1,

where 1 1B A . Also, ontology O2 contains two classes, namely A2 and B2,

where 2 2A B . This is shown in Figure 4.1(a) and 4.1(b). Assume that A1 and A2 are

 42

the corresponding (matched) classes in the two ontologies. Also, B1 and B2 are the

matched classes in the two ontologies.

Now, using the Skeleton-Creation algorithm, in lines 6 and 7, if ontology O1 is

used for the shape of the skeleton, the result is shown in Figure 4.1(a). If ontology O2

is used for the shape of the skeleton, the result is shown in Figure 4.1(b). While the

shape of the skeleton changes (depending on the party that is used for the hierarchy of

the skeleton), interoperability is still achieved in both cases. In other words, in both

figures, using the skeleton, we can query for instances of class A1 in ontology O1 and

using query expansion, we move to the corresponding class in the skeleton (which is

As), and then also retrieve the relevant instances from class A2 in ontology O2.

Therefore, the query would return the results, as if all data resides in a unified source.

Additionally, since ontologies O1 and O2, and skeleton S reside in different

namespaces, there is no inconsistency.

This example was an extreme case, where the order of the matching classes in

the parties were reversed, i.e. 1 1B A and 2 2A B . However, in practice this order is

usually not reversed, and the shape of the skeleton will not change dramatically,

regardless of the party that is used for the shape of the skeleton in lines 6 and 7.

 43

Figure 4.1. The shape of the hierarchy of skeleton S is shown in (a) and (b),

respectively, when using ontologies O1 and O2, for the shape of the skeleton.

In Section 3.3.2.A, we discussed how the skeleton can be created for more than

two ontologies. For the case shown in Figure 3.3(a), the input for creating the

skeleton is two ontologies, so the algorithm presented in this section can be directly

applied. For the case shown in Figure 3.3(b), the input for creating the skeleton is

three or more ontologies, so the algorithm in this section can be applied with a minor

modification. The modification is that in line 4, we connect the class in the skeleton

to the matching classes in all the ontologies (not just two ontologies).

 44

In Section 3.3.2.B, we discussed how users can also get results from all the

subclasses of a given class. This can be achieved easily by modifying the subclass

retrieval function in an ontology reasoner.

4.3. Experimental Methodology

In this section, we discuss the issues that need to be considered for a good way

of testing a class matching algorithm. We address various questions, such as how the

ontologies are selected for our experiments, what are the typical features of

ontologies, what kinds of ontologies exist, what are ontologies used for, how the gold

standard is created for the matching process, and what evaluation metrics should be

used.

4.3.A. General Methodology Background

4.3.A.1. Hypothesis:

Variables are things that we measure, control, or manipulate in experiments.

Two or more variables are related if, in a sample of observations, the values of those

variables are distributed in a consistent manner. After the relationship between two

variables is calculated, we would like to know how significant the relationship is. The

statistical significance of a result is the probability that the observed relationship

 45

(between variables) or a difference (between means) in a sample occurred by pure

chance, and that in the population from which the sample was drawn, no such

relationship or differences exist.

This significance depends on sample size. In a large sample, small relations

between variables are significant, but in a small sample even large relations are not

reliable. For computing significance, we need a function that represents the

relationship between magnitude and significance of relations between variables,

depending on sample size. The function would give us the significance (p) level and

tell us the probability of error involved in rejecting the idea that the relation in

question does not exist in the population. This alternative hypothesis (that there is no

relation in the population) is usually called the null hypothesis. Most of these

functions are related to a general type of function, which is called normal.

Comparing to gold standard: For the purpose of comparison, the results of a

system can be compared to some gold standard. In other words, we can compute how

many of the results of the system are correct (i.e. match the gold standard), and how

many of the results are not correct (i.e. do not match the gold standard). The number

of correct and incorrect cases in the result will determine the precision and recall

measures. Please refer to Section 4.3.A.3 for a description of the precision and recall

measures used in our experiments.

Comparing to other tools: The results of a system can also be compared to

other existing systems vis-a-vis some gold standard. In this case, the output of each

tool is compared to the gold standard, and the F1 measure is computed for each tool.

If the experiment is repeated for various data sets, then a mean F1 can be computed.

 46

Please refer to Section 4.3.A.3 for a description of the F1 measure used in our

experiments.

After the difference between the mean F1 is observed, we can compute how

significant the difference is. The statistical significance of a result is the probability

that the observed difference (between mean F1 values) in a sample occurred by pure

chance, and that in the population from which the sample was drawn, no such

differences exist. Please refer to Section 4.3.A.4 for further description of statistical

significance.

How to get the gold standard: When evaluating an algorithm using a gold

standard, the gold standard needs to be determined. The gold standard is the result

that we would like to get in an ideal situation. The gold standard can be created by

independent observers, and if there is disagreement between observers the

disagreement needs to be resolved. The gold standard can also be created by the

developers of the system, but this should ideally be done before any results from

experiments are seen by the developers, in order to prevent any bias.

4.3.A.2. Ideal Criteria for Trial Data:

Ontology pairs: Ontologies have a number of features, for example: the name

of the ontology, the organization that created the ontology, the domain that is covered

by the ontology, main topic, number of classes, number of instances, level of

expressivity, and the size of the ontology. In order to measure how well the class

matching algorithm performs, in the general case, we should use a set of ontologies

(trial data) that includes the different kinds of ontologies that exist.

 47

As will be explained below, a typical number of ontologies used for a trial set

ideally would be around thirty ontologies. For example, ontologies that cover

sciences, like biology, or topics like cells and diseases. Ontologies may model the

publication process and bibliographic entries. They may represent concepts related to

conferences or their registration process. They could be about various foods, like

pizza, or beverages, like wine and beer. Ontologies may be created by large groups of

developers or they can be created by one person for some specific task.

Typical size of trial set: Test statistics are not always normally distributed, but

most of them are either based on the normal distribution or on distributions that are

related to and can be derived from normal, such as t, F, or Chi-square tests. These

tests usually require that the variables analyzed are themselves normally distributed in

the population. A problem may occur when we try to use a normal distribution-based

test to analyze data from variables that are themselves not normally distributed. In

such cases, we have two general choices.

First, we can use some distribution-free test, but this is often inconvenient

because such tests are typically less powerful in terms of types of conclusions that

they can provide. Alternatively, in many cases we can still use the normal

distribution-based test if we only make sure that the size of our samples is large

enough.

The latter option is based on an important principle that is largely responsible

for the popularity of tests that are based on the normal function. Namely, as the

sample size increases, the shape of the sampling distribution (i.e., distribution of a

statistic from the sample) approaches normal shape, even if the distribution of the

 48

variable in question is not normal. As the sample size (of samples used to create the

sampling distribution of the mean) increases, the shape of the sampling distribution

becomes normal. This principle is called the central limit theorem. For n=30, the

shape of the distribution is almost perfectly normal [statsoft]. Hence, a data set of

around 30 cases would be a good sample size to use, for performing statistical tests.

The distribution of an average will tend to be normal as the sample size

increases, regardless of the distribution from which the average is taken, except when

the moments of the parent distribution do not exist. All practical distributions in

statistical engineering have defined moments, and thus the central limit theorem

applies [sta].

4.3.A.3. Measures:

Precision and recall are two widely used metrics for evaluating the correctness

of a pattern recognition algorithm. They are an extended version of accuracy, a

simple metric that computes the fraction of instances for which the correct result is

returned. When using precision and recall, the set of possible labels for a given

instance is divided into two subsets, one of which is considered “relevant” for the

purposes of the metric. Recall is then computed as the fraction of correct instances

among all instances that actually belong to the relevant subset. Precision is the

fraction of correct instances among those that the algorithm believes to belong to the

relevant subset. In other words, recall (R) is the number of correct results divided by

the number of results that should have been returned. Precision (P) is the number of

correct results divided by the number of all returned results.

 49

Assuming that S is the set containing all the correct corresponding classes, and

A is the set containing the corresponding classes returned by an algorithm, then recall

and precision are computed as: R = |S∩A| / |S| and P = |S∩A| / |A|. In statistics, the F1

score is a measure of a test's accuracy. It is defined as 2PR / (P+R), where P is the

precision and R is the recall of the test. The F1 score can be interpreted as a weighted

average of precision and recall, where the score reaches its best value at 1, and worst

value at 0.

4.3.A.4. Statistical Significance (p-value):

The statistical significance of a result is the probability that the observed

relationship (e.g., between variables) or a difference (e.g., between means) in a

sample occurred by pure chance, and that in the population from which the sample

was drawn, no such relationship or differences exist. In other words, we could say

that the statistical significance of a result tells us something about the degree to which

the result is "true" (in the sense of being "representative of the population").

When statistical significance is computed, the value of the p-value represents a

decreasing index of the reliability of a result. The higher the p-value, the less we can

believe that the observed relation between variables in the sample is a reliable

indicator of the relation between the respective variables in the population.

Specifically, the p-value represents the probability of error that is involved in

accepting our observed result as valid, i.e. as representative of the population.

For example, a p-value of 0.05 indicates that there is a 5% probability that the

relation between the variables found in our sample is by chance. In other words,

 50

assuming that in the population there was no relation between those variables

whatsoever, and we were repeating experiments such as ours one after another, we

could expect that approximately in every 20 replications of the experiment there

would be one in which the relation between the variables in question would be equal

or stronger than in ours.

4.3.A.4.1. t-Test for Dependent Samples:

Within-group variation: The size of a relation between two variables, such as

the one measured by a difference in means between two groups, depends to a large

extent on the differentiation of values within the group. Depending on how

differentiated the values are in each group, a given raw difference in group means

will indicate either a stronger or weaker relationship between the independent

(grouping) and dependent variable.

For example, if the mean WCC (White Cell Count) was 102 in males and 104 in

females, then this difference of only 2 points would be extremely important if all

values for males fell within a range of 101 to 103, and all scores for females fell

within a range of 103 to 105; for example, we would be able to predict WCC pretty

well based on gender. However, if the same difference of 2 was obtained from very

differentiated scores (e.g., if their range was 0-200), then we would consider the

difference entirely negligible. That is to say, reduction of the within-group variation

increases the sensitivity of our test.

Purpose: The t-test for dependent samples helps us take advantage of one

specific type of design in which an important source of within-group variation (error)

 51

can be identified and excluded from the analysis. Specifically, if two groups of

observations (that are to be compared) are based on the same sample of subjects who

were tested twice (e.g., before and after a treatment, or with matching-tool-1 and

matching-tool-2), then a considerable part of the within-group variation in both

groups of scores can be attributed to the initial individual differences between

subjects.

More complex group comparisons (repeated measures ANOVA): If there

are more than two correlated samples (e.g., matching-tool-1, matching-tool-2, and

matching-tool-3), then analysis of variance (ANOVA) with repeated measures should

be used. The repeated measures ANOVA can be considered a generalization of the t-

test for dependent samples and it offers various features that increase the overall

sensitivity of the analysis.

4.3.B. Specifics in Our Case

4.3.B.1. Our Class Matching Algorithm:

In the experiments that are reported with more details in Section 4.4, we have

used ontologies that are developed independently by different organizations. Hence

the terms used for various concepts are different, and we need to find the terms that

correspond between different ontologies. This task is done using the class matching

algorithm, as presented in Section 4.1.

 52

Parameter setting: The main parameter in our algorithm is the threshold that is

used to determine whether two classes are a match or not. The threshold was further

explained in Section 3.6. We also use different languages in the ontologies to evaluate

their effect on the class matching process. Another issue that is considered in our

experiments is the number of instances.

4.3.B.2. Four Near-Ideal Pairings:

Ontologies: In our experiments, we have included the ontologies of the 3XX

Benchmark from the Ontology Alignment Evaluation Initiative (OAEI), in order to

compare our results with other systems. The 3XX Benchmark contains five

ontologies, which model various domains related to a university organization and

bibliographic items.

Pairings: To create the pairs for matching, a reference ontology (101) is

matched against four ontologies, named 301 to 304.

Other tools: This benchmark is often used by researchers for reporting the

performance of their systems and comparing it to other systems. We compare our

results vis-a-vis a gold standard with six other tools, namely S-Match, OMViaUO, A-

API, BLOOMS, AROMA, and RiMoM. The results are reported in Section 4.4. One

drawback of the comparison is that we have the raw data for some of these systems

and not all of them. Hence, when raw data is not available, we assume the standard

deviation of other systems to be the same as the standard deviation of our system.

Gold standard: When measuring the effectiveness of our algorithm for class

matching, we need to have a gold standard, to assess our results and determine the

 53

correct and incorrect matching classes. The output of the class matching algorithm is

compared against the gold standard. Ideally, the gold standard should be developed

by a group of independent human reviewers and there should be consensus about

their correctness. For the 3XX Benchmark, the OAEI provides the gold standard

along with the ontologies.

4.3.B.3. Other Pairings:

Ontologies: The other ontologies, used in our experiments, model various

domains of knowledge, for example bibliographic information, publications,

universities, conferences and their registration process, publishing processes, biology,

travel and leisure, and food and drinks. These diverse ontologies are used, so that we

can ensure the applicability of our class matching algorithm and measure its

performance in different domains. Since ontologies may be used to model different

domains in the real world, algorithms that are designed to process the ontologies for

ontology development or interoperability should also perform reasonably in different

domains.

Pairings: Three of the ontologies below are in the biology domain. They form

two pairs. Three other ontologies are in the food and drinks domain. They also form

two pairs. Another pair of ontologies is related to travel and leisure activities. Eight

pairs of ontologies are related to publications, conferences, and publishing and

registration processes. These ontologies have different levels of expressivity. They

are suitable for the ontology matching task because of their heterogeneous origin and

 54

varying level of expressivity. For these ontologies, we evaluated our results by

comparing it with a gold standard.

Gold standard: The results of our experiments for these other pairings are

compared with a gold standard. For these pairs of ontologies, used in our experiments

from various domains, we had to create the gold standard manually. In order to create

a gold standard, we started with the output of our system, when the system was setup

such that it would produce many suggested matches, some of which were not

accurate. Then, the output was verified by hand to remove the suggestions that were

incorrect. As discussed in Section 4.3.A.1, the gold standard should ideally be created

by independent observers.

4.3.C. Other Issues

Size of ontologies: The size of ontologies usually varies from about 5 KB to

100 KB. There are also a few larger ontologies that model some scientific domain,

like biology, with the size of about 500 KB. The Biology-1 ontology, used in our

experiments, is 557 KB. In rare cases, the size of an ontology may be even larger than

500 KB, for example the UN ontology is over 4 MB.

In general, most computer programs assume that the input can be loaded into

memory. The size of the ontology causes some limitations for the processing of

extremely large ontologies, due to the amount of memory that is required. For

example, we have tried opening the UN ontology on machines with 512 MB, 2 GB,

and 16 GB of RAM, and the ontology would not open using the Swoop ontology

editor.

 55

Technical ontologies: We have used some scientific ontologies in our

experiments, for example in the biology domain. Other similar ontologies could also

be used.

Some cases to keep in mind: Consider that in some cases, we may want to

match classes that have similar names, like pear and Asian pear, or apple and crab

apple. For such cases, the lexical similarity metric can detect the similarity of the

names of classes, for example “pear” is in common between pear and Asian pear, and

“apple” is in common between apple and crab apple.

We may also want to match classes that have different names, like lorry and

truck, or egg plant and aubergine. If there are common instances for these classes,

then the extensional similarity metric can detect the similarity of the classes. If there

are no common instances to indicate the similarity of these classes, then an alternative

could be to use outside resources, for example a dictionary or a repository of previous

matches, to help in the matching of such cases.

In general, if we search for “lorry” in Google, we do not get results for “truck.”

In other words, this is what users expect, when they are searching on the Web.

4.4. Experimental Evaluations

In order to evaluate the effectiveness of our class matching algorithm, we

implemented our algorithm in Swoop. Swoop is an open source research tool for

 56

browsing and creating ontologies and contains over 20,000 lines of Java code. It is a

hypermedia-based ontology editor that employs a web-browser metaphor for its

design and usage [Kal05]. In our implementation, Pellet was used for ontology

reasoning [Sir07]. Pellet is an open source reasoner written in Java. The experiments

were run on a 1.86 GHz Pentium machine with 512 MB of RAM.

The class similarity metrics, formalized in Section 3.6, are inspired by the work

in the literature. However, those works are often different from ours. Some works in

the literature are in the context of ontology merging efforts, e.g. [Mc00, Noy00,

Stu01]. Some other works, which are not in the context of merging, are addressing

ontology matching only (i.e. Step 1, in Section 3.2). These works do not necessarily

focus on classes only, and they consider other entities as well, e.g. [Ehr04]. Also, for

the class matching part, the work often attempts to find subsumption relationships

between classes in the ontologies (e.g. [Bou04]), which is different from measuring

class similarity. Our algorithm for class matching directly measures class similarity.

Note that measuring class similarity is necessary, in our algorithm, since the output of

the class matching algorithm (presented in Section 4.1) is later used, as the input of

the skeleton creation algorithm (presented in Section 4.2).

4.4.A. Four Near-Ideal Pairings

In order to evaluate the performance of our class matching algorithm and

compare its results with other systems, we used the 3XX Benchmark of the Ontology

Alignment Evaluation Initiative (OAEI) data set. It contains four ontologies, which

 57

model various domains related to a university organization and bibliographic items. A

reference ontology (101) is matched against four other ontologies, named 301 to 304.

The number of matching classes, true positive, false positive, precision, recall, and F1

are reported for various thresholds, which provide different results. Table 4.1 shows

the results of these experiments.

Table 4.1. The results of our MATCH algorithm on the OAEI Benchmark.

101-301Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 16 16 16 16 16 16
 TP 13 13 13 13 13 13
 FP 19 10 9 8 6 1
 Precision 40.625 56.52174 59.09091 61.90476 68.42105 92.85714
 Recall 81.25 81.25 81.25 81.25 81.25 81.25
 F1 54.16667 66.66667 68.42105 70.27027 74.28571 86.66666

101-302Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 11 11 11 11 11 11
 TP 10 9 9 9 9 9
 FP 23 11 9 8 6 1
 Precision 30.30303 45 50 52.94118 60 90
 Recall 90.9091 81.81818 81.81818 81.81818 81.81818 81.81818
 F1 45.45454 58.06452 62.06897 64.28571 69.23077 85.71429

101-303Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 16 16 16 16 16 16
 TP 14 14 14 14 14 12
 FP 53 27 19 13 10 1
 Precision 20.89552 34.14634 42.42424 51.85185 58.33333 92.30769
 Recall 87.5 87.5 87.5 87.5 87.5 75
 F1 33.73494 49.12281 57.14286 65.11628 70 82.75862

101-304Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 28 28 28 28 28 28
 TP 27 27 27 27 27 27
 FP 47 24 20 17 12 4
 Precision 36.48649 52.94118 57.44681 61.36364 69.23077 87.09677
 Recall 96.42857 96.42857 96.42857 96.42857 96.42857 96.42857

 58

 F1 52.94118 68.35443 72 75 80.59702 91.52542

Then the mean precision, recall, and F1 are computed for the four ontologies

from the 3XX Benchmark. These results are reported in Table 4.2. The mean F1 for

our system on the 3XX Benchmark is 0.73. As shown in Table 4.3, our mean F1

value is higher than the F1 of four other systems on the 3XX Benchmark, which are

0.13, 0.28, 0.56, and 0.71. Our mean F1 value is smaller than two other systems,

which are 0.77 and 0.81.

Table 4.2. The mean of results of the 3XX OAEI Benchmark ontologies, for

our MATCH algorithm.

 101-301 101-302 101-303 101-304
Mean for
3XX s*s

Threshold 0.9 0.9 0.9 0.9 0.9

#M 16 11 16 28

TP 13 9 14 27

FP 6 6 10 12

Precision 0.684211 0.6 0.583333 0.692308 0.639963

Recall 0.8125 0.818182 0.875 0.964286 0.867492

F1 0.742857 0.692308 0.7 0.80597 0.735284 0.052108

Table 4.3. Comparison of results of six matching tools on the 3XX OAEI

Benchmark ontologies.

 S-Match OMViaUO A-API BLOOMS MATCH AROMA RiMoM

Precision 0.1 0.28 0.45 0.62 0.639963 0.8 0.81

Recall 0.2 0.28 0.77 0.84 0.867492 0.76 0.82

F1 0.133333 0.28 0.568033 0.713425 0.735284 0.779487 0.814969

 59

Now, we perform a repeated measures ANOVA to determine the statistical

significance of the difference between the F1 values of various tools. The F1 values

are shown in Table 4.3. We want to know if the data provides sufficient evidence that

the difference in F1 values for at least two of these tools is not due to chance. The

analysis below shows that there is sufficient evidence to indicate that the observed

difference in F1 values for at least two of the matching tools is not due to chance. The

computation is shown in Table 4.4.

Then, we perform a t-test for dependent samples on various pairs of tools, to

compare our tool with other tools (a.k.a. Bonferroni test). The analysis below shows

that there is sufficient evidence to indicate that the F1 of our tool is larger than the F1

of S-Match and OMViaUO (p<=0.05), and this is not due to chance. No conclusion

can be made with regard to the other four tools. The computation is shown in Table

4.4.

Table 4.4. Statistical tests for comparison with other tools.

 n F1 s*s Mean F1 n-1
S-Match 4 0.133333 0.052108 0.574933 3
OMViaUO 4 0.28 0.052108 0.574933 3
A-API 4 0.568033 0.052108 0.574933 3
BLOOMS 4 0.713425 0.052108 0.574933 3
MATCH 4 0.735284 0.052108 0.574933 3
AROMA 4 0.779487 0.211949 0.574933 3
RiMoM 4 0.814969 0.102315 0.574933 3

For the tools that we do not have their raw data, we assume that their standard deviation
is the same as ours.
Mean F1 0.574933

Does the data provide sufficient evidence to indicate that the F1 differs for at least two of
the matching tools and this is not due to chance?

Ha F1 of the matching tools differ for at least two of the tools

 60

H0 F1 of the matching tools do not differ

Test Statistic:
F
n 4
p 7
df(numerator) 6
df(denominator) 21

Alpha 0.05
Critical F 2.572712

SST 1.705582

MST 0.284264

SSE 1.724416

MSE 0.082115

Source df SS MS F
Treatments 6 1.705582 0.284264 3.461774
Error 21 1.724416 0.082115
Total 27 3.429998

Rejection Rule:
F 3.461774>= Critical F
Decision: Reject H0
Conclusion: There is sufficient evidence to indicate that the F1 differs for at least two of
the matching tools, and this is not due to chance.

Which pairs of means differ?
Bonferroni Test is done for pairs of means

Decision rule: Reject Ho, if the interval does not contain 0.

c 6 S-Match 0.133333
Alpha/2c 0.15 OMViaUO 0.28
df 27 A-API 0.568033
t(0.15) 1.057 BLOOMS 0.713425
 MATCH 0.735284
Delta 0.214176 AROMA 0.779487
 RiMoM 0.814969
Ha S-Match!=MATCH

interval -0.81613 -0.38777
Reject H0, MATCH is larger than S-
Match

Ha OMViaUO!=MATCH

interval -0.66946 -0.24111
Reject H0, MATCH is larger than
OMViaUO

 61

Ha A-API!=MATCH
interval -0.38143 0.046925Do not reject H0
Ha BLOOMS!=MATCH
interval -0.23604 0.192317Do not reject H0
Ha AROMA!=MATCH
interval -0.16997 0.25838Do not reject H0
Ha RiMoM!=MATCH
interval -0.13449 0.293862Do not reject H0

Conclusion: There is sufficient evidence to indicate that the F1 of MATCH is larger than
the F1 of S-Match and OMViaUO, and this is not due to chance.

4.4.B. University Ontologies

The results of our experimental trials in Figure 4.2 to 4.6 are for two real-world

ontologies. The ontologies were developed separately by different organizations. This

dataset is selected from the datasets that are provided for the Ontology Alignment

Evaluation Initiative [OAEI]. One ontology is from Karlsruhe [Kar] and is used in the

Ontoweb portal. It is a refinement of other ontologies such as (KA)2. It defines the

terms used in bibliographic items and a university organization. The other ontology is

from INRIA [Inr] and is designed based on the BibTeX in OWL ontology and the

Bibliographic XML DTD. Its goal is to easily gather various RDF items. These items

are usually BibTeX entries found on the web, which are transformed into RDF

according to this ontology. The ontologies have 24 corresponding classes. Table 4.5

shows the characteristics of the ontologies.

Table 4.5. The characteristics of the university ontologies.

 University Publication

 62

Ontology Ontology
Classes 64 48
Properties 72 58
Individuals 68 59
Min. Depth of Class
Tree

1 1

Max. Depth of Class
Tree

5 4

Average Depth of
Class Tree

2.4 2.3

Min. Branching of
Class Tree

1 1

Max. Branching of
Class Tree

13 17

Average Branching
Factor of Class Tree

3.15 3.25

When computing the lexical similarity metric for comparing the name of classes

in two ontologies, various string similarity measures can be used. The results show

that the performance of these measures varies considerably, as illustrated in Figure

4.2. The Jaro-Winkler measure shows a more robust behavior for finding

corresponding classes in ontologies, based on class name. By decreasing the threshold

in the class matching algorithm for each string similarity measure, the recall

increases, the precision decreases, and various precision-recall performance levels are

achieved, as shown by the plots on the curves, in Figure 4.2. Usually, there is a

precision-recall tradeoff, and precisions below the 60 percent level are not very

useful, since many of the detected matches would then be incorrect.

In Figure 4.2, by decreasing the threshold for identifying a match, we can

increase the recall rate to some extend. However, as the diagram demonstrates, it is

not possible to increase the recall to above 80 percent, by only decreasing the

 63

threshold, since this would cause a sharp drop in precision, i.e. introduce many

incorrect results.

Figure 4.2. Performance of various string similarity measures for finding

corresponding classes in ontologies, based on name.

In real-world applications, the issue of setting the threshold for identifying

corresponding classes is an important one, and it may require human judgment. In

principle, ontologies can cover any domain of knowledge, and the nature of data

instances is diverse in different applications. Hence, it is difficult to provide general

guidelines on how to set the threshold for all ontologies. Essentially, the threshold

needs to be determined experimentally for each application and dataset.

Figure 4.3 shows the running time required for computing the lexical similarity

of classes in both ontologies using various string similarity measures. Jaro-Winkler

 64

(which shows better precision-recall performance in Figure 4.2) takes 172 ms to

compute and lies approximately in between the other string similarity measure, in

terms of running time.

Figure 4.3. Running time of computing the lexical similarity of classes using

various string similarity measures.

By using the lexical similarity of classes, measured by the Jaro-Winkler

similarity measure, 16 out of the 24 corresponding classes could be identified (i.e.

true positives - TP), as shown in Figure 4.4. Decreasing the detection threshold of the

lexical similarity metric would decrease the precision and increase the number of

false positives (FP). To tackle this problem and find more matching classes (without

decreasing the threshold), we also employed the other similarity metrics namely,

extensional, extensional closure and global path similarity metrics. The results in

Figure 4.4 are cumulative from left to right, and each similarity metric is added to the

previous ones. Our experiments show that utilizing these additional metrics helps in

finding more correct matching classes (true positives). At the same time, they do not

 65

reduce the precision, by introducing many false positives, similar to when the

detection threshold is decreased (refer to Figure 4.2).

Figure 4.4. Detection of more matching concepts using additional concept

similarity metrics, such as extensional, extensional closure, and global path.

Computing the lexical similarity of classes does not require reasoning.

However, the reasoner needs to be used to compute the extensional, extensional

closure, and global path similarity metrics. For computing the extensional closure, we

need to classify the ontology to find the subclasses, and also perform realization to

retrieve the instances of all the subclasses. To perform reasoning, the ontology must

be consistent, and all classes must be satisfiable. Hence, activating the reasoner in fact

triggers all the above steps and accounts for most of the running time. The time

required for the rest of the computation, which involves the comparison of retrieved

instances or the comparison of the classes in a path, is relatively small. As shown in

 66

Figure 4.5, the running time for computing the lexical similarity is small, compared to

the other three similarity metrics, which require reasoning.

Figure 4.5. Running time of computing lexical, extensional, extensional closure

and global path similarity metrics.

The results in Figure 4.6 are cumulative from left to right, and each similarity

metric is added to the previous ones. The precision and recall bars for Lexical (Jaro-

Winkler) in Figure 4.6, are showing the same precision and recall values, as the first

point on the Jaro-Winkler curve in Figure 4.2. Also, for all the experiments in Figure

4.6, we use the same threshold, as the first point on the Jaro-Winkler curve in Figure

4.2. Hence, in Figure 4.6, the threshold does not change, and there is no precision-

recall curve (unlike Figure 4.2).

Figure 4.6 shows that using the extensional, extensional closure, and global path

similarity metrics, in addition to lexical, improves the recall. At the same time, in

Figure 4.6, the precision remains almost the same.

 67

Note that the recall can also be improved by decreasing the threshold in Figure

4.2 - however that considerably reduces the precision of results (as shown in Figure

4.2). In Figure 4.6, by using additional similarity metrics, we can improve the recall,

without decreasing the threshold and losing precision. Therefore, we effectively

overcome the precision-recall tradeoff, as evident by the increase in the F1 quality

measure. This demonstrates that using the additional class similarity metrics helps in

finding more corresponding classes and achieving better results.

Figure 4.6. Using extensional, extensional closure and global path similarity

metrics, in addition to lexical, increases the recall and F1 quality measure.

4.4.C. Ontologies from Different Languages

 68

The results of experiments reported in Figure 4.7 to 4.10 are for two ontologies

that are in two different languages. One ontology is in English and the other one is in

French. The characteristics of the ontologies are shown in Table 4.6.

Table 4.6. The characteristics of the languages ontologies.

 English French
Classes 50 50
Matching Classes 20 20
Individuals 200 200

The use of the lexical similarity metric for the English and French ontology

does not yield any matches, as the name of concepts are not the same. This is shown

in Figure 4.7. Such a scenario happens sometimes in practice, as it is necessary to find

correspondences between ontologies that are in different languages. In these

scenarios, an effective clue that provides additional information is the common

instances. By using the extensional similarity metric for these ontologies, we were

able to detect eight corresponding classes (true positives), as shown in Figure 4.7. We

also detected three incorrect correspondences (false positives). The results in Figure

4.7 are cumulative from left to right, and each similarity metric is added to the

previous ones. In this experiment, there is no difference when adding the extensional

closure and global path.

 69

Figure 4.7. The number of matches found using different class similarity

metrics for two ontologies in different languages.

In applications where the ontologies are in two different languages, we can

effectively enhance the recall and F1 measure using the extensional similarity metric,

as shown in Figure 4.8. These results are cumulative from left to right, and each

similarity metric is added to the previous ones. In this experiment, there is no

difference when adding the extensional closure and global path.

 70

Figure 4.8. While the lexical similarity metric can not find any matches, the use

of the extensional class similarity metric enhances the recall and F1 quality measure.

In order to measure the effect of the number of instances on the extensional

similarity metric, we gradually removed from 10 to 50 percent of the total number of

instances from both ontologies. The recall of the extensional similarity metric

dropped from 40 to 30 percent. The results are shown in Figure 4.9. We can see that

the more instances we have in the ontologies, the more likely it is for the extensional

similarity metric to yield good results.

 71

Figure 4.9. The effect of the number of instances on the recall of extensional

similarity metric, when removing instances from both ontologies.

Similar to the previous experiment, we again gradually removed from 10 to 50

percent of the total number of instances, but this time from one ontology (and not

from both ontologies). The recall of the extensional similarity metric dropped from 40

to 20 percent. The results are shown in Figure 4.10. We can see that the drop in the

recall of the extensional similarity metric, in Figure 4.10, is at a higher rate than

Figure 4.9. Hence, the extensional similarity metric works more effectively, when the

instances are distributed uniformly between the two ontologies.

 72

Figure 4.10. The effect of the number of instances on the recall of extensional

similarity metric, when removing instances from one ontology.

4.4.D. Business Ontologies

The results of experiments reported in Figure 4.11 and 4.12 are for two

ontologies that are modeling two business companies. The characteristics of the

ontologies are shown in Table 4.7.

Table 4.7. The characteristics of the company ontologies.

 Paragon Apertum
Classes 47 47
Matching Classes 9 9
Individuals 69 69

We can find four matching classes using the lexical similarity metric for the

company ontologies (true positives). This is shown in Figure 4.11. We also detected

one incorrect correspondence (false positive). By using the extensional similarity

metric for these ontologies, we were able to detect two additional corresponding

 73

classes, as shown in Figure 4.11. The results in Figure 4.11 are cumulative from left

to right, and each similarity metric is added to the previous ones. In this experiment,

there is no difference when adding the extensional closure and global path.

Figure 4.11. The number of matches found using different class similarity

metrics for the two company ontologies.

For the company ontologies, the extensional similarity metric enhances the

recall and F1 measure, as shown in Figure 4.12. These results are cumulative from

left to right, and each similarity metric is added to the previous ones. In this

experiment, there is no difference when adding the extensional closure and global

path.

 74

Figure 4.12. The use of the extensional class similarity metric enhances the

recall and F1 quality measure.

4.4.E. Ontologies from Other Domains

We also used the class matching algorithm on a variety of other ontologies,

from various domains and designed by independent organizations. The first eight

pairs of ontologies are related to publications, conferences, and publishing

procedures. These ontologies have different levels of expressivity. More details about

these pairs of ontologies are provided in Table 4.8. They are suitable for the ontology

matching task because of their heterogeneous origin and varying level of expressivity.

Also, three of the ontologies below are in the biology domain. They form two pairs.

Three other ontologies are in the food domain. They also form two pairs. Another pair

of ontologies is related to travel activities. The results of the MATCH algorithm are

reported in Table 4.9.

 75

Table 4.8. The names of various ontologies and their features.

Name # Classes
Datatype
Properties

Object
Properties

DL
expressivity Related link

Crs 14 2 15ALCIF(D)
http://www.conferencer
eview.com

Edas 104 20 30
ALCOIN(D
) http://edas.info/

Paperdyne 47 21 61
ALCHIN(D
)

http://www.paperdyne.c
om/

Sigkdd 49 11 17ALEI(D)
http://www.acm.org/sigs
/sigkdd/kdd2006

Iasted 140 3 38ALCIN(D)

http://iasted.com/confer
ences/2005/cancun/ms.
htm

Micro 32 9 17
ALCOIN(D
) www.microarch.org

MyReview 39 17 49
ALCOIN(D
)

http://myreview.intellag
ence.eu/

Pcs 23 14 24ALCIF(D)
http://precisionconferen
ce.com

Cocus 55 0 35ALCIF
http://cocus.create-
net.it/

Confious 57 5 52SHIN(D)
http://www.confious.co
m

Cmt 36 10 49ALCIN(D)
http://msrcmt.research.
microsoft.com/cmt

 76

OpenConf 62 21 24ALCOI(D)

http://www.zakongroup.
com/technology/openco
nf.shtml

Conference 47 21 61
ALCHIN(D
) NotAvailable

Ekaw 77 0 33SHIN http://ekaw.vse.cz

ConfOf 39 17 49
ALCOIN(D
) NotAvailable

Linklings 37 16 31SROIQ(D)
http://www.linklings.co
m/

Biology 1 236 52 87ALOF(D)

http://mged.sourceforge
.net/ontologies/MGEDO
ntology.owl

Biology 2 142 1 69SHIF(D)

http://secse.atosorigin.e
s/10000/ontologies/uml
ssn.owl

Biology 3 331 32 63RDFS(DL)
http://ontotext.com/kim/
kimo.rdfs.xml

Travel 1 165 12 115RDFS(DL)

http://www.aifb.uni-
karlsruhe.de/WBSmeh/
mappingdatarussia1b.r
df

Travel 2 154 7 74RDFS(DL)

http://www.aifb.uni-
karlsruhe.de/WBSmeh/
mappingdatarussia1a.r
df

Food 1 65 0 9ALCOF

http://www.w3.org/2001
/sw/WebOnt/guide-
src/food

Food 2 51 3 9ALHI(D)
http://www.purl.org/net/
ontology/beer

Food 3 138 1 17SHION(D)

http://www.w3.org/2001
/sw/WebOnt/guide-
src/wine

 77

Table 4.9. The results of the MATCH algorithm on different pairs of ontologies

from diverse domains, with different levels of expressivity, and created by

independent organizations.

1 - crs edas Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 7 7 7 7 7 7
 TP 7 7 7 7 7 7
 FP 33 23 18 16 9 0
 Precision 17.5 23.33333 28 30.43478 43.75 100
 Recall 100 100 100 100 100 100
 F1 29.78723 37.83784 43.75 46.66667 60.86956 100

2 -
paperdyne
sigkdd Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 9 9 9 9 9 9
 TP 9 9 9 9 9 9
 FP 27 18 12 12 7 0
 Precision 25 33.33333 42.85714 42.85714 56.25 100
 Recall 100 100 100 100 100 100
 F1 40 50 60 60 72 100

3 - iasted
MICRO Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 8 8 8 8 8 8
 TP 8 8 8 8 8 8
 FP 58 44 33 23 13 0
 Precision 12.12121 15.38462 19.5122 25.80645 38.09524 100
 Recall 100 100 100 100 100 100
 F1 21.62162 26.66667 32.65307 41.02564 55.17241 100

4 -
MyReview
PCS Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 12 12 12 12 12 12
 TP 12 12 12 12 12 12
 FP 26 17 15 13 5 0
 Precision 31.57895 41.37931 44.44444 48 70.58823 100
 Recall 100 100 100 100 100 100
 F1 48 58.53659 61.53846 64.86487 82.75862 100

 78

5 - Cocus
confious Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 9 9 9 9 9 9
 TP 9 9 9 9 9 9
 FP 44 25 24 20 7 1
 Precision 16.98113 26.47059 27.27273 31.03448 56.25 90
 Recall 100 100 100 100 100 100
 F1 29.03226 41.86047 42.85714 47.36842 72 94.73684

6 - cmt
OpenConf Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 4 4 4 4 4 4
 TP 4 4 4 4 4 4
 FP 45 35 28 19 4 0
 Precision 8.163265 10.25641 12.5 17.3913 50 100
 Recall 100 100 100 100 100 100
 F1 15.09434 18.60465 22.22222 29.62963 66.66666 100

7 -
Conference
ekaw Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 13 13 13 13 13 13
 TP 13 13 13 13 13 13
 FP 176 129 118 98 30 2
 Precision 6.878307 9.154929 9.923664 11.71171 30.23256 86.66666
 Recall 100 100 100 100 100 100
 F1 12.87129 16.77419 18.05556 20.96774 46.42857 92.85714

8 - confOf
linklings Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 6 6 6 6 6 6
 TP 6 6 6 6 6 6
 FP 43 22 11 7 3 0
 Precision 12.2449 21.42857 35.29412 46.15385 66.66666 100
 Recall 100 100 100 100 100 100
 F1 21.81818 35.29412 52.17391 63.1579 80 100

Biology1
Biology2 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 6 6 6 6 6 6
 TP 6 6 6 6 6 1
 FP 176 94 59 20 0 0
 Precision 3.296703 6 9.230769 23.07692 100 100
 Recall 100 100 100 100 100 16.66667
 F1 6.382979 11.32076 16.90141 37.5 100 28.57143

 79

Biology1
Biology3 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 9 9 9 9 9 9
 TP 9 9 9 9 9 3
 FP 737 253 91 37 3 1
 Precision 1.206434 3.435115 9 19.56522 75 75
 Recall 100 100 100 100 100 33.33334
 F1 2.384106 6.642067 16.51376 32.72728 85.71429 46.15385

Biology2
Biology3 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 3 3 3 3 3 3
 TP 3 3 3 3 3 2
 FP 158 54 15 6 0 0
 Precision 1.863354 5.263158 16.66667 33.33333 100 100
 Recall 100 100 100 100 100 66.66667
 F1 3.658536 10 28.57143 50 100 80

Travel1
Travel2 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 57 57 57 57 57 57
 TP 57 57 57 57 57 52
 FP 320 139 63 35 6 1
 Precision 15.11936 29.08163 47.5 61.95652 90.47619 98.11321
 Recall 100 100 100 100 100 91.22807
 F1 26.26728 45.05929 64.40678 76.51007 95 94.54545

Food2
Food3 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 2 2 2 2 2 2
 TP 2 2 2 2 2 1
 FP 74 31 17 8 1 0
 Precision 2.631579 6.060606 10.52632 20 66.66666 100
 Recall 100 100 100 100 100 50
 F1 5.128205 11.42857 19.04762 33.33333 80 66.66666

Food1
Food3 Threshold 0.7 0.75 0.8 0.85 0.9 0.95
 #M 112 112 112 112 112 112
 TP 112 112 112 112 112 77
 FP 374 282 204 132 36 6
 Precision 23.04527 28.4264 35.44304 45.90164 75.67567 92.77109
 Recall 100 100 100 100 100 68.75
 F1 37.45819 44.26878 52.33645 62.92134 86.15385 78.97436

 80

Our experimental results on ontologies from various domains presented in Table

4.9 demonstrate that setting the threshold depends on the specific ontology. A

reasonable threshold like 0.9, which performs well on some ontologies (i.e. yields a

F1 value of 100), may not work well on another ontology (i.e. yield a F1 value of 46).

This is demonstrated in Figure 4.13. Hence for each matching scenario, the user needs

to determine the appropriate threshold depending on the ontology that is being

matched.

The data also shows that for a threshold of 0.9, the last six ontology pairs tend

to have a greater F1 value than the first eight ontology pairs. That is probably because

the gold standards for the last six pairs were created using an initial threshold of 0.9.

Figure 4.13. A reasonable threshold like 0.9 performs very differently on different

ontologies.

 81

The data in Table 4.9 can also be used to test whether our MATCH algorithm is

likely to provide consistent results on ontologies from various domains. We

performed a Lilliefors test, on the various F1 values that are achieved using our

system and presented in Table 4.9. The Lilliefors test checks the default null

hypothesis that the sample comes from a normal distribution, against the alternative

hypothesis that it does not come from a normal distribution. The test returns the

logical value h = 1 if it rejects the null hypothesis at the 5% significance level, and h

= 0 if it cannot. The Lilliefors test is a 2-sided goodness-of-fit test, suitable when a

fully-specified null distribution is unknown and its parameters must be estimated.

For our data in Table 4.9, the Lilliefors test returns a value of h = 0, hence we

can not reject the null hypothesis that the sample comes from a normal distribution. In

other words it is not unreasonable to suppose that the distribution of F1 values is very

close to normal. Then we compute the cumulative distribution function of this normal

distribution, and the result is shown in Figure 4.14.

From Figure 4.14, we can see the probability that our class matching algorithm

would achieve an F1 value that is above a given level. For example, our algorithm

will achieve an F1 value of above 50 with the probability of 70 percent, in the general

population of ontologies. It will achieve an F1 value of above 80 with the probability

of 10 percent.

 82

Figure 4.14. The probability of achieving an F1 value that is above a given level,

using our class matching algorithm.

4.4.F. Queries

After performing class matching on the university ontologies, we created a

skeleton to connect the two ontologies. Ten queries that consist of looking for

different items in the two ontologies were considered. When using the skeleton, for

all the queries, the results are available in about four seconds. Four seconds is

approximately the time that it takes to run the class matching and create a skeleton.

Then, two human users were asked to answer these ten queries to look for different

 83

items in the two ontologies. Each query was performed by the human. The time that

was required for the human to answer each query was measured (i.e. without the

skeleton and without the matching). The results are shown in Figure 4.15. The human

required more time for answering the queries.

Figure 4.15. The time that was required for a human to answer ten different

queries, without using a skeleton and class matching.

The time that is required to execute the class matching algorithm and create a

skeleton is about four seconds. The algorithms can find twenty one matching classes

out of twenty four and create a skeleton quickly. When two human users were asked

to find the matching classes in these two ontologies, this task required more time. The

results of this experiment are shown in Figure 4.16. After about five minutes, the

humans can find twelve matches. The recall for the class matching algorithm is 0.875,

 84

while the recall for the human users is 0.50. The precision for the class matching

algorithm is 0.91, while the precision for the human users is 0.77. The number of

false positives for the class matching algorithm is 2, while the number of false

positives for the human users is 3.5 on average. The F1 for the class matching

algorithm is 0.89, while the F1 for the human users is 0.61.

Figure 4.16. The time that is required for a human to find the matching classes

vs. the time that is required to execute the class matching algorithm and create a

skeleton.

4.4.G. Broader Interpretation

What is our class matching algorithm good at: Our experimental results

show that the lexical, extensional, extensional closure, and global path similarity

metrics help in finding the matching classes in different ontologies. The lexical

similarity metric is quite robust and works reasonably well in a variety of domains.

 85

The extensional similarity metric is also effective, as it can provide some clues about

the similarity of classes, even when the names of the classes are different.

What are the limitations: One limitation of the lexical similarity metric is

when the ontologies are in different languages, e.g. French and English. In such

scenarios, the matches can not be found using the lexical similarity metric.

One limitation of the extensional similarity metric is that the instances need to

be distributed uniformly between the two ontologies, in order for this metric to work

well. Also, the instances themselves need to come from the same source or be

matched with each other. In real world ontologies, it is often the case that the

instances are not from the same source, and this causes difficulties in class matching.

The threshold of our class matching algorithm depends on the specific ontology.

A reasonable threshold like 0.9, which performs well on some ontologies, may not

work well on another ontology.

What is our skeleton good at: Our experiments for the skeleton show that a

user is able to answer queries faster with the matcher and skeleton than without the

matcher and skeleton. Furthermore, unlike any other approach, the skeleton is

compliant with the RDF W3C recommendation and allows query answering and

query expansion using standard tools.

One limitation of the skeleton is that it needs to be created by an administrator,

before it can be used by end users for searching. This is not always desirable as the

user might want to search across ontologies that have not been matched and no

skeleton has been created by an administrator.

 86

4.5. Summary

In this chapter, we designed a class matching algorithm, which utilizes various

similarity metrics. We evaluated the algorithm on a variety of ontologies. For

representation, we developed a novel W3C-compliant structure, named skeleton. An

algorithm for creating the skeleton, for interoperability between ontologies, was

presented. Our analysis shows that there is sufficient evidence to indicate that the F1

of our MATCH algorithm is larger than the F1 of S-Match and OMViaUO (p<=0.05),

and this is not due to chance. No conclusion can be made with regard to the other four

tools. The MATCH algorithm saves not only time but has a much greater F1 than two

human trials, on the university ontology pair. There seems to be a possible correlation

between ontology topic and optimal threshold. These items would be good for future

study.

 87

Chapter 5: RELATED WORK

In this chapter we will review the works that are relevant to the issues studied in

this dissertation. We also discuss in detail how our work advances the state of the art.

In Section 5.1, we review the work on dialogue agents as it is necessary for creating

an information assimilator (refer to Chapter 2). Section 5.2 discusses the work on

semantic search and user intention (refer to Section 2.6). The next four sections are

related to our work in Chapters 3 and 4. Section 5.3 discusses the work on Linked

Data. Section 5.4 covers the work on ontology integration and development. Section

5.5 reviews the work schema matching and information integration. Finally, Section

5.6 discusses the work on duplicate elimination and data cleaning. For each section,

we cite the most relevant work to our research and also provide pointers to recent

surveys.

5.1. Dialogue Agent

Some of the research on agent dialog and argumentation frameworks for dialog

are focused on the communication between software agents and are restricted to

 88

predefined logic-based protocols used by software agents (e.g. [Par03, Rah03,

Amg06, Bla07]). That line of work does not assume/require any semantic

representation for the relationship between concepts, in the form of an ontology. In

our work in Chapter 2, since the communication is between a human user and some

device, it is necessary to utilize ontologies in the dialog agent, to capture the

semantics of the concepts that humans employ in their utterance. Another related line

of work is on programs that are capable of carrying on a limited form of conversation

with a human, also referred to as “Turing test” programs. Eliza is an early example of

such work [Wei66]. These systems do not perform any tasks and are only good at

“running-on,” i.e. they keep a superficial resemblance of conversation going, without

achieving anything, unlike our work. There are a few application-oriented dialog

systems that interact with humans, e.g. [Bob77, All95, Wal01], but they are often tied

to a specific domain. [Bob77] is for booking and planning airline flights. Usually,

these systems are frame based, i.e. the grammatical rules of the system are hard

coded, and they do not use a domain-independent ontology for representing the

semantics of concepts, as in our work.

Some of the work related to our study of ontology mapping for agent

communication is as follows. Knowledge Query and Manipulation Language

(KQML) is a language and protocol for exchanging information and knowledge

[Fin97]. KQML is both a message format and a message-handling protocol, to

support run-time knowledge sharing among agents. KQML can be used as a language

for an application program to interact with an intelligent system or for two intelligent

systems to share knowledge in support of cooperative problem solving. [Fan04]

 89

directly studies the problem of human-agent communication, where the agent is a

knowledge-based question answering system (which takes a very similar role to our

dialog agent). Their system uses the content of the knowledge base to automatically

align a user’s encoding of a query to the structure of the knowledge base.

The work on agent dialog usually considers communication between software

agents only, and there is no human involved in the communication, unlike our work.

Hence, the agent does not deal with ontologies and uses a logic-based protocol,

instead. That line of work on agent dialog does not assume a semantic representation

of concepts, in the form of an ontology. For example, [Par03] studies argumentation-

based dialogs between software agents and examines how the outcome of the dialog

is determined. [Rah03] looks at the factors that affect the negotiation strategy and

move selection, in dialog among software agents, independent of the dialog protocol

being used by the agents. [Amg06] provides a model for selecting the best move, at a

given step in the dialog. [Bla07] provides a protocol and strategy specifically for

inquiry dialogs. [Lae07] proposes the use of a logic based argumentation framework

for software agents to agree or disagree about the correspondences between

ontologies, based on agent’s preferences. The focus of [Lae07] is on the

argumentation protocol (i.e. the available moves), and the details of computing the

concept similarity is not studied at all. It also does not involve humans.

There are some related efforts in agent-based systems literature that bear on

similar problems, as the information assimilator. [Jos05] is an automated agent

mediator (task-manager) that can pass along human requests for actions to multiple

disparate task-performing engines. This work is closely related, but is somewhat in

 90

the reverse direction of the assimilator. The main flow of information in [Jos05] is

from human to external entities. In the assimilator problem, however, it is primarily

from external entities (data sources) to the human. Nonetheless, in each case there is a

mediator in the middle, making sure the right things happen.

The work in the area of machine translation (MT) also provides a mediator of

sorts, but between distinct languages. In general, rule-based methods for machine

translation attempt to parse a text of the source language, to create a symbolic

representation (Interlingua). Then, the text of the target language is generated from

the symbolic representation [Nir02, Dor94]. The Interlingua is similar to a mediator

and is a language-independent representation of the meaning of the text.

The DeepQA project is a recent research effort at IBM that is relevant to TAIA

[Dee]. It shapes a grand challenge in Computer Science that aims to illustrate how the

wide and growing accessibility of natural language content and the integration and

advancement of Natural Language Processing, Information Retrieval, Machine

Learning, Knowledge Representation and Reasoning, and massively parallel

computation can drive open-domain automatic Question Answering technology to a

point where it clearly and consistently rivals the best human performance. A first stop

along the way is making a formidable Jeopardy contestant named Watson. Jeoperdy

is a game in which humans compete against each other to answer a series of questions

correctly and quickly.

 91

5.2. Semantic Search

Swoogle is one of the pioneering search engines for finding the relevant

ontologies and documents that are published on the Web [Din04]. It is hosted by the

University of Maryland, Baltimore County and provides search capabilities for

human users through a Web browser interface. The Swoogle system finds the relevant

ontologies that contain the search phrases that are provided by users. In Section 2.6,

we studied how with semantic search users can interactively find the relevant entities

that are in different ontologies on the Web. Then we compared semantic search in

RDF to keyword search in the relational model.

Falcons object search is a system that provides a great and intuitive search

interface for finding linked objects on the Web of Data [Che09]. Watson is another

search engine for the Semantic Web, which provides an efficient access point to

online ontologies and semantic data [dAq08]. It performs the following tasks: (1) it

collects the available semantic content on the Web, (2) analyzes it to extract useful

metadata and indexes, and (3) implements efficient query facilities to access the data.

Semantic Web Search Engine (SWSE) is another search engine, which provides a

Web interface for searching the Semantic Web [Har06]. Although these search

engines provide great functionalities, they are difficult to use for ordinary users. It is

also generally difficult to find intended entities and relevant information about those

entities using existing search engines for the Web of Data at this time.

Tabulator is a nice generic data browser and editor for the Semantic Web. It

provides a way to browse RDF data on the Web, using outline and table modes

[Ber06]. It can also accept input in RDF/XML, Turtle, or N-Triple format. [Har10]

 92

describes another system for searching and navigating large amounts of Web data.

This system provides detail, list, and table views for arbitrary types of objects.

Sindice Inspector is a tool for extracting structured data (such as microformats or

RDFa) contained in HTML documents [sin].

[Jag07] envisions an exciting avenue of research in relational databases. They

state that while relational databases have good performance and functionalities,

databases are very difficult to use for typical users. They identify five pain points,

including: too many joins, too many options, lack of explanation, no direct

manipulation, and difficulty of defining structure for data. To tackle these usability

issues, they propose a presentation data model and recommend direct data

manipulation with a schema later approach. It is interesting that semantic search, as

described in Section 2.6.2, in fact strives to also achieve direct manipulation of data

in a way that the user does not need to know about the schema of the data. Hence, in

some sense semantic search is similar to the proposed presentation data model, and

this provides a variety of research opportunities.

Paul Grice in his seminal paper, “Meaning,” first published in 1957, analyzed

the issue of speaker’s meaning [Gri57]. This work is relevant to our discussions

regarding user intentions in Section 2.6. Grice drew a distinction between what he

called natural meaning and what he called non-natural meaning. This is an account of

his distinction, provided in [Gri]. Natural meaning is the kind of meaning that we are

speaking of when we say something like, “Those spots mean measles” or “A shiny

coat in a dog means health”. Non-natural meaning is the kind of meaning we speak of

 93

when we say “Those three rings on the bell (of the bus) mean that the bus is full” or

“By saying that the child looked guilty, he meant that the child was in fact guilty”.

Further, Grice offered a three-part analysis of non-natural meaning: A (an agent)

meant something (non-naturally) by x (an utterance or gesture), if and only if A

intended the utterance or gesture x to produce some effect in an audience by means of

the recognition of this intention. In other work, Grice contemplated a variety of

refinements. The preliminary analysis that he offers in “Utterer’s Meaning, Sentence

Meaning, and Word-Meaning” (1968) for what he calls the occasion-meaning of

indicative-type utterances may be represented as follows [Gri68]:

By uttering x, U meant that p if and only if for some audience A, U uttered x

intending (i) that A should believe that U believes that p, (ii) that A should believe

that U intended (i), and (iii) that (i) should be achieved by means of achieving (ii).

Speaker’s (or utterer’s) meaning, so defined, has to be strictly distinguished

from what might be called the conventional meaning of a speaker’s words. The place

of conventional meaning in Grice’s conception of language appears to be that it

constitutes a feature of words that speaker’s might exploit in realizing the intentions

referred to in the analysis of speaker’s meaning. This emerges in “Utterer’s Meaning

and Intentions” (1969), where Grice considers a variety of purported counter

examples to his analysis of speaker’s meaning and as a result produces a much more

complex analysis [Gri69]. Particularly important is the conclusion that when an

utterer means that p by utterance x the utterer must suppose that x has some feature f

that the audience is to think of as correlated in a certain way with the response that

the utterer intends to produce in the audience. In view of the account of so-called

 94

timeless meaning in “Utterer’s Meaning, Sentence Meaning, and Word-Meaning”,

Grice’s thought would appear to be that this feature is often the timeless meaning of

the utterance.

5.3. Linked Data

[Biz09] and [Hea11] provide nice overviews of the core principles necessary for

publishing Linked Data on the Web. As outlined in [Biz09], one of the major research

challenges of Linked Data is to address the issue of schema mapping and data fusion,

i.e. to retrieve data from different distributed sources of information and present it to

the user. This requires a mapping of terms from different ontologies (vocabularies). In

Chapter 3, we illustrated this issue with a precise use case, in which there were two

independent universities. We demonstrated how users can query different ontologies

(distributed and autonomous sources of information) and retrieve data from all of

them, across organizational boundaries.

[Mul10] describes an approach for finding associations between data elements

that are in a relational model and nodes in a reference Linked Data collection (e.g.

DBpedia). In other words, it assigns table columns to classes, table cells to entities,

and inferred relations between columns to properties. The resulting interpretation can

then be used to annotate relational tables. In general, the need for sharing data with

collaborators motivates custodians and users of relational databases (RDB) to expose

relational data on the Web of Data. [Pru10] examines a set of use cases from science

and industry for taking relational data and exposing it in RDF. [Das10] describes

R2RML, a language for expressing customized mappings from relational databases to

 95

RDF datasets. Such mappings provide the ability to view existing relational data in

the RDF data model.

[Mil10] introduces the core challenges faced when consuming multiple sources

of Linked Data and focuses on the problem of querying. They compare both URI

resolution and federated query approaches and outline the experiences gained in the

development of the RKB Platform [Gla09]. Virtuoso Universal Server is an open

source middleware and database engine hybrid that combines the functionality of a

traditional RDBMS, ORDBMS, virtual database, RDF, XML, free-text, web

application server and file server in a single system [Ope]. Virtuoso enables a single

multithreaded server process to implement multiple protocols and can be useful, when

processing Linked Data and dealing with other kinds of data as well. Also, Oracle is a

commercial database product that supports RDF functionalities.

5.4. Ontology Integration (Development)

Some works on ontology mapping (e.g. [Kal03a, Doa03, Ehr04]) focus on

finding correspondences between ontologies (i.e. ontology matching), and they

address Step 1 of ontology mapping (refer to Section 3.2). Some other works on

ontology mapping (e.g. [McG00, Noy00, Stu01]) produce a merged ontology as the

final output (representation), which is generally in the context of ontology

development (refer to Sections 3.3.1). Our approach to facilitating interoperability

between ontologies (refer to Sections 3.3.2) is different from ontology merging

solutions, since merging inherently follows a different goal (for the distinction, refer

to Sections 3.3.3 and 3.3.4). In our approach, for facilitating interoperability, we find

 96

the class correspondences between the ontologies and then create a skeleton to

represent these correspondences. In Chapter 4 we provided the required algorithms

for this approach, with attention to the context of the Semantic Web, in a fashion that

is compliant with the W3C recommendations.

The ontology matching problem has been studied extensively, e.g. [McG00,

Doa03, Euz07]. [McG00] tackles ontology merging for government intelligence in

DARPA’s High Performance Knowledge Base program. [McG00] deals with

knowledge intensive applications, where ontologies are developed by various teams

of people with broad ranges of training. The people are responsible for the

development, design and maintenance of ontologies. These ontologies need to be

integrated into other large application ontologies. Sometimes, the integration is done

by people who do not have much training in knowledge representation. Hence, the

integration process requires tools that support users in: (1) merging of ontological

terms from varied sources, (2) diagnosis of coverage and correctness of ontologies,

and (3) maintenance of ontologies over time. [McG00] created a tool called Chimaera

for the above tasks.

[Noy00] developed the PROMPT tool for merging ontologies, and the work was

also motivated by DARPA’s High Performance Knowledge Base program. The goal

was to develop ontologies, through reusing existing ontologies. It exploits the graph

structure of ontologies to provide suggestions for merging. Merging of ontologies

causes inconsistencies and the user is interactively prompted with suggestions to

remedy these inconsistencies. The issue of inconsistencies that arise from merging is

also highlighted by [Pot03]. The ontology merging process is inherently semi-

 97

automated, and the user is actively kept in the loop, as merging is being performed.

The user makes the final subjective decisions, by considering the logical entailments,

while the system provides helpful suggestions for merging.

Both [McG00, Noy00] provide concrete ontology merging scenarios. It is

crucial to note that these works are in the context of ontology development (refer to

Section 3.3.1). In both papers, there is no mention of interoperability (i.e. information

integration) - refer to Section 3.3.3 and 3.3.4 for the distinction.

[Stu01] uses a set of shared instances or a set of shared documents that are

annotated with the concepts of two ontologies. Then, a lattice is generated to merge

and relate the classes of the ontologies, using formal concept analysis. Various

systems have studied finding lexical matches between ontology entities, or use

dictionaries, WordNet and other resources for the matching process. [Kal03a] is a

system that also uses formal concept analysis to find the matching concepts of two

ontologies by matching them to a third reference ontology. [Aum05] presents the

COMA++ tool, which provides a comprehensive and extensible library of individual

matchers. The matchers can be selected to perform the matching operation. The

graphical interface of this tool offers a variety of interactions and allows the user to

influence the matching process. [Kal03b] provides a survey of various ontology

mapping systems. [Ont] is a site that provides a comprehensive list of publications

related to the ontology mapping problem.

GLUE is one of the earlier systems that utilizes machine learning for ontology

matching [Doa03]. It exploits a Naïve Bayes (NB) classifier to detect the similarity of

classes in two ontologies. To find the similarity between class S in one ontology and

 98

class T in another ontology, a NB classifier is trained offline on the instances of S,

and then tested on the instances of T. Then, the Jaccard coefficient of classes S and T

is computed, as a measure of the similarity of the classes. Also, the system utilizes the

full names of classes for measuring their similarity. The names are created by starting

from the root of the taxonomy and moving down the class hierarchy. This system

requires training data, unlike our class matching algorithm. Also, in GLUE the

instances are assumed to be long textual strings, which is not generally the case in

ontologies. We do not make such an assumption about instances.

[Noy04] is a brief survey that highlights some important issues in ontology

mapping. [Ehr04] proposes various features for different types of entities, when

matching between ontologies. They also provide a process to compute the similarity

measures of those features and to aggregate them. The issue of ontology design (also

known as ontology development/engineering) has been studied by [Noy97, Noy01,

McG03, Gol03, Fen01, Gua02]. Currently there exists no standard, W3C-compliant

approach for representing the matching classes between ontologies, as is necessary

for facilitating interoperability [van08, Mil10].

As described in Section 3.2, in Step 1 of ontology mapping, the output of an

ontology matching algorithm is a set of matching entities between two ontologies.

[Euz04] proposes that this set can be specified in the form of a list in a file. A specific

format for such a file is proposed, and an API (Application Programming Interface),

which can process this format, is implemented in Java. This API can be used by Java

programmers to manipulate the matching entities, when the matches are specified in

such a format. Since this format is not a part of the W3C recommendations, standard

 99

ontology tools can not use it without extra implementation effort. However, our

skeleton (refer to Section 4.2) is compliant with W3C recommendations.

[Bou04] proposes an extension to the syntax, and the semantics of OWL, named

Context OWL (COWL). The extensions allow the localization of ontology’s content

(making it not visible to other ontologies), and allow bridge rules for controlled forms

of global visibility. These extensions are not a part of the OWL W3C

recommendation, and as a result, they are not implemented in standard ontology

reasoners. In that work, there is also no algorithm for creating these rules. [Bou04]

states that this is a first step, and a lot of research remains to be done, to address the

core issue at stake, which is: the tension between how much should be shared and

globalized (via ontologies), and how much should be localized with limited and

totally controlled forms of globalization (via contexts).

In 2004, the World Wide Web Consortium (W3C) announced the final approval

of two key Semantic Web technologies, the revised Resource Description Framework

(RDF) and the Web Ontology Language (OWL). RDF and OWL are Semantic Web

standards that provide a framework for asset management, enterprise integration and

the sharing and reuse of data on the Web. These standard formats for data sharing

span application, enterprise and community boundaries, and allow all of these

different types of users to share the same information, even if they don’t share the

same software.

The RDF Primer is an introduction to, and tutorial on how to use, RDF and RDF

Schema [RDFp]. RDF Vocabulary Description Language describes how to use RDF

to describe application and domain specific vocabularies [RDFv]. [OWLu] presents

 100

the use cases and requirements that motivated OWL. [OWLo] is an overview

document, which briefly describes the features of OWL and how they can be used.

[OWLg] is a comprehensive guide that walks through the features of OWL with

many examples of the use of OWL features.

[van08] provides an interesting overview of the semantic interoperability

problem and reviews some of the core issues involved. van Harmelen states that with

the rapid growth of the Internet and the Web, more principled mechanisms to

facilitate semantic interoperability (i.e. facilitate querying of data) across

organizational boundaries have become necessary. He emphasizes that despite many

years of work on the semantic interoperability problem, this old problem is still open

and has acquired a new urgency, now that physical and syntactic interoperability

barriers have largely been removed. Physical interoperability between systems has

been solved with the advent of hardware standards, such as Ethernet, and with

protocols, such as TCP/IP and HTTP. Also, syntactic interoperability between

systems has been largely solved by agreeing on the syntactic form of the data that we

exchange, particularly with the advent of eXtendible Markup Language (XML). For

semantic interoperability between systems, we not only need to know the syntactic

form (structure) of the data, but also the intended meaning of the data. Note that the

skeleton addresses the semantic interoperability problem, i.e. the skeleton enables

users to query the data across organizational boundaries.

[Isa09] is an interesting and recent work on ontology matching (thesaurus

alignments). [Isa09] explores common real-world problems in a library domain and

identifies solutions that would greatly benefit from a more application-embedded

 101

study, development and evaluation of matching technology. Knowledge-based data

integration can potentially provide great benefits in various applications. These

benefits are being investigated in real-world scenarios by [Bod06, Bec07, Ala08,

Isa09]. We discussed the issue of instance matching in Section 3.8. In OWL, the

owl:sameAs construct is used to specify that two instances in two ontologies are the

same. [Hal10] outlines four alternative readings of owl:sameAs, showing with

examples how it is being (ab)used on the Web of Data. Then, they present possible

solutions to this problem by introducing alternative identity links that rely on named

graphs.

In summary, interoperability between autonomous information sources is at the

core of the Semantic Web vision [Ber01, Sha06, Biz09]. In essence, the Semantic

Web is about applying the advances in the knowledge representation domain

(developed by the AI community, e.g. [Sha91, Gru93, Hen95, McG03]), to the

exciting and industrial-scale information integration applications (which is the Holy

Grail of the database community [Doa01, Hal05]). All this is embedded in the

infrastructure that has flourished to form the current World Wide Web.

5.5. Schema Matching and Information Integration

The work on schema matching is related to ontology mapping for

interoperability, as outlined in Section 3.5. The need for communication between

autonomous and distributed information systems is increasing with the wide usage of

the Web [Hal00]. Nowadays, data sharing across resources and enterprises is no

longer a desirable feature, but a necessity. Considerable amount of research on data

 102

integration and schema mapping over the last three decades have lead to

improvements in this area [Ber81, She90, Hal05].

[Rah01] provides a survey of various schema matching approaches in the

database literature. [Kno02] is a comprehensive tutorial that motivates the need for

information integration on the Web, which falls between the database and AI areas.

[Kno02, Hal00] emphasize the roles that AI technology can play in supporting

information integration. [Hal05] provides a collection of discussions on the topic

from various perspectives.

[Doa01] proposes to learn the mappings between a source schema and a

mediated global schema, in information integration systems. Creating these mappings

by human users for information integration is time consuming. Their system learns

the mappings from a few initial mappings, provided by users. Different learning

mechanisms are utilized on the source schemas or on their data, and the results are

combined using a meta-learner. [Pot03] describes an algorithm for the merging of

models (schemas or ontologies), when a set of correspondences is given. It also

provides an elaborate treatment of conflict resolution, since the merging of models

generates various types of conflicts. [Len02] is a detailed treatment of the information

integration problem from a theoretical standpoint.

[Mel02] introduces similarity flooding, a generic graph matching algorithm,

which computes the correspondences of nodes in graphs and applies it to schema

matching. Graph-based approaches have also been utilized in [Mil98] for schema

matching. [An05] provides an algorithm that creates data transformations from a

source relational database to a target ontology, using a given set of simple

 103

correspondences. Our work is focused on facilitating interoperability between

ontologies, and it does not involve any transformation from databases to ontologies.

[Li00] presents a tool (SEMINT) that uses neural networks to find correspondences

between attributes in heterogeneous databases. It uses both schema and data to

produce matching rules automatically.

[Hal06] introduces a set of principles for future data integration systems. Unlike

traditional integration systems, in their pay-as-you-go model of integration, they

assume that full semantic mappings between schemas are not available. However, the

mappings are created incrementally and based on user needs. They advocate the

opportunities for learning from existing mappings and also learning from human

attention. [Ber07] proposes the model management vision, as a generic approach to

solving the problems of data programmability, where precisely engineered mappings

are required. The goal is to develop an engine that supports operations to match

schemas, compose mappings, diff schemas, merge schemas, translate schemas into

different data models and generate data transformations from mappings.

5.6. Duplicate Elimination and Data Cleaning in Databases

The work on duplicate elimination in databases is closely related to instance

matching in ontologies, as discussed in Section 3.8. The same real-world entity,

which is represented as a record, usually has different representations in different

databases. Records (tuples) in a database consist of various attributes (fields).

Duplicate records refer to the same entity, but do not share a common key, or they

contain errors. This makes the matching of duplicate records a difficult task.

 104

Differences between duplicates could arise from incomplete information, lack of

standard formats or any combination of these factors. Many different attribute

similarity metrics and record similarity metrics have been proposed for duplicate

elimination and data cleaning in databases. Approximate duplicate elimination has

been studied for the last five decades and was initially of interest to the statistics

community [New59]. The problem is also known as record linkage and entity

resolution. [Elm07] is a recent survey of the literature on detecting duplicate records.

One of the early works that mention the analogy between the issues of instance

matching in ontologies and duplicate elimination in databases is [Hai06]. Various

data cleaning approaches, studied in the database literature, can be useful for instance

matching in ontologies. As described in Section 3.8, instance matching is required,

when ontologies are merged. It is also necessary in class matching for

interoperability, when computing the extensional similarity metrics. [Ala02] proposes

a stepwise process for detecting unique instances, which is to be used for merging,

populating and maintaining ontologies. They refer to the problem as identifying

coreference or referential integrity.

[Her98] proposes an effective rule-based approach to finding duplicates, where

the user specifies a set of rules, using various string similarity metrics and thresholds.

The rules are coded in some programming language, and it is time consuming to

repeatedly create these rules for each data schema that needs to be cleaned. These

rules are static and can not be tuned using machine learning algorithms. [Bil03] uses

adaptive similarity metrics to learn the parameters for string comparison. Hence,

when training data (labeled duplicate records) are available, the system can be

 105

trained. However, without training data, such adaptive systems are ineffective, as

their performance is tied to the existence of training data. Also, the training data

needs to have a good coverage of problem states, and such data can be difficult to

obtain.

 106

Chapter 6: CONCLUSIONS AND FUTURE DIRECTIONS

6.1. Conclusions

There is tremendous potential in enabling general users and scientists to search,

browse, and discover information from independent knowledge bases (Linked Data

sources) on the Web, in ways that were not anticipated by the developers of the

knowledge bases, at the time when the knowledge bases were designed. We

demonstrated the differences between searching for data in the RDF model and

relational model in terms of user interaction and behavior. In this dissertation, we laid

out the foundations of semantic search in Linked Data and provided effective

mechanisms to facilitate data interoperability across organizational boundaries.

The key contributions of this dissertation are as follows:

 An overarching definition of ontology mapping that allows the systematic

analysis and distinction of different goals of ontology mapping. The analysis

of the goals provides a guideline for performing ontology mapping and

influences the design of tools and algorithms for ontology mapping.

 Facilitating interoperability between ontologies is rigorously compared with

information integration in databases. Based on this comparison, class

 107

matching is emphasized as a critical part of facilitating interoperability. Then,

various class similarity metrics for class matching are formalized and

evaluated on real-world ontologies.

 A novel W3C-compliant representation, named skeleton, is developed and

evaluated against other existing approaches. The skeleton encodes the

correspondences between ontologies and facilitates interoperability between

them. An algorithm for creating the skeleton is provided.

With semantic search in RDF, user’s intentions can be accurately narrowed

down in a more robust way than keyword search in the relational model. The

comparison of semantic search and keyword search clarified the advantages of using

RDF instead of the traditional database. We demonstrated that it is difficult to retrofit

a robust semantic search behavior on the relational data model and find answers to

questions about an entity (as available in RDF). In semantic search, typical users

(who have not had any special training) can interactively explore the data and

navigate through sets of entities, by utilizing their knowledge of a domain. Also, they

do not need to use unintuitive and complex SQL statements, as in the relational

model.

We demonstrated why it is difficult to simulate semantic search with keyword

search on the relational data model. In other words, the explicit encoding of semantics

(via typed relations) and the global referencing of entities in RDF (via links or URIs)

are the two critical enabling features that make RDF suitable for robust search and

information integration across different enterprises. The comparison of semantic

 108

search and keyword search also revealed some of the crucial research challenges that

need to be addressed for scalable semantic search.

Although the ontology mapping process for the Semantic Web has been studied

in the past decade, the underlying principles that drive this process have remained

murky [van08, Mil10]. We provided an overarching definition of ontology mapping

and distinguished its goals using precise use cases. The ontology mapping procedure

for two separate and autonomous ontologies, O1 and O2, consists of the following

steps: Finding corresponding entities in ontologies O1 and O2, and then representing

the found correspondences and using it to achieve some goal. Hence, the goal of

ontology mapping determines what candidates to consider, when we are finding the

correspondences. The goal also determines how to represent the correspondences.

One possible goal of ontology mapping is ontology development; that is when

an ontology is being designed or engineered by an organization. For example,

consider that a supermarket is using an ontology to categorize its items. After a while,

the supermarket may expand its business and offer new products. The current

ontology then needs to be changed and expanded based on the changes in the business

model. In this ontology development process, existing ontologies can be merged into

the current ontology and used for creating a new ontology.

 The other possible goal of ontology mapping is facilitating interoperability; that

is when there are various parties, which are using different ontologies, and users need

a mechanism to be able to query the information, which resides in the ontologies. For

example, consider that two different universities are using ontologies to categorize

 109

their courses. Users may then want to find all the courses that are related to Computer

Science in both universities.

We studied these two goals of ontology mapping across seven dimensions,

namely: representation of mappings, inconsistency between ontologies, automation of

the mapping process, importance of isolating the organizations, class matching and its

role in interoperability, tractability of skeleton creation, and the tight coupling

between the interoperability goal and the Semantic Web vision. The dimensions serve

as a guideline for performing ontology mapping, and they influence the design of

tools and algorithms for ontology mapping, e.g., what tasks can be automated and

what tasks should involve a human in the loop, what candidates to consider for

finding correspondences, and how to represent the correspondences.

In order to understand the goal of facilitating interoperability between

ontologies more thoroughly, we compared it with the information integration problem

in databases. We showed that in databases, the final output of the information

integration process is a mapping between columns in different local schemas. We

illustrated that columns in the relational model correspond to classes in the RDF

model. The comparison also revealed that to facilitate interoperability between

ontologies, the classes in the ontologies need to be mapped to each other.

The ultimate objective of interoperability is to query and correctly retrieve data

instances across various ontologies. The data resides in the classes in the ontologies.

Hence, as long as a correct mapping between the classes in the ontologies exists,

users can query and correctly retrieve the data instances across various ontologies.

 110

After identifying that class matching is a critical part of ontology mapping for

facilitating interoperability, we formally defined a set of class similarity metrics that

utilized different clues to compute the similarity of classes. Then, we presented an

algorithm for class matching, which directly measures the similarity of classes rather

than determining subclass relationships.

The lexical similarity metric measures the similarity of the strings that represent

the name of the classes. The extensional similarity metric considers the direct

instances of two classes that are in common between the two classes. The extensional

closure similarity metric considers not only the direct instances that are in common,

but also the instances of the subclasses that are being compared. The global path

similarity metric provides clues about the position of classes in the class hierarchy.

We then experimentally evaluated the effectiveness of these metrics on real-world

ontologies.

In order to achieve interoperability between ontologies, the class

correspondences need to be represented in a suitable form. We provided a novel

W3C-compliant representation, named skeleton, which enables users to search and

discover knowledge from different ontologies, more generally and effectively than

existing alternatives. More specifically, the skeleton provides a uniform

representation of mappings across ontologies and is stored independent of those

ontologies. A user’s query, in a Linked Data browser, may then be largely guided and

managed via the uniform skeleton representation, freeing the user from the

burdensome and time-consuming task of mapping during the querying process. We

 111

also evaluated the skeleton experimentally and provided an algorithm for creating the

skeleton.

Our design for the skeleton representation is compliant with the W3C

recommendations. In other words, when using the skeleton, query answering and

query expansion can be performed using standard tools, without any ontology

reasoner adjustments and extra implementation effort.

Creating a skeleton isolates the original ontologies from changes, and therefore

each autonomous organization uses its own business model for everyday operations.

This isolation, in turn, eliminates the possibility of the inconsistencies that arise,

when ontologies are merged. Moreover, once the class matching is done and the

correspondences have been determined, the process of creating the skeleton is fully

automated and performed using our algorithm without any human user involvement.

Our analysis shows that there is sufficient evidence to indicate that the F1 of our

MATCH algorithm is larger than the F1 of S-Match and OMViaUO (p<=0.05), and

this is not due to chance. No conclusion can be made with regard to the other four

tools. The MATCH algorithm saves not only time but has a much greater F1 than two

human trials, on the university ontology pair. There seems to be a possible correlation

between ontology topic and optimal threshold. These items would be good for future

study.

 112

6.2. Future Directions

This dissertation has made significant inroads into understanding semantic

search and facilitating interoperability across organizational boundaries. In this

section, we discuss some of the critical challenges that remain for further research

toward widely deploying semantic search on the Web.

6.2.1. Effective User Interfaces

In general semantic search interfaces should enable users to search and browse

the data without knowledge about the schema of the data. There are a number of

issues that need to be considered for creating a robust user interface for semantic

search. Users are often more familiar with traditional Web search engines than

semantic search engines, for example some users find the use of classes, class

hierarchy, and instances to be confusing. The user interface should be designed such

that it can be used easily by general users, when looking for answers to everyday

questions, as well as scientists, when browsing domain-specific knowledge bases.

Given the diversity of entities that need to be browsed on the Web of Data, the

interface should support various types of data visualizations. The interface should

also have minimal configuration settings in order for it to be appealing and usable,

similar to the simple interface of current Web search engines for the Web of

documents. Since the volume of data that is being browsed can be large, scalability

issues such as incremental loading of data need to be considered. Semantic search

 113

interfaces should also allow logging of user interactions and exporting of results, as

the results may need to be used by other applications.

Some other points that should be considered are effective presentation of sets of

entities, user interactions to support the selection of some of the entities from the

result of a query, presentation of relationships (at both class and instance level), and

intuitive ways of specifying SPARQL queries.

6.2.2. Ranking of Results and Data Quality

When searching for objects on the Web of Data, the results come from various

data sources (namespaces). One of the challenging issues is the ranking of the

resulting objects. Ranking of objects in this context not only depends on the relevance

of the object to the query, but also the quality of the data source that provides the

object. A number of criteria can be considered to evaluate the quality of data in a

Linked Data source, for example consistency, freshness in regard to time,

comprehensibility in terms of documentation and commenting, validity of URI’s,

amount of data, licensing, and performance of the data store. Quantifying these

factors and integrating them into the ranking of objects require further research.

A similar problem to the ranking of objects occurs, when searching the Web of

documents, where the most reliable documents need to be returned. With current

technology, in Google the most popular Web pages are essentially returned as top

results. This approach may be adapted for the ranking of objects in the Web of Data,

but when searching for critical scientific data (e.g. in health care domain), other

 114

approaches may need to be used, in order to ensure the retrieval of accurate results

from authoritative sources regardless of the popularity of the data source.

6.2.3. Dealing with Distributed and Dynamic Data

At the moment most applications that use Linked Data are limited to a pre-

specified set of datasets, i.e. they do not use all possible data sources on the Web.

Various challenges arise in developing applications that consume data from the

unbounded Web, in regard to querying and accessing an open number of data sources.

These challenges are largely unresolved at this time. One challenge is related to the

fact that entities (instances) that result from a query come from distributed sources.

Hence, the same entity can have multiple URIs (co-references). This leads to

problems in the aggregation of results in a SPARQL query. In other words, such

entities need to be reconciled and integrated.

Another challenge is in resource discovery, when we need to discover the

subjects of an object in a SPARQL query. This requires the traversal of a relation in

reverse direction, which is not easily possible. By analogy, resource discovery is

similar to finding all the documents that link to a specific document on the Web of

documents. As the Web of Data becomes more interlinked, answering some queries

requires accessing multiple datasets. Such queries that span multiple datasets can not

be executed readily and pose a challenge. These queries can be answered using URI

resolution or SPARQL, and each approach has its benefits and pitfalls.

 115

Since data sources on the Web are often dynamic and autonomous, the data and

schema can change. Therefore it is necessary to develop techniques to monitor the

changes and maintain the correct correspondences. This problem is often referred to

as mapping maintenance, and while it is important in practice, it has not been fully

addressed. Also, some of the Linked Data on the Web originates from existing

databases and Web pages. Hence such Linked Data is not updated frequently, which

causes problems in different applications. In other words, dealing with the dynamic

nature of data on the Web requires further research.

6.2.4. Scalability of Storage and Retrieval

Storage and retrieval of data in the relational database model has become highly

optimized over the last three decades. Similar performance levels are necessary for

RDF to enable large-scale semantic search. Considering that the representation of

data in the RDF and relational models are different, there are various storage and

indexing issues that need to be studied for achieving better performance. These issues

include: native storage mechanisms for RDF or efficient storage of RDF in the

relational model, indexing and retrieval of RDF data, and optimization of queries

specified in SPARQL.

Research efforts along this line are underway, e.g., [Aba07] studies the physical

design issues and proposes the vertical partitioning of data in the relational model, for

RDF storage. [Neu09] focuses on join processing, since the fine-grained and schema-

relaxed use of RDF often entails star-shaped and chain-shaped join queries with many

input streams from index scans.

 116

 117

Bibliography

[Aba07] Abadi, D., Marcus, A., Madden, S., Hollenbach, K., “Scalable Semantic

Web Data Management Using Vertical Partitioning,” Proc. of the 33rd

International Conference on Very Large Data Bases (VLDB'07), Vienna,

Austria, September 23-27, 2007.

[Ala02] Alani, H., Dasmahapatra, S., Gibbins, N., Glaser, H., Harris, S., Kalfoglou,

Y., O'Hara, K., Shadbolt, N., “Managing Reference: Ensuring Referential

Integrity of Ontologies for the Semantic Web,” Proc. of the 13th Int. Conf.

Knowledge Eng. and Knowledge Management (EKAW 02), Sigenza, Spain,

pp. 317–334, 2002.

[Ala08] Alani, H., Chandler, P., Hall, W., O’Hara, K., Shadbolt, N., Szomszor, M.,

“Building a Pragmatic Semantic Web,” IEEE Intelligent Systems, 23(3), pp.

61-68, 2008.

[All95] Allen, J.F., Schubert , L.K., Ferguson, G., Heeman, P., Hwang, C., Kato, T.,

Light, M., Martin, N., Miller, B., Poesio, M., Traum, D., “The TRAINS

Project: A case study in building a conversational planning agent,” Journal of

Experimental and Theoretical AI, Vol. 7, pp. 7-48, 1995.

[Amg06] Amgoud, L., Hameurlain, N., “An argumentation-based approach for

dialogue move selection,” Proc. of 3rd Int. Workshop on Argumentation in

Multi-Agent Systems (ArgMAS’06), pp. 111-125, 2006.

 118

[An05] An, Y., Borgida, A., Mylopoulos, J., “Inferring Complex Semantic Mappings

Between Relational Tables and Ontologies from Simple Correspondences.”

OTM Conferences (2), 2005.

[An05] An, Y., Borgida, A., Mylopoulos, J., “Inferring Complex Semantic Mappings

Between Relational Tables and Ontologies from Simple Correspondences.”

OTM Conferences (2), 2005.

[And05] Anderson, M., Perlis, D., “Logic, Self-awareness and Self-Improvement:

The Metacognitive Loop and the Problem of Brittleness,” Journal of Logic

and Computation, 15(1), 2005.

[And08] Anderson, M., Fults, S., Josyula, D., Oates, T., Perlis, D., Schmill, M.,

Wilson, S., Wright, D., “A Self-Help Guide For Autonomous Systems,” AI

Magazine, 2008.

[Aum05] Aumueller, D., Do, H.H., Massmann, S., Rahm, E., “Schema and ontology

matching with COMA++,” Proceedings of the 24th ACM SIGMOD

International Conference on Management of Data (SIGMOD’05), 2005.

[Bat86] Batini, C., Lenzerini, M., Navathe, S., “A Comparative Analysis of

Methodologies for Database Schema Integration,” ACM Computing Surveys,

18(4), pp. 323-364, 1986.

[Bec07] Beck, A.R., Fu, G., Cohn, A.G., Bennett, B., Stell, J.G., “A framework for

utility data integration in the UK,” 26th Urban Data Management Symposium

(UDMS’07), Stuttgart, Germany, 2007.

[Ber00] P. Bernstein, A. Halevy, and R. Pottinger. A vision for management of

complex models. ACM SIGMOD Record, 29(4):55–63, 2000.

 119

[Ber01] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web,” Scientific

American, May, 2001.

[Ber06] Berners-Lee, T., et al., “Tabulator: Exploring and Analyzing Linked Data on

the Semantic Web,” Proceedings of the 3rd International Semantic Web User

Interaction Workshop (SWUI06), Athens, Georgia, November, 2006.

[Ber07] Bernstein, P., Melnik, S., “Model Management 2.0: Manipulating Richer

Mappings,” SIGMOD, 2007.

[Ber09] Berners-Lee, T., TED 2009,

http://www.ted.com/index.php/talks/tim_berners_lee_on_the_next_web.html.

[Ber81] Bernstein, P., Goodman, N., Wong, E., Reeve, C.L., Rothnie, J.B., “Query

processing in a system for distributed databases (sdd-1),” ACM Transactions

on Database Systems, 6(4), pp. 602-625, 1981.

[Bil03] Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S., “Adaptive

Name Matching in Information Integration,” IEEE Intelligent Systems, vol.

18, no. 5, pp. 16-23, 2003.

[Biz09] Bizer, C., Heath, T., Berners-Lee, T., “Linked Data - The Story So Far,” Int.

J. Semantic Web Inf. Syst., 5(3), pp. 1-22, 2009.

[Bla07] Black, E., Hunter, A., “A Generative Inquiry Dialogue System,” Proc. of 6th

Int. Conference on Autonomous Agents and Mutli-Agent Systems (AAMAS'07),

2007.

 120

[Bob77] Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D.A., Thompson, H.,

Winograd, T., “GUS: A frame driven dialog system,” Artificial Intelligence,

Vol. 8, pp. 155-173, 1977.

[Bod06] Bodenreider, B., Stevens, R., “Bio-ontologies: current trends and future

directions,” Briefings in Bioinformatics, 7(3), pp. 256-274, 2006.

[Bou04] Bouquet, P, Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt,

H., “Contextualizing ontologies,” Journal of Web Semantics, 1(4), pp. 325-

343, 2004.

[Bro01] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I.

Horrocks. Enabling knowledge representation on the Web by extending RDF

schema. In Proceedings of the Tenth Int. World Wide Web Conference, 2001.

[bus07] Q&A with Tim Berners-Lee, 2007,

http://www.businessweek.com/technology/content/apr2007/tc20070409_9619

51.htm

[Che09] Gong Cheng and Yuzhong Qu. Searching linked objects with falcons:

Approach, implementation and evaluation. International Journal on Semantic

Web and Information Systems (IJSWIS), 5(3):49–70, 2009.

[dAq08] Mathieu d'Aquin, Enrico Motta, Marta Sabou, Sofia Angeletou, Laurian

Gridinoc, Vanessa Lopez and Davide Guidi. Towards a New Generation of

Semantic Web Applications. IEEE Intelligent Systems, Vol. 23, Issue 3,

May/June 2008.

[Das10] R2RML: RDB to RDF Mapping Language, http://www.w3.org/TR/r2rml/

[Dee] http://www.research.ibm.com/deepqa/deepqa.shtml

 121

[Din04] Ding, Li, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng,

Pavan Reddivari, Vishal C Doshi, and Joel Sachs (2004). "Swoogle: A Search

and Metadata Engine for the Semantic Web". Proceedings of the Thirteenth

ACM Conference on Information and Knowledge Management (CIKM).

ACM. pp. 652–659.

[Doa01] Doan, A., Domingos, P., Halevy, A., “Reconciling Schemas of Disparate

Data Sources: A Machine Learning Approach,” Proceedings of the 20th ACM

SIGMOD International Conference on Management of Data (SIGMOD’01),

2001.

[Doa03] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.,

“Learning to Match Ontologies on the Semantic Web,” Very Large Databases

Journal (VLDB Journal), Vol. 12, No. 4, 2003.

[Doa06] Doan, A., Ramakrishnan, R., Vaithyanathan, S., “Managing Information

Extraction,” SIGMOD’06, Tutorial, 2006.

[Dor94] Dorr, B., “Machine translation divergences: A formal description and

proposed solution,” Computational Linguistics, 20(4), pp. 597-633, 1994.

[Ehr04] Ehrig, M., Staab, S., “QOM: Quick Ontology Mapping,” ISWC, pages 683–

697, 2004.

[Elm07] Elmagarmid, A.K., Ipeirotis, P., Verykios, V., “Duplicate Record Detection:

A Survey,” IEEE Transactions on Knowledge and Data Engineering (TKDE),

Vol. 19(1), pp. 1-16, 2007.

 122

[Etz05] Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland,

S., Weld, D., Yates, A, “Unsupervised named-entity extraction from the Web:

An experimental study,” Artificial Intelligence, 165(1), pp. 91-134, 2005.

[Euz04] Euzenat, J., “An API for Ontology Alignment,” International Semantic Web

Conference, pp. 698-712, 2004.

[Euz07] Euzenat, J.,Shvaiko, P., Ontology matching, Springer-Verlag, 2007.

[Fan04] Fan, J., Porter, B., ”Interpreting Loosely Encoded Questions,” Proceedings

of the 19th National Conference on Artificial Intelligence (AAAI’04), 2004.

[Fen01] Fensel, D., Ontologies: Silver Bullet for Knowledge Management and

Electronic Commerce, Springer-Verlag, 2001.

[Fin97] Finin, T., Labrou, Y., Mayfield, J., “KQML as an agent communication

language,” in Jeff Bradshaw (Ed.), Software Agents, MIT Press, Cambridge,

MA, 1997.

[FOAF] http://www.foaf-project.org/

[Gar97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,

J. Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous

information sources. Journal of Intelligent Inf. Systems, 8(2), 1997.

[Giu04] Giunchiglia, F., Shvaiko, P., Yatskevich, M., “S-Match: an Algorithm and an

Implementation of Semantic Matching,” ESWS, pp. 61-75, 2004.

[Gla09] Glaser, H., Millard, I.C., “RKBPlatform: Opening up Services in the Web of

Data,” International Semantic Web Conference, 2009.

 123

[Gol03] Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Oberthaler, J., Parsia, B.,

“The National Cancer Institute’s Thesaurus and Ontology,” Journal of Web

Semantics, 1(1), December 2003.

[Gri] Dictionary of Philosophy of Mind,

http://philosophy.uwaterloo.ca/MindDict/grice.html

[Gri57] Grice, H.P., “Meaning,” The Philosophical Review, 64, pp. 377-388, 1957.

[Gri68] Grice, H.P., “Utterer's Meaning, Sentence-Meaning and Word-Meaning,”

Foundations of Language, 4, pp. 225-42, 1968.

[Gri69] Grice, H.P., “Utterer's Meaning and Intentions,” Philosophical Review, 78,

pp. 147-77, 1969.

[Gru93] Gruber, T. R., “Toward Principles for the Design of Ontologies Used for

Knowledge Sharing,” Stanford Knowledge Systems Laboratory Technical

Report KSL-93-04, 1993.

[Gua02] Guarino, N., Welty, C., “Evaluating Ontological Decisions with OntoClean,”

Communications of the ACM, 45(2), pp. 61-65, 2002.

[Hai06] Haidarian Shahri, H., Shahri, S., “Eliminating Duplicates in Information

Integration: An Adaptive, Extensible Framework,” IEEE Intelligent Systems,

Vol. 21, No. 5, pp. 63-71, 2006.

[Hai08a] Hamid Haidarian Shahri, Donald Perlis, “Finding Ontological

Correspondences for a Domain-Independent Natural Language Dialog

Agent,” Proceedings of the 20th AAAI Innovative Applications of Artificial

Intelligence Conference (AAAI/IAAI’08), Chicago, USA, July 13-17, 2008.

 124

[Hai08d] Hamid Haidarian Shahri, James Hendler, Donald Perlis, “Grounding the

Foundations of Ontology Mapping on the Neglected Interoperability

Ambition,” Proceedings of the AAAI Spring Symposium on Semantic

Scientific Knowledge Integration (AAAI/SSKI’08), Stanford University, CA,

USA, March 26-28, 2008.

[Hai10b] Hamid Haidarian Shahri, Wikum Dinalankara, Scott Fults, Shomir Wilson,

Don Perlis, Matt Schmill, Tim Oates, Darsana Josyula, Michael Anderson,

“The Metacognitive Loop: An Architecture for Building Robust Intelligent

Systems,” Proceedings of the AAAI Fall Symposium on Commonsense

Knowledge (AAAI/CSK’10), Arlington, VA, USA, November 11-13, 2010.

[Hai10c] Hamid Haidarian Shahri, “Semantic Search in Linked Data: Opportunities

and Challenges,” Proceedings of the 24th AAAI Conference on Artificial

Intelligence (AAAI’10), Atlanta, Georgia, USA, July 11-15, 2010.

[Hai10e] Hamid Haidarian Shahri, “Foundations of Data Interoperability on the Web:

A Web Science Perspective,” Proceedings of the 6th International Conference

on Semantic Systems (I-Semantics’10), Graz, Austria, September 1-3, 2010.

[Hal00] Halevy, A., Weld, D., “Intelligent Internet Systems,” Artificial Intelligence,

118(1-2), pp. 1-14, 2000.

[Hal05] Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J.,

Rosenthal, A., Sikka, V., “Enterprise information integration: successes,

challenges and controversies,” Proc. of the ACM SIGMOD International

Conference on Management of Data (SIGMOD’05), Baltimore, Maryland,

USA, June 14-16, pp. 778-787, 2005.

 125

[Hal06] Halevy, A., Franklin, M., Maier, D., “Principles of Dataspace Systems,”

Proceedings of Twenty-Fifth ACM Symposium on Principles of Database

Systems (PODS’06), June 26-28, Chicago, Illinois, USA, pp. 1-9, 2006.

[Hal10] Halpin, H., Hayes, P., “When owl:sameAs isn’t the Same: An Analysis of

Identity Links on the Semantic Web,” Linked Data on the Web Workshop at

the World Wide Web Conference (WWW’10), 2010.

[Har06] Andreas Harth, Jürgen Umbrich, Stefan Decker. "MultiCrawler: A Pipelined

Architecture for Crawling and Indexing Semantic Web Data". 5th

International Semantic Web Conference, Athens, GA, USA. November 5-9,

2006.

[Har10] Andreas Harth: VisiNav: A system for visual search and navigation on web

data. J. Web Sem. 8(4): 348-354 (2010)

[Hea11] Heath, T., Bizer, C., Linked Data: Evolving the Web into a Global Data

Space. Morgan & Claypool, 2011.

[Hef01] J. Heflin and J. Hendler, A portrait of the Semantic Web in action. IEEE

Intelligent Systems, 16(2), 2001.

[Hen95] Hendler, J., Carbonell, J., Lenat, D., Mizoguchi, R., Rosenbloom, P.,

“VERY Large Knowledge Bases - Architecture vs. Engineering,” IJCAI 1995,

pp. 2033-2036, 1995.

[Her98] Hernandez, M.A., Stolfo, S.J., “Real-World Data Is Dirty: Data Cleansing

and the Merge/Purge Problem,” Data Mining and Knowledge Discovery, vol.

2, no. 1, pp. 9-37, 1998.

 126

[Hri02] Hristidis, V., Papakonstantinou, Y., “DISCOVER: Keyword Search in

Relational Databases,” Proc. of the 28th International Conference on Very

Large Data Bases (VLDB’02), Hong Kong, China, August 20-23, 2002.

[Huy] Huynh, D., Freebase Parallax Software, at: http://mqlx.com/~david/parallax/

[Inr] INRIA ontology, http://fr.inrialpes.exmo.rdf.bib.owl.

[Isa09] Isaac, A., Wang, S., Zinn, C., Matthezing, H., van der Meij, L., Schlobach, S.,

“Evaluating Thesaurus Alignments for Semantic Interoperability in the

Library Domain,” IEEE Intelligent Systems, 24(2), pp. 76-86, 2009.

[Ive99] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An adaptive query

execution system for data integration. In Proc. of SIGMOD, 1999.

[Jag07] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,

Yunyao Li, Arnab Nandi, Cong Yu: Making database systems usable.

SIGMOD Conference 2007: 13-24

[Jos05] Josyula, D., Anderson, M., Perlis, D., “Designing a universal interfacing

agent,” Proceedings of the Second Language and Technology Conference

(L&TC’05), pp. 377-381, 2005.

[Kal03a] Kalfoglou, Y., Schorlemmer, M., “IF-map: an ontology mapping method

based on information flow theory,” Journal of Data Semantics, Vol.1, No.1,

2003.

[Kal03b] Kalfoglou, Y., Schorlemmer, M., “Ontology Mapping: The State of the

Art,” Knowledge Engineering Review, Vol. 18(1), pp. 1-31, 2003.

 127

[Kal05] Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, H., “Swoop:

A Web Ontology Editing Browser,” Journal of Web Semantics, Vol. 4(2),

2005.

[Kam07] Kambhampati, S., Knoblock, C., “Information Integration on the Web,”

AAAI Tutorial, 2007.

[Kar] Karlsruhe ontology, http://www.aifb.uni-karlsruhe.de/ontology.

[Kno02] Knoblock, C., Kambhampati, S., “Information Integration on the Web,”

Proc. of the Eighteenth National Conference on Artificial Intelligence

(AAAI’02), July 29, 2002.

[Lae07] Laera, L, Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.,

“Argumentation over Ontology Correspondences in MAS,” Proc. of 6th Int.

Conference on Autonomous Agents and Mutli-Agent Systems (AAMAS'07),

2007.

[Lam99] E. Lambrecht, S. Kambhampati, and S. Gnanaprakasam. Optimizing

recursive information gathering plans. In Proc. of the Int. Joint Conf. on AI

(IJCAI), 1999.

[Len02] Lenzerini, M., “Data Integration: A Theoretical Perspective,” Proceedings of

21st ACM Symposium on Principles of Database Systems (PODS’02), June 3-

5, Madison, Wisconsin, USA, pp. 233-246, 2002.

[Li00] Li, W., Clifton, C., “SEMINT: a tool for identifying attribute correspondences

in heterogeneous databases using neural networks.” Data Knowledge Eng.,

33(1), 2000.

 128

[Mae01] A. Maedche and S. Saab. Ontology learning for the Semantic Web. IEEE

Intelligent Systems, 16(2), 2001.

[Mar08] Marcus, A., “BlendDB: Blending Table Layouts to Support Efficient

Browsing of Relational Databases,” MSc Thesis, MIT, 2008.

[McG00] McGuinness, D., Fikes, R., Rice, J., Wilder, S., “An Environment for

Merging and Testing Large Ontologies,” Proceedings of the Seventh

International Conference on Principles of Knowledge Representation and

Reasoning (KR’00), Breckenridge, Colorado, USA, 2000.

[McG03] McGuinness, D., “Ontologies Come of Age,” In Dieter Fensel, Jim

Hendler, Henry Lieberman, and Wolfgang Wahlster, editors. Spinning the

Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press,

2003.

[McG03] McGuinness, D., “Ontologies Come of Age,” In Dieter Fensel, Jim

Hendler, Henry Lieberman, and Wolfgang Wahlster, editors. Spinning the

Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press,

2003.

[Mel02] Melnik, S., Garcia-Molina, H., Rahm, E., “Similarity Flooding: A Versatile

Graph Matching Algorithm and Its Application to Schema Matching.” ICDE,

2002.

[Mil00] R. Miller, L. Haas, and M. Hernandez. Schema mapping as query discovery.

In Proc. of VLDB, 2000.

[Mil10] Ian Millard, Hugh Glaser, Manuel Salvadores, Nigel Shadbolt, “Consuming

Multiple Linked Data Sources: Challenges and Experiences,” First

 129

International Workshop on Consuming Linked Data (COLD2010), Shanghai,

China, 2010.

[Mil98] Milo, T., Zohar, S., “Using Schema Matching to Simplify Heterogeneous

Data Translation,” Proceedings of the 24th International Conference on Very

Large Data Bases (VLDB’98), 1998.

[Mit00] Mitra, P., Kersten, M., and Wiederhold, G., “A Graph-Oriented Model for

Articulation of Ontology Interdependencies,” Proc. 7th Int. Conference on

Extending Database Technology (EDBT’00), Konstanz, Germany, 2000.

[Mul10] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi, Using Linked

Data to interpret tables, Proceedings of the First International Workshop on

Consuming Linked Data, held in conjunction with the Ninth International

Semantic Web Conference, Shanghai, 2010.

[Myl98] Mylopoulos, J., “Next Generation Database Systems Won't Work Without

Semantics,” Panel Discussion, Proc. of the 17th ACM SIGMOD International

Conference on Management of Data (SIGMOD’98), Seattle, WA, June 2-4,

1998.

[Neu09] Neumann, T., Weikum, G., “Scalable Join Processing on Very Large RDF

Graphs,” Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD 2009), Providence, Rhode Island, USA, June

29 - July 2, 2009.

[New59] Newcombe, H., Kennedy, J., Axford, S., James, A., “Automatic Linkage of

Vital Records,” Science, vol. 130, no. 3381, pp. 954-959, 1959.

 130

[Nir02] Nirenburg, S., Somers, H.L., Wilks, Y.A. (Eds.), Readings in Machine

Translation, MIT Press, 2002.

[Noy00] Noy, N., Musen, M., “PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment,” Proceedings of the 17th National

Conference on Artificial Intelligence (AAAI'00), Austin, TX, USA, July 2000.

[Noy01] Noy, N., McGuinness, D.L., “Ontology Development 101: A Guide to

Creating Your First Ontology,” Stanford Knowledge Systems Laboratory

Technical Report KSL-01-05 and Stanford Medical Informatics Technical

Report SMI-2001-0880, March, 2001.

[Noy04] Noy, N., “Semantic Integration: A Survey of Ontology-Based Approaches,”

SIGMOD Record, Vol. 33(4), pp. 65-70, 2004.

[Noy97] Noy, N., Hafner, C., “The State of the Art in Ontology Design: A Survey

and Comparative Review,” AI Magazine, 18(3), pp. 53-74, 1997.

[OAEI] Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org/

[Ome01] B. Omelayenko. Learning of ontologies for the Web: the analysis of existent

approaches. In Proceedings of the International Workshop on Web Dynamics,

2001.

[Ont] http://ontologymatching.org/publications.html

[Ope] OpenLink Software, Virtuoso Open-Source License Terms,

http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSLicense

 131

[OWLg] Smith, M., Welty, C., McGuinness, D.L., “OWL Web Ontology Language

Guide,” World Wide Web Consortium (W3C) Recommendation, February,

2004.

[OWLo] McGuinness, D., van Harmelen, F., “OWL Web Ontology Language

Overview,” World Wide Web Consortium (W3C) Recommendation, February,

2004.

[OWLr] Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks, I.,

McGuinness, D., Patel-Schneider, P., Stein, L., “OWL Web Ontology

Language Reference,” World Wide Web Consortium (W3C) Recommendation,

February, 2004.

[OWLu] Heflin, J., “OWL Web Ontology Language Use Cases and Requirements,”

World Wide Web Consortium (W3C) Recommendation, February, 2004.

[Par03] Parsons, S., Wooldridge, M., Amgoud, L., “On the outcomes of formal inter-

agent dialogues,” Proc. of 2nd Int. Conference on Autonomous Agents and

Mutli-Agent Systems (AAMAS’03), pp. 616-623, 2003.

[Par98] C. Parent, S. Spaccapietra. Issues and approaches of database integration.

Communications of the ACM, 41(5):166–178, 1998.

[Per98] Perlis, D., Purang, K., Andersen, K., “Conversational Adequacy: Mistakes

Are the Essence,” International Journal of Human-Computer Studies, 48:553–

575, 1998.

[Pot03] Pottinger, R., Bernstein, P., “Merging Models Based on Given

Correspondences.” Proc. VLDB 2003.

 132

[Pru10] Use Cases and Requirements for Mapping Relational Databases to RDF,

http://www.w3.org/TR/rdb2rdf-ucr/

[Rah01] Rahm, E., Bernstein, P., “A survey of approaches to automatic schema

matching,” VLDB Journal, Vol. 10(4), pp. 334-350, 2001.

[Rah03] Rahwan, I., McBurney, P., Sonenberg, L., “Towards a theory of negotiation

strategy (a preliminary report),” Proc. of 5th Workshop on Game Theoretic

and Decision Theoretic Agents (GTDT’03), pp. 73-80, 2003.

[RDFp] Manola, F., Miller, E., “RDF Primer,” W3C Recommendation, 2004.

[RDFv] Brickley, D., Guha, R.V., “RDF Vocabulary Description Language 1.0: RDF

Schema,” W3C Recommendation, 2004.

[Sar08] Sarawagi, S., “Information Extraction,” Foundations and Trends in

Databases, Vol. 1, No. 3, pp. 261–377, 2007.

[Say07] Sayyadian, M., LeKhac, H., Doan, A., Gravano, L., “Efficient Keyword

Search across Heterogeneous Relational Databases,” Proc. of the 23rd

International Conference on Data Engineering (ICDE’07), Istanbul, Turkey,

April 17-20, 2007.

[Sha06] Shadbolt, N., Berners-Lee, T., Hall, W., “The Semantic Web Revisited,”

IEEE Intelligent Systems, Vol. 21(3), pp. 96-101, 2006.

[Sha91] Shadbolt, N., “Facts, Fantasies and Frameworks: The Design of a Knowledge

Acquisition Workbench,” Contemporary Knowledge Engineering and

Cognition, pp. 39-58, 1991.

 133

[She90] Sheth, A., Larson, J., “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases,” ACM Computing

Surveys, 22(3), 1990.

[sin] http://sindice.com/

[Sir07] Sirin E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y., “Pellet: A

practical OWL-DL reasoner,” Journal of Web Semantics, 5(2), 2007.

[sta] http://www.statisticalengineering.com/index.html

[statsoft] http://www.statsoft.com/#

[Stu01] Stumme, G., Maedche, A., “FCA-merge: Bottomup Merging of Ontologies,”

IJCAI 2001, pp. 225-234, 2001.

[van08] van Harmelen, F., “Semantic web technologies as the foundation for the

information infrastructure,” In van Ooster, P. (Ed.), Creating Spatial

Information Infrastructures, Wiley, 2008.

[Wal01] Walker, M., Kamm, C., Litman, D., “Towards developing general models of

usability with PARADISE,” Natural Language Engineering: Special Issue on

Best Practice in Spoken Dialogue Systems, Vol. 6(3), 2001.

[Wei66] Weizenbaum, J., “ELIZA: A computer program for the study of natural

language communication between man and Machine,” Communications of the

ACM, Vol. 9(1), pp. 36-45, 1966.

