

APPROVAL SHEET

Title of Thesis: Finding a Temporal Comparison Function for the Metacognitive Loop

Name of Candidate: Dean Earl Wright II1
Doctor of Philosophy, 2011

Thesis and Abstract Approved:

Dr. Tim Oates

Associate Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Dean Earl Wright III

Permanent Address: 422 Shannon Court, Frederick, MD 21701
Degree and date to be conferred: Doctor of Philosophy, Fall 2011.
Date of Birth: 27 November 1954.

Place of Birth: La Rochelle, France.

Previous Degrees:

Hood College, Master of Business Administration, 2005

Hood College, Master of Science (Computer Science), 2001

Hood College, Bachelor of Science (Computer Science), 1998

Frederick Community College, Associate in Arts (Business Administration), 1993

Professional publications:

M. Anderson, M. Schmill, T. Oates, D. Perlis, D. Josyula, D. Wright and S. Wilson.
Toward Domain-Neutral Human-Level Metacognition. In Proceedings of the 8th
International Symposium on Logical Formalizations of Commonsense Reasoning,
pages 1-6, 2007.

M. Schmill, D. Josyula, M. Anderson, S. Wilson, T. Oates, D. Perlis, D.
Wright and S. Fults. Ontologies for Reasoning about Failures in Al Systems. In

Proceedings of the Workshop on Metareasoning in Agent-Based Systems, May
2007.

M. Anderson, S. Fults, D. Josyula, T. Oates, D. Perlis, M. Schmill, S. Wil-
son, and D. Wright. A Self-Help Guide For Autonomous Systems. Al Magazine.
29(2):67-76 2008.

M. Schmill, M. Anderson, S. Fults, D. Josyula, T. Oates, D. Perlis, H. Shahri, S.
Wilson, and D. Wright. The Metacognitive Loop and Reasoning about Anomalies,
chapter 12, pages 183-198. The MIT Press, 2011.

Professional positions held:

White Oak Technologies, Inc., October 2007—present
CRW/Logicon/Northrop Grumman, January 1985—July 2007
Scientific Time Sharing Corporation (STSC), January 1977-January 1985

ABSTRACT

Title of Thesis: Finding a Temporal Comparison Function for the Metacognitive Loop
Dean Earl Wright III, Doctor of Philosophy, 2011

Dissertation directed by: Dr. Tim Oates, Associate Professor
Department of Computer Science and
Electrical Engineering

The field of Artificial Intelligence has seen steady advances in cognitive systems.
However, many of these systems perform poorly when faced with situations outside of
their training. Since the real world is dynamic, this brittleness is a major problem in the
field today. Adding metacognition to such systems can improve their operation in the face
of perturbations found in dynamic environments.

I developed a six-level taxonomy that divided metacognitive systems according to
their capabilities. This ranged from Level 0: Bereft that offered no metacognitive assis-
tance, to Level 5: Anticipating that would make suggestions before the agent needed assis-
tance. Using this taxonomy, I deconstructed an existing metacognitive system (MCL) so
that it could operate at any of the four lower levels of the taxonomy.

I added, to the Level 3: Temporal version of MCL, a number of comparison functions
designed to determine if the problem the agent is currently facing is similar to any previous
problem. I created functions to both establish baseline operation performance and to try to
optimize the agent’s performance in a perturbed environment.

I extended an existing Mars Rover domain simulation to add more problem and recov-
ery options. In this environment, I tested the temporal comparison functions to determine
how well they were able to distinguish on type of perturbation from another and how much
they helped (or hindered) the agents subjected to those perturbations. Several comparison

functions were able to aid the Rover in completing its tasks, although none were perfect.

Finding a Temporal Comparison Function for the

Metacognitive Loop

by
Dean Earl Wright III

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2011

(© Copyright Dean Earl Wright 111 2011

For my three parents, two children and one wife

i1

ACKNOWLEDGMENTS

I want to thank the past and present members of the UMBC and UMCP MCL working

group who brought MCL together so that I could take it apart.

il

TABLE OF CONTENTS

DEDICATION e ii
ACKNOWLEDGMENTS iii
LIST OF TABLES e ix
LISTOF FIGURES e Xiv
Chapter 1 INTRODUCTION 1
1.1 Al AgentProblems 1

1.2 Metacognition e e e e 2

1.3 Levels of Metacognition 5

1.4 Claim e 7

1.5 Questionstobe Answered 8

1.6 OutlineofPaper 8

1.7 Research Contributions 10
Chapter 2 METACOGNITIVE LEVELS AND CHIPPY 11
2.1 The Chippy GridWorld 11
2.1.1 Q-Learning 11

2.1.2 Chippy GridWorld 12

2.1.3 Perturbing the Chippy GridWorld 13

2.2 Metacognition for Chippyo 16
2.2.1 Interfacing to Metacognition 17

222 LevelO: BereftChippy, 17

2.2.3 Level I: Instinctive Chippy 17

2.2.4 Level 2: Evaluative Chippy 18

2.2.5 Level 3: Temporal Chippy 19

2.3 Chippy Experimental Results 19
24 Chippy Summary e e e e 20

v

Chapter 3 MARS ROVER LEVEL 0: BEREFT 22

3.1 TheMarsRoverDomain 22
3.1.1 TheMarsRover 23

3.1.2 Sensors . . o. ... e 23

3.1.3 Actions 24

3.1.4 Commands e 28

3.1.5 TheLandscape 29

3.1.6 Commanding the Basic MarsRover 30

3.2 Mars Domain Perturbations 32
3.2.1 Perturbations 32

3.2.2 RechargingProblems 32

3.23 BatteryProblems o 33

3.2.4 Calibration Problems 33

3.2.5 Localization Problems 33

3.2.6 Navigation Problems L. 34

3.27 Imaging Problems 34

3.2.8 Panoramic Problems 35

329 SensorProblems 35

3.3 Level 0 Bereft: Planning Agent Without Metacognition 35
331 Commands e 35

332 Planner 36

3.3.3 Sample CommandsandPlans 38

334 PlanExecution 39

3.3.5 Resource Aware Planning 40

3.3.6 Resource Aware Planning with Perturbations 40

3.3.7 Limitations and Improvements 41
Chapter 4 MARS ROVER LEVEL 1: INSTINCTIVE 48
4.1 Level 1 Instinctive: Planning Agent with Hard-coded Metacognition 48
4.2 Motivations e e e e e e e e e e e 49
4.3 Goal Hierarchies 50
4.4 Instinctive Metacognition Plan Execution 51
4.5 Instinctive Metacognition with Perturbation 54
Chapter 5 MCL LEVEL 1: INSTINCTIVE 57
5.1 Note, Access and Guide (The NAG Cycle) 57
5.2 Sensors and Observations e e 59
5.2.1 Sensor Nomenclature 59

5.3 Expectations and Exceptions 60

54 MCL Implementation, 62
5.4.1 SensorPropertieso 62

5.5 Mars Rover Integrationo Lo 64
5.5.1 Imitialization L 65

5.5.2 Defining Sensors e 66

5.5.3 Defining Expectations 67

5.5.4 Monitoring and Responses 67

5.5.5 Rover Response to MCL Concrete Suggestions 68

5.6 Demonstration with Perturbations 74
5.7 Limitations e 78
Chapter 6 MCL LEVEL 2: EVALUATIVE 81
6.1 Ontologies (Indication, Failure, and Response) 81
6.1.1 Indications 82

6.1.2 Failure 84

6.1.3 Response 84

6.1.4 Inter-ontology linkages 85

6.2 Bayesian Conditional Probability Tables 90
6.3 MCL Implementation 90
6.4 Mars Rover Integration 92
6.5 Demonstration with Perturbations 95
6.6 Limitations and improvements 99
Chapter 7 MCL LEVEL 3: TEMPORAL 101
7.1 What MCL Knows When an Exception Occurs 103
7.1.1 Expectation Group ID(EGID) 103

7.1.2 Expectation Group Hierarchy 104

7.1.3 Expectation Violation Signatures (EVS) 104

7.1.4 Initial Indications oL 105

7.1.5 Initial Indication Signature (IIS) 106

7.1.6 BayesianNetwork 106

7177 MCLFrame. 106

7.1.8 Frame Entry Vector 107

7.2 Saving MCL Exception Violation State 108
7.2.1 WhatlsSaved 109

722 HowitisReferenced 0oL 109

7.2.3 WhenitisDiscardedo, 109

7.3 Comparing MCL Exception Violation States 110
7.4 Sample Temporal Comparison Function 111
7.5 Mars Rover Integration Lo .. 111

Vi

Chapter 8 TEMPORAL COMPARISON FUNCTIONS 112

8.1 Information for Temporal Comparison Functions 113
8.2 Frame Comparison Functions 116
8.2.1 FI: Always The Same (First) Frame 116

8.2.2 F2: Frames Always Different (New) 116

823 F3:Random 117

824 F4:EVSEqual 117

825 F5:IISEqual 117

82.6 F6:IISandEVS 117

827 F7:EVSbutnotIlIS 118

82.8 F8: IISbutnotEVS 118

8.3 Static Evaluation of Comparison Functions 118
8.4 Implementation 127
8.5 Mars Rover Integration 127
8.6 Examples 128
Chapter 9 METHODOLOGY 132
9.1 EvaluationDomain 133
9.2 EXperiments e e 136
9.2.1 Experiment MCL Levels 136

9.2.2 Experiment Perturbations 137

9.2.3 Experimental Temporal Comparison Functions 137

9.3 Metrics Collection 138
031 CSVfiles 138

90.32 SQLfAiles e 139

9.4 Evaluation Criteria 139
Chapter 10 RESULTS 147
10.1 No PerturbationResults, 148
10.2 Single Perturbation Results 151
10.2.1 Pl: Partial Charging 155
10.2.2 P2: Reduced Capacity 156
10.2.3 P3: Longer Calibration Time 158
10.2.4 P4: Probabilistic Calibration 160
10.2.5 PS5: Recharge Loses Calibration 162
10.2.6 P6: Path Time Change 163
10.2.7 P7:BlockedPath 165
10.2.8 Analysis of Single Perturbation 166

10.3 Dual Perturbation Results L L. 170

vii

10.4 The Best Frame Comparison Function 173

10.5 Comparison to Predicted Performance 176
10.6 Answers to Research Questions 177
Chapter 11 RELATEDWORK 179
11.1 Pre-ontology Metacognitive Loop 179
11.2 Early Ontology Metacognitive Loop 181
11.3 Case-based Reasoning 181
11.4 Model Based Reflection 182
11.5 Multi-agent Metacognition 184
Chapter 12 FUTUREWORK 186
12.1 Revisiting the Current System 186
12.2 Improving the Level 3 System 188
12.2.1 Automatic Expectation Generation 188

12.2.2 Automatic Ontology Expansion/Linking 189

12.2.3 Application to Multi-agent Systems 189

12.2.4 Transferring Learning with MCL Networks 190

12.2.5 Modeling Dynamic Environments 190

12.3 Developing Level 4: Evolving Systems 190
12.4 Developing Level 5: Anticipating Systems 192
12.5 Alternative Domains L Lo 192
Chapter 13 CONCLUSIONS 195
Appendix A TABLES WITH EXPERIMENT RESULTS 197
Appendix B MCL ONTOLOGY USED FOR EXPERIMENTS 202
Appendix C MCL TEMPORAL COMPARISON FUNCTIONS 212
Appendix D PYTHON CODE USED IN EXPERIMENTS 226
REFERENCES e 232

viii

1.1
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
42
4.3
4.4
5.1
5.2
53

LIST OF TABLES

Levels of Agent Metacognition 6
Chippy Initial and Subsequent Reward Values 15
Chippy Average Rewards, 20
The Mars Rover Sensors 24
The Mars Rover Actions 27
Actions that can only occur at particular locations 28
Base energy costs to move between way-points 29
Executing the commands "2354C538I" 30
Goals for the Mars Rover with planning 37
The STRIPS table for the Mars Rover 42
Executing Photo Tour oo 43
Failed Panoramic Tour 44
Panoramic Tour Plan Succeeding 45
Panoramic Tour foiledby P1 46
Panoramic Tour foiledby P2 47
Motivations forthe Mars Rover 50
Goal Hierarchy forMarsRover 51
Panoramic Tour Lo 53
L1 Photographic Tour Failing withP1 55
Sensor data types and descriptions 63
Sensor classes and descriptionso 63
Sensor noise profiles 64

X

54
5.5
5.6
5.7
5.8
59
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Expectations Codes and the tests
The Mars Rover Sensors
Completing tour with replanning (Part 1)
Completing tour with replanning (Part2)
Not Completing tour with replanning (Part 1)
Not Completing tour with replanning (Part2)
Ontologies used with NAGcycle
Sensor, Divergence and Core Node Indications Ontology Linkages
MCL Concrete Responses Code
Completing tour with TRY AGAIN (Part1)
Completing tour with TRY AGAIN (Part2)
M2 Panoramic Tour Failing withP7
MCL Frame Information
MCL Frame Entry Vector information
MCL Frame Entry Codes
Frame information elementsrated
Sample Exception Information
Static Evaluation of comparing frames by Expectation GroupID
Static Evaluation of comparing frames by Expectation Group Hierarchy . .
Static Evaluation of comparing frames by F1: First
Static Evaluation of comparing frames by F2: New
Static Evaluation of comparing frames by F3: Random
Static Evaluation of comparing frames by F4: EVS

Static Evaluation of comparing frames by Initial Indications

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
9.1

9.2

9.3

9.4

9.5

9.6

9.7

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Static Evaluation of comparing frames by F5: IIS 125
Static Evaluation of comparing frames by F6: EVSand IIS 125
Static Evaluation of comparing frames by F7: EVS butnot IIS 126
Static Evaluation of comparing frames by F8: IIS butnot EVS 126
Static Evaluation of Frame Comparison Functions 126
Codes for Static Evaluation of Frame Comparison Functions 128
M3/F5 Photographic Tour with P7 and P1 Succeeding 130
M3/F1 Photographic Tour With P7 and P1 Failing 131
Sample Panoramic tour by a Motivated Mars Rover (Part 1) 134
Sample Panoramic tour by a Motivated Mars Rover (Part2) 135
Eight perturbations used in the experiments 137
Nine frame comparison algorithms used in the experiments 138
Fields in the experiment result CSV files (Part 1) 142
Fields in the experiment result CSV files (Part2) 143
Grading Criteria for a Single Experimental Trial 146
Unperturbed Trials 148
PO Statistics by MCL / Frame comparison function 150
Grading Limits for a Single Experimental Trial 150
Single Perturbation Histograms and Statistics 151
Tours Completed by Perturbation 153
Average Steps by Perturbation 154
P1 Statistics by MCL / Frame comparison function 156
P2 Statistics by MCL / Frame comparison function 158
P3 Statistics by MCL / Frame comparison function 160

X1

10.10P4 Statistics by MCL / Frame comparison function 161

10.11P5 Statistics by MCL / Frame comparison function 163
10.12P6 Statistics by MCL / Frame comparison function 164
10.13P7 Statistics by MCL / Frame comparison function 166
10.14Best and Worst Performance by Perturbations for Single Perturbations . . . 168
10.15Repair suggestions made by MCL / Perturbation 169
10.16Single Perturbation Grades by MCL / Frame comparison function 170
10.17PxPy Grades by MCL / Frame comparison function 171
10.18Repair Suggestions e 172
10.19Average number of actions L oL 173
10.20Average elapsed time 174
10.21Percent of tasks completed 174
10.22MCL ANOVA Crosstab o e e 175
10.23Static versus Experimental Comparison Function Evaluation 177
11.1 Monitor and control in MCL and Sentinels 184
A.1 Average Steps forMO: Bereft 198
A.2 Average Steps for M1: Instinctive L. 198
A.3 Average Steps for M2: Evaluative 198
A.4 Average Steps for M3: Temporal 199
A5 Average Stepsfor F1: First L. 199
A.6 Average Stepsfor F2: New 199
A.7 Average Steps for F3: Random 200
A.8 Average StepsforF4: EVS oo oo 200
A9 Average Stepsfor F5: IISo 200

Xii

A.10 Average Steps for F6: EVSandIIS 201

A.11 Average Steps for F7: EVSbutnotIIS 201
A.12 Average Steps for F8: IISbutnot EVS 201
D.1 Mars Rover Domain Experiments Python Files 227
D.2 Mars Rover Agent Utility PythonFiles 228
D.3 Dissertation Related Python Programs 228
D.4 Chippy Demonstration Python Programs 229

Xiii

1.1
1.2
1.3
2.1
2.2
23
24
2.5
3.1
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
6.1
6.2
6.3

LIST OF FIGURES

Metacognitive monitoring and controlo oL 3
Software agent (a) without and (b) with metacognition 4
Metacognitive levels L 7
An 8x8 grid world with tworewards 13
Chippy policy after 1,000 moves for rewards (10,-10) 14
Chippy policy after 5,000 moves for rewards (10,-10) 15
Metacognitive levels oL oo 16
Chippy agent with metacognition 18
Waypoints and connections 31
Initializing MCL connection specifying ontology and domain 66
Defining the names and initial values of the Rover’s sensors to MCL 69
Defining the property class of each of the Rover’s sensors to MCL 70
Defining the range of legal values of the Rover’s sensors to MCL 71
Setting the initial values for the sensors 71
Declaring MCL expectation groups v v v v v v v v v v v v o 71
Specifying general expectationsto MCL 72
Specifying expectations for 2@1 action 72
Action expectation group completion and monitor with no suggestions . . . 73
Monitor suggestion and SUCCESS TESPONSE v v v v ... 73
Ontological Linkages, 83
Core Indications Ontology, 86
Failure Ontology 87

X1V

6.4
6.5
6.6
7.1
8.1
9.1
9.2
9.3
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
11.1
D.1

D.2

Response Ontology
Example Ontology Connections
Conditional probability tables for portion of MCL Response ontology

Reentrant MCL
Setting the Temporal Comparison Function
Sample experiment script for three panoramic tours with perturbations. . . .
Sample CSV experimentfile
SQL CREATE TABLE statements for the MCL/Mars Rover experiments . .
POHistogram
Pl Histogram
P2 Histogram e
P3 Histogram
P4 Histogram
PS5 Histogram
P6 Histogram
P7 Histogram
Monitoring a Multi-Agent System
Mars Rover in Python Dependency Graph

Chippy in Python Dependency Graph

XV

Chapter 1

INTRODUCTION

This chapter starts by describing some of the problems associated with deploying
Artificial Intelligence agents into the world. It then offers Metacognition as a domain-
neutral solution to those problems. A leveled taxonomy for the metacognition support
given to an agent is described. Within this setting, the dissertation’s main claim is made.
Then, a series of research questions are proposed which support and demonstrate the claim.
The chapter ends with an outline of the remainder of the dissertation and a listing of the

contributions of the research.

1.1 AI Agent Problems

The field of Artificial Intelligence has seen steady advances in cognitive systems. Al
has acquitted itself in one area after another: theorem proving, game playing, machine
learning, and more. While advances in computer speeds and memory sizes have certainly
helped, the majority of the achievements have come from new algorithms and experience
in applying them. However, many cognitive systems perform poorly when faced with situ-
ations outside of their training or in a dynamic environment. A robot trained to search out
a dark blue goal may or may not detect a light blue one. A robotic car trained to drive on

American roads will likely be a danger to itself and others if transported to a country with

2
left-hand driving rules. A switch from an instrument reading in miles to one in kilometers
may doom a spacecraft (Stephenson 1999). Driverless vehicles in the DARPA Grand Chal-
lenge had mechanical failures and wandered into obstacles for which their programming
was not prepared (Hooper 2004).

The transition between laboratory training and successful real-world operation re-
mains a major challenge. To cope with possible future encounters, additional rules and/or
more training can be used, but this increases the cost and lengthens the time between con-
ception and deployment. Alternatively, greater ability can be given to the agent to explore,
learn, and reason about its environment letting it deal with the brittleness problem on its
own (Brachman 2006).

Adding more capabilities to an agent to cope with possible perturbations increases
the complexity of the agent and, except during periods of perturbation,! may decrease
performance. Adding metacognition to such systems can improve their operation in the
face of such perturbations without sacrificing performance during normal operations. Only
when a problem has been noticed does the problem correction code need to be active.
Metacognition can monitor an agent’s performance and invoke corrective action only when

needed.

1.2 Metacognition

The philosophical origins of metacognition may be traced to the dictum of “know
thyself.” Metacognition is studied as part of developmental and other branches of psy-
chology. While there are several different approaches, one common model is a cognitive
process which is monitored and controlled by a metacognitive process as shown in Fig-

ure 1.1. Metacognition can be studied in conjunction with metaknowledge (knowledge

A perturbation is an unexpected change in the environment.

3

about knowledge) and metamemory (memory about memory) (Cox 2005b). Metacogni-

tion is also referred to as metareasoning (Russell & Wefald 1991).

Metacognitive
Process

Monitor Control

Cognitive
Process

FIG. 1.1. Metacognitive monitoring and control

The canonical depiction of a software agent (Russell & Norvig 1995; Cox & Raja
2011) (Figure 1.2(a)) has sensors to perceive the environment and activators with which
the agent tries to control it. Metacognition can be layered onto a software agent so that
the metacognitive process monitors and controls the cognitive process of the software
agent (Cox & Raja 2007; 2011), as shown in Figure 1.2(b), with metamemory and meta-
knowledge.

Metacognition can improve the performance of the agent in the environment by pro-
viding two control functions. The first is to inform the agent when a cognitive task (e.g.,
the selection of the next action to perform) has been satisfactorily achieved so that the agent
can move on to another task (such as performing the selected action). For some agents, the
test for task completion (or “good enough” performance) is built into the cognitive process

itself. For example, the cognitive task may be limited to selecting (based on a specified

Meta-
cognition
A
Monjtor
Control
Y
Cognitive Cognitive
Agent Agent
Sensor Sensor
Actuator Actuator
Environment Environment
a b

F1G. 1.2. Software agent (a) without and (b) with metacognition

estimated utility) from anong a fixed number of choices. In such cases, there is little op-
portunity for metacognitive intervention.

The second metacognitive control function is to reflect on the performance of the
agent. Being able to detect when the agent’s goals are not being achieved is the first step to
being able to improve the agent’s performance (Brachman 2002). Reflection can be done
at the completion of a successful task, but is most often performed after a failure. Rather
than wait for a complete failure, reflection can also be invoked any time an expectation
of performance is not achieved. The reflective metacognitive process evaluates the agent’s
decisions to determine where a change would improve performance. The response may
suggest a change (or repair) to the agent’s current cognitive state such as invoking a learning
module. Repairs can be as simple as just trying again or may require more resources of the

agent to implement. It is the reflective metacognitive control function that will be examined

in this dissertation.

1.3 Levels of Metacognition

The metacognition layer added to a software agent can be as simple or as complicated
as the designer wishes. I defined a hierarchy to help categorize and gauge the power of
different metacognition systems. This taxonomy focuses on capabilities rather than details
of the implementation. There are six levels (listed in Table 1.1), moving from having no

metacognitive capability to one that attempts to prevent future needs for corrective action.

0-Bereft The agent has no metacognitive system. This is the baseline case. The higher lev-
els have to improve the performance of this agent to justify the addition of metacog-

nition.

1-Instinctive The agent has a metacognitive system that directly maps exceptions to re-
pairs. When there is an exception that triggers metacognition, the response is deter-

mined solely and directly from the exception.

2-Evaluative The agent has a metacognitive system that evaluates the exceptions to deter-
mine the appropriate repairs. The evaluation can be done by any number of methods
(e.g., a neural network) but a Bayesian network will be used in the systems described

here.

3-Temporal The agent has a metacognitive system that evaluates the current exception(s)
as well as any past exceptions and repair attempts to determine the appropriate re-
sponse to be used. My research centers on providing functions that compare the

agent’s current state to previous problem states.

4-Evolving As in the temporal level, the agent’s metacognitive system evaluates the cur-

rent exception(s) as well as any past exceptions and repair attempts when choosing

6

the appropriate response. Additionally, the metacognitive system adjusts its evalua-

tion procedure and/or parameters based on the successes and failures of the repairs.

S—-Anticipating The agent’s metacognitive system attempts to avoid the precursors of the

conditions that lead to exceptions.

Table 1.1. Levels of Agent Metacognition

Level Name Short Description
0 Bereft No metacognitive component
1 Instinctive Exception dictates response
2 Evaluative Reasoned response
3 Temporal Past events included in reasoning
4 Evolving | Reasoning process adjusted by events
5 Anticipating Guides agent to avoid exceptions

For example, suppose that an agent experiences a problem with a GPS sensor when-
ever the agent’s battery is nearly drained and then completely recharged. A level 0 agent
would receive no help in diagnosing and repairing the problem. A level 1 agent would have
a hard-coded response to a problem with the GPS sensor, such as reinitializing the sensor.
A level 2 agent would determine a response based on a rule base, neural network, or other
reasoned approach. It would choose the response that had the highest utility (incorporating
the cost to implement the response and the probability of success). A level 3 agent would
take into account past responses (and their success or failure) to similar problems when
determining the best repair to attempt. A level 4 agent would update its decision process
(rules added/deleted from the rule base, neural connections or activation values changed,
network links altered, etc.) as the result of each exception/response episode. Finally, a
level 5 agent would attempt to have the agent avoid situations which prompted the excep-

tion (e.g., by not letting the battery get nearly depleted or by recharging in stages). In my

7

research on temporal comparison functions, I created agents using metacognition levels O

through 3 (Figure 1.3). Levels 4 and 5 are an area of possible future work (Sections 12.3

and 12.4).
Domain Domain
Levels Specific Neutral
3 Temporal MCL Level 3
2 Evaluative MCL Level 2
1 Instinctive MCL. Le.Vel !
Motivations
Mars Rover
O Bereft w/Planning

FIG. 1.3. Metacognitive Levels for the Mars Rover agent systems

1.4 Claim

Adding memory of past problems to MCL Level 3: Temporal provides better assis-

tance to the agent than MCL Level 2: Evaluative without such memory when there are

8

multiple perturbations. To effectively use the memory of past problems to guide the agent,
MCL has to determine, using a temporal comparison function, which of the previous prob-

lems (if any) are similar to the current problem.

1.5 Questions to be Answered

During the evaluation of temporal comparison functions for a level 3 metacognitive

system, I strived to answer a number of questions:

1. How does one determine that two problems are similar or different?

2. How can knowing if the current problem is the same or different from a previous

problem help an agent?
3. How does this determination alter the agent’s response to the problem?
4. How much does the correct determination help an agent?

5. How much does an incorrect determination hinder an agent?

1.6 Outline of Paper

This section describes the remainder of the dissertation and where each of the research
questions from the last section are answered.

A Q-Learner in a small grid world is used to demonstrate the uses of hard-coded,
domain-specific metacognition in Chapter 2. Agents for the Chippy grid world are defined
for metacognition levels from O to 3. Chapter 3 introduces the more interesting Mars Rover
domain with a planning agent that will be used for the remaining chapters. The next chapter

adds an instinctive (level 1) metacognition to the Mars Rover.

9

The next three chapters, using my idea of multiple metacognitive levels, deconstruct
and explain a metacognitive system that I helped develop as part of a UMBC/UMCP re-
search team. The Motivated Mars Rover from Chapter 4 will receive assistance from
the Metacognitive Loop (MCL). This will be done at metacognitive Levels 1: Instinctive
(Chapter 5), 2:Evaluative (Chapter 6), and 3: Temporal (Chapter 7).

Chapter 8 describes additional temporal comparison functions that were added to the
existing Level 3: Temporal MCL. That chapter also contains an evaluation of how well
they would likely work in practice.

Chapter 9 describes an experiment that will test the MCL levels and comparison func-
tions. The chapter begins with a review of the Mars Rover simulation and the scenarios
that will be used in the experiments. Each experiment is run using metacognitive levels O
through 3. The experiments are designed to show if there is an advantage for the agent to
use metacognitive level 3. Running these experiments with multiple temporal comparison
functions shows the effect on the agent’s performance of correctly and incorrectly deciding
if the current exception is related to a previous exception.

Chapter 10 provides details on the performance of the Mars Rover agent using
metacognitive levels 0 through 3. The results show that (a) the performance of the agent
using level 3 metacognition exceeds that of the other agents; (b) the benefit of correctly
determining that the current exception is similar to a previous one; and (c) the penalty for
making an incorrect determination can result in failure.

The remaining chapters describe related work (Chapter 11), future work (Chapter 12)

and final conclusions (Chapter 13).

10

1.7 Research Contributions

My research contribution consists of three parts. First is the multi-level metacognition
taxonomy that provides a framework for examining and comparing different metacognition
systems. This allowed me to produce my second contribution: the deconstruction of the
operations of MCL and then the construction of versions of MCL that would operate on
the first four metacognitive levels (0 to 3). As my third contribution, I added, in addition
to the existing temporal comparison in MCL Level 3: Temporal, several new comparison
functions. Some of these functions were designed to establish baseline operational perfor-
mance. Most, however, were developed to improve the performance of a simulated Mars

Rover when faced with multiple perturbations.

Chapter 2

METACOGNITIVE LEVELS AND CHIPPY

This chapter shows how metacognition can be used with software agents. It uses
a Q-Learner in the simple Chippy Grid World. The Q-Learner is augmented with three
different levels of hard-coded, domain-specific metacognition from Level O: Bereft to Level

3: Temporal.

2.1 The Chippy Grid World

This section examines the Chippy Grid World and a Q-Learning agent for exploring it.
A method for perturbing the world is given that will be used to see how well the Q-Learner
can recover from changes in the reward values. Other learnings such as SARSA (Rummery
& Niranjan 1994; Sutton & Barto 1995) and Prioritized Sweeping (Moore & Atkeson 1993)

could have also been used with Chippy with comparable results.

2.1.1 Q-Learning

Q-Learning (Watkins 1989; Watkins & Dayan 1992) is a reinforcement learning
method that uses the time discounted reward value for each action in each state. Learn-

ing occurs continuously while the agent is operating. For each action of each state the

11

12

expected value of taking that action in that state (the Q value) is accumulated using

Q(s,a) = Q(s,a) + alr + (ymax Q(s, ¥)) — Q(s, a)),

where ()(s, a) is the expected value of taking action a in state s, and « is the learning rate
(typically around .5). Higher values place more emphasis on recent rewards while lower
values favor long-term information. 7 is the reward received from taking action a in state
s. T is the discount rate for future rewards. Typical values are from .7 to .8. The higher the
value the more future rewards influence the () value. Usually, Q-learner selects the action
in state s with the highest Q value. But, based on the exploration rate €, the Q-learner will

select a random action.

2.1.2 Chippy Grid World

The Chippy Grid World (Anderson et al. 2006) is an 8 by 8 square matrix as shown
in Figure 2.1. An agent can move in the four cardinal directions from square to square.
The agent cannot leave the board as any attempt to leave from one of the edge squares just
keeps you in that square. The lower left (R1) and upper right (R2) squares provide rewards
and then transport the agent to the opposite corner. The values of R1 and R2 can be any
of several pairs. In the following example, R1 and R2 are initially 10 and -10. The agent
starts in one of the center squares and continues to move (and occasionally transport) until
the simulation is stopped.

Figure 2.2 shows the policy learned by a Q-Learner in a Chippy Grid World after
1,000 moves. Since only 2 of the 64 squares contain a reward, the Q-Learner makes many
moves (average = 98) before even seeing the first reward so that learning can begin. After
many more moves, a policy (direction) is learned so that most squares will direct the agent

toward the positive reward. Exceptions occur in the upper left and lower right quadrants of

13

R2

Start

1
&
~

R1

F1G. 2.1. An 8x8 grid world with two rewards

the board, that are rarely traveled to once the diagonal path between R1 and R2 is learned.
The learning rates (o« = 0.5,y = 0.9,e¢ = 0.05) produce a policy that converges in
about 5000 steps. From that point onward, the agent gets a reward of 10 every 14 steps plus

an occasional exploratory move.

2.1.3 Perturbing the Chippy Grid World

Perturbations are introduced into the Chippy Grid World by changing the values of the
two goal squares (R1 and R2). In the Chippy experiments, the initial values for R1 and R2
are one of (10, -10), (25, 5), (35, 15), (19, 21), (15, 35), or (5, 25). After letting the agent
take 10,000 steps, the values for R1 and R2 are changed to a different pair of values from
one of the following: (-10, 10), (25, 5), (35, 15), (19, 21), (15, 35), or (5, 25). Additionally,
if the initial configuration is (19, 21), then an addition subsequent configuration of (21, 19)

is also tried, giving a total of 22 different combinations as shown in Table 2.1.

14

ksl el <sl.7|=1'0
0 e el ol el el
T8 0 %
9% 85 [100 [92 [0 [[
WSS 185 7 190 62 [0 [
2 [95 185 7[99 62 4s
B2 [95 80 7[00 |0

1@»«13 12 a1 |95 |85 | 87 |<ts

F1G. 2.2. Chippy policy after 1,000 moves for rewards (10,-10)

One advantage of Q-Learning is that it continues to update the policy for each square.
Eventually, it will learn the reverse path to the new location of the positive reward. To be
successful, the addition of metacognition to the agent should help the agent learn the new

policy faster than it does without metacognition.

sl ny 4—31.7|=-]‘()

56~ 6¢.2<—5£.6‘" 4~41.5<-'é’1.1<—31.7

7;.7 <ﬁv.9 <-Qv.2 4—5l.6 < ? <-41.5 <-41.1

4-8$5<€’l.7<ﬁv.9<-€1.2<-5l.6"3 4-41.5

4%.5 4—81.5 4—7’1.7 *%9 461.2 4—51.6 <>

4—31 <ﬂv.5 <-8l.5 471.7 461.9 <+6.2 4T.5

4—32 4—&1 4-2'.5 <—8l.5 <91.7 +6.9 0.‘11

13 [«12 [«11 [+9.5 [«8.5 ST.7 +1.8

F1G. 2.3. Chippy policy after 5,000 moves for rewards (10,-10)

Table 2.1. Chippy Initial and Subsequent Reward Values
Initial Subsequent
(10, -10) | (-10,10) | (25,5) | (35,15) | (19,21) X X
(25,5) | (-10,10) X (35, 15) | (19,21) X (5, 25)
(35, 15) | (-10,10) | (25,5) X (19,21) | (15, 35) X
(19,21) | (-10,10) | (25,5) | (35,15) | (21, 19) X X
(15, 35) | (-10, 10) | (25,5) X (19, 21) X X
(5,25) | (-10,10) X (35,15) | (19,21) X X

15

2.2 Metacognition for Chippy

Metacognition can be added by the Chippy Q-Learner to help it respond to reward
perturbations. Several different metacognitive agents are described in this section. They

are at several different metacognitive levels but all were hardcoded to work in the Chippy

domain. The agents and thier metacognition levels are shown in Figure 2.4.

Domain
Levels Specific

Domain
Neutral

3 Temporal 3 Strikes

2 Evaluative | | Difference

. A: Reset

1 Instinct
nstinctive | ==== =
0 Bereft Q-Learner

FIG. 2.4. Metacognitive Levels for the Chippy demonstration systems

17

2.2.1 Interfacing to Metacognition

After each move, the agent invokes the metacognition monitor, passing the location
to which the agent moved, the reward expected, and the reward received. The monitor can
return one of several responses: do nothing, reset the policy, and increase the learning rate.
If the response is do nothing, the agent need not take any action. If the response is reset
the policy, the value for the square/direction policy for all squares and directions is reset to
zero, effectively causing the agent to forget anything it learned. The response of increase
the learning rate means that the epsilon value for the Q-Learner should be increased. This
will allow more off-policy moves. The sensors monitored and the control suggestions are
shown in Figure 2.5.

The monitoring of the sensor and the generation of the control suggestions is hard-
coded and specific to the Chippy domain. A more domain-neutral metacognition system

will be described in the MCL background chapters.

2.2.2 Level 0: Bereft Chippy

Chippy with metacognition level 0 always receives do nothing as the suggestion. This
serves as the base case. Although the implementation does call the metacognition mon-
itor function, it always gets back do nothing and thus acts just like a Q-Learner with no

metacognition.

2.2.3 Level 1: Instinctive Chippy

There are two implementations of Chippy with metacognition 1. In both cases, if
the expected and actual reward for a square are equal (or if this is the first time visiting
the square), the suggestion will be do nothing. The first version (A) returns a suggestion

of reset the policy if the expected and actual rewards are different. Version B returns a

18

Metacognition

- 0 | Do nothing
o S |Increase Learning
Act Rwd | = =] .
E)(zp RV\\:vd 5 3 Reset Policy
2 o
Q-Learner
>
Q
Location, S | Direction
Reward §:
wn

Environment

FIG. 2.5. Chippy agent with metacognition

suggestion of increase the learning rate if the rewards are not equal.

2.2.4 Level 2: Evaluative Chippy

A Chippy Q-Learner with metacognition level 2 will return do nothing if the expected
and actual reward for a square are equal (or if this is the first time visiting the square). When
the expected and actual rewards are different, the magnitude of the difference is determined.
If the difference is small than a suggestion of do nothing is returned. For larger differences
where the reward is less than expected, a suggestion of increase the learning rate is given.
For even larger differences or when the reward has gone from positive to negative, the

suggestion of reset the policy is given.

19

2.2.5 Level 3: Temporal Chippy

A Chippy Q-Learner with metacognition level 3 operates like level 2 in that the mag-
nitude of the reward difference is used to determine which response of do nothing, increase
the learning rate or reset the policy is returned. It also includes a counter that tracks the
number of times an unexpected reward has been received and, when it succeeds a preset
threshold (nominally 3), a response of reset the policy is returned and the counter is reset.
The counter of number of times an unexpected reward occurred is the temporal element in

the Chippy level 3 temporal metacognition.

2.3 Chippy Experimental Results

Using the 22 reward pairs given in Table 2.1, 20 experimental runs were done for
each of the five metacognitive agents outlined in the previous section. Table 2.2 shows the
average reward totals for the experiments. Rewards shown in ifalics indicate an average
reward that is higher than the average reward for the unaided Q-Learner. Rewards shown in
bold are the highest average reward for that reward pair. Thus, for experiment 1, where the
rewards start as (10,-10) and then change to (25,5), the agent using metacognition level 1
that always reset the policy when an exception was detected did the best, but all the agents
using metacognition did better than the agent which used none.

The last line of the table gives two numbers for each of the Chippy agents. The first
number is count of times that the agent had a higher average total reward than the unaided
Q-Learner. The second number is the count of times that the agent had the highest average
total reward. The agent using level 3 (temporal) metacognition had the highest total of
average scores that beat the unaided Q-Learner (14). The metacognitive level 1 agent that
instinctively reset the learner when there was an unexpected reward had the most high

scores (9).

Experiment Metacognitive Level

Num | Begin | Final O | I-Reset | 1-Learn 2 3
1 10,-10 | 25,5 63743 | 74644 73059 | 65227 | 63774
2 10,-10 | 35,15 | 101728 | 120291 | 110561 | 100744 | 103465
3 10,-10 | 19,21 86853 | 96776 | 97116 | 88047 | 85545
4 10,-10 | -10,10 09893 | 11058 9223 9653 | 10045
5 25,5 | 35,15 | 187830 | 182295 | 187893 | 187646 | 187604
6 25,5 | 19,21 | 163371 | 160407 | 163408 | 163959 | 163653
7 25,5 5,25 | 140128 | 137917 | 139433 | 139657 | 139396
8 25,5 | -10,10 | 69029 | 73922 68281 | 68716 | 69068
9 35,15 | 25,5 | 184943 | 183851 | 186434 | 185474 | 185755
10 | 35,15 | 19,21 | 209281 | 206237 | 209579 | 209817 | 209899
11 35,15 | 15,35 | 232411 | 228773 | 232135 | 233696 | 232938
12 | 35,15 | -10,10 | 114381 | 120489 | 113644 | 114513 | 114852
13 | 19,21 | 25,5 | 161476 | 160415 | 162537 | 162177 | 162568
14 | 19,21 | 35,15 | 210198 | 206124 | 209781 | 210084 | 210221
15 19,21 | 21,19 | 186685 | 184423 | 186228 | 186794 | 186182
16 | 19,21 | -10,10 | 91907 | 97821 92128 | 91619 | 92179
17 | 15,35 | 25,5 | 185505 | 183554 | 185846 | 185474 | 185595
18 | 15,35 | 19,21 | 210274 | 206295 | 209791 | 209684 | 209632
19 | 15,35 | -10,10 | 115471 | 120760 | 113341 | 114796 | 114588
20 5,25 | 35,15 | 187526 | 183462 | 187857 | 187220 | 187067
21 5,25 | 19,21 | 164027 | 159418 | 162980 | 162970 | 164058
22 5,25 | -10,10 | 69660 | 74164 | 68625 | 69619 | 69022
Better / Best 2/2 9/8 11/5 9/3 14/4

Table 2.2. Average rewards for each Chippy Experiment by Runner

2.4 Chippy Summary

20

The Chippy Q-Learner was used to demonstrate the use of metacognition to aid an

agent. The metacognition component monitors the actual and expected rewards received

by the Q-Learner and returns one of three suggestions when the expectation that the ac-

tual and expected rewards values are equal was violated. The Q-Learner implements the

metacognition’s suggestion and, hopefully, obtains a higher total rewards then an unaided

Q-Learner.

21

Different metacognition components for Chippy were presented at several different
metacognitive levels. They all shared the attribute of being hardcoded and domain-specific
in that they were designed to work only in the Chippy Domain. In upcoming chapters, a
metacognitive component (MCL) will be presented that, while having a domain-specific
portion, uses a domain-independent element in determining the response to an expectation

violation.

Chapter 3

MARS ROVER LEVEL 0: BEREFT

This chapter describes the Mars Rover domain that will be used throughout the re-
maining chapters for examples and experiments, as well as the first of several agents
that operate in the domain. Using a simple STRIPS planner (Fikes & Nilsson 1971;
1994), as was used in the early robot Shakey (Fikes 1971), the agent in this chapter can

develop and execute a plan to fulfill mission objectives given to the agent.

3.1 The Mars Rover Domain

The Mars Rover domain has been used as the experimental test bed by a number of
researchers (Dearden et al. 2004; Estlin et al. 2007). Coddington (2006) describes a sim-
plified Mars Rover Domain. The landscape consists of only eight locations (way-points),
and the Rover can execute just a few commands. However, the domain is rich enough
(especially with a few selected additions) to serve as a test bed for agents equipped with
multiple levels of metacognition. While based on the domain described in Coddington’s
papers, minor changes have been made to resolve inconsistencies, fill in omissions, and

expand the range of experimental scenarios.

22

23
3.1.1 The Mars Rover

The agent in the Mars Rover domain is a small multi-wheeled vehicle. Its primary
purpose is to explore a limited portion of the Martian surface taking photographs. It oper-
ates under the direction of a mission specialist on Earth but is equipped with some systems

(e.g., planning) that let it operate somewhat independently.

3.1.2 Sensors

The Mars Rover is equipped with several sensors. These allow the Rover to determine
its present location (1-8), the current battery level, the amount of memory available for pho-
tographs, whether the movement subsystem is localized, and whether the image sensor has
been calibrated. The way-point is changed as the Rover moves from location to location.
Energy is used as the Rover executes commands. Energy is regained by waiting (using so-
lar panels) or by recharging at a recharge station. Memory is used by taking photos with the
Image (I) command or panoramic images with the Panoramic (P) command, and memory
is regained by transmitting the photos stored in memory back to Earth using the T com-
mand. Localization is True if the movement subsystem is localized. The Rover normally
starts in the localized state, but it needs to perform the Localization (L) command after
moving some distance (normally 500). Calibration is True if the Calibration (C) command
has been successfully performed. Calibration returns to False after successfully performing
an Image (I) command. The Rover normally starts with Calibration set to False.

The Rover also has an internal clock that measures elapsed time since the start of
the mission and a distance sensor that records total distance traveled. The total distance
traveled since the last successful Localization is also maintained, as is the time since the
last Image (I) and Panoramic (P) commands. The Zero sensor just provides a reference

point for a zero value. The Speed and Sleeping sensors show the Rover’s current speed

24

Table 3.1. The Mars Rover Sensors

Sensor Minimum | Maximum Type
Zero 0 0 | Integer
Energy 0 100 | Integer
Memory 0 30 | Integer
Waypoint 1 8 | Integer
Calibrated False True | Boolean
Localized False True | Boolean
Sleeping False True | Boolean
Speed 0 2 | Integer
TotalDistance 0 none | Integer
TotalTime 0 none | Integer
LocalDistance 0 none | Integer
TimeSincePhoto 0 none | Integer
TimeSincePanoramic 0 none | Integer

setting (Fast=2, Medium=1, or Slow=0) and indicate whether the Rover is sleeping (True)
or operating (False), respectively. Table 3.1 shows the available sensors.

The units for the sensors are idealized and only the magnitudes are important in the
simulation. The distances could be either in feet or meters. The times are usually thought

of as seconds but could just as easily be minutes.

3.1.3 Actions

There are several actions that the Mars Rover can perform. Each command is listed
with a name, an initial, its purpose, and its pre- and post-conditions. An attempt to execute
a command whose pre-conditions are not met causes an error and a Wait (W) command
is executed instead. The actions in this first section are the same as those described by

Coddingtion (2006).

move (n) Cause the Rover to move to the specified adjacent way-point. The Rover must

25
have enough energy to complete the movement. The energy cost to move varies
depending on the distance between the way-points and the speed of the Rover. There
is also a time cost for performing a move command. As with energy cost, the time
cost varies with the distance between the way-points and the speed of the Rover. At
medium speed, the energy cost is 8 or 10, and the time required is 16 or 20 seconds.
An attempt to move to a non-adjacent way-point or without sufficient energy will

cause an error and the Rover will remain in place.

image (I) This action causes the Rover to take a detailed photo image and store it in mem-
ory. Each image takes 5 memory storage units, costs 5 energy units, and takes 20 sec-
onds. In order to successfully take an image, the Rover must have sufficient energy
and memory storage available, be calibrated, and be at one of the three way-points

for imaging (1, 4, and 8).

calibrate (C) In order to take detailed photographic images, the Rover must calibrate its
image sensors. This can only be done at way-point 4. Calibration uses no image

memory and costs only 1 energy unit, but takes 20 seconds to complete.

recharge (R) Restores the Rover’s battery to full charge (recharging can be done at way-
points 1 and 5). The time to complete charging depends on the current level of the

battery.

panoramic (P) Take a panoramic image and store it in memory. Unlike detailed photo-
graphic images taken with the I command, a panoramic image does not need the
Rover to be calibrated and they can be take at all way-points. Like the I command,
the P command has an energy cost of 5 units and uses 5 memory storage units. It
takes longer (30 seconds versus 20) to take a panoramic image as the camera must

rotate 360 degrees.

26

transmit (T) Send the photos in memory to Earth. This can only be done at way-points
1 and 2. The energy and time required depends on the amount of memory used

for photo and panoramic images. When the command is complete, all of the image

memory is available for new images.

localize (L) In order to move at normal speed, the Rover must reset its way-point sensor
periodically. Localization can only occur at way-point 3. Executing the L command

requires 5 energy units and takes 20 seconds.

The actions below are additions to the Mars Rover domain that I added to allow for addi-

tional scenarios.

wait (W) This is the zen of actions. The Rover remains in place. The energy level is
increased by one (up to but not beyond the maximum energy level) and it takes five

seconds of elapsed time to complete.

fast (F) Set the Rover’s speed to fast. This increases the energy to move between way-
points but decreases the time required. Fast speed can only be used when localized.
Moving at this speed may clean the wheels of any accumulated dust. It takes three

energy units and two seconds to set the Rover’s speed.

medium (M) Set the Rover’s speed to medium. This is the optimal speed for the Rover as
it uses the least amount of energy. Medium speed can only be used when localized.
After localization, the Rover’s speed is set to medium. It takes three energy units and

two seconds to set the Rover’s speed.

slow (S) Set the Rover speed to slow. This speed uses slightly more energy than medium
and takes twice as long. It is the only speed available when the Rover is not localized.
The speed setting is automatically set to slow if the Rover is not localized. It takes

three energy units and two seconds to set the Rover’s speed.

27

Table 3.2. The Mars Rover Actions

Action Code | Energy | Memory | Time
move n varies 0 | varies
image I 5 5 20
calibrate C 1 0 20
recharge R to max 0 | varies
panoramic | P 5 5 30
transmit T varies | to max | varies
localize L 5 0 20
wait W gain 1 0 5
slow S 3 0 2
medium M 3 0 2
fast F 3 0 2
blow B 20 0 10
diagnose D 20 0 10
sleep Z gains 0 | varies

blow (B) Attempt to blow the dust from the Rover’s wheels and from the rotary mount for
the panoramic camera. This action can only be done at way-point 1. It requires 20

energy units and takes 10 seconds.

diagnose (D) Run a sensor diagnostic. This may correct problems with the energy, mem-
ory, distance, way-point or time sensors. If there were problems with multiple sen-
sors, zero, one, or more may be corrected. The D command can be done at any

way-point. It requires 20 energy units and takes 10 seconds.

sleep (Z) Enter sleep mode. The Rover stops all actions and waits for a command from
Mission Control. The battery recharges in sleep mode faster than during a wait (W)

command.

Table 3.2 shows the cost in energy, memory, and time to execute each action.

28

Table 3.3. Actions that can only occur at particular locations

Location
Action 112|314]|5|6|7]|8
Image X X X
Calibrate X
Recharge | X X
Transmit | X | X
Localize X
Blow X

Certain actions can only take place at specific locations. For example, there are only
two places where the Rover can recharge its batteries. Also, there are only two places
where the Rover can transmit to Earth and empty the photo memory. There are only single
locations for calibrating, localizing, and blowing dust from the Rover. Finally, the detailed
images for science experiments can only be taken at three locations, whereas panoramic
photographs can be taken anywhere. Table 3.3 details which actions can occur at which
way-point locations.

Only slow movement is allowed when the Rover is not localized. Taking an image

requires both available photo memory and that the image sensor be calibrated.

3.1.4 Commands

Mission Control (or the cognitive agent) can direct the Rover to execute one or more
actions using the letter codes from Table 3.2. Movement commands require the number of
the adjacent way-point. The Mars Rover simulator provides a point and click interface for
entering these basic commands. Commands that cannot be executed (not enough energy,
not at the proper way-point) are replaced by the wait (W) command. When the Rover has

no more commands to process, it gives itself the sleep (Z) command and waits for more

Table 3.4. Base energy costs to move between way-points (elapsed time is twice the

energy cost)

To Way-point

From|1| 2|3 |4 |5|6|7]8
1 8

2 8 10

3 10 10 10| 8
4 10

5 10| 10 8

6 8

7 10 10
8 8 10

commands to be sent.

3.1.5 The Landscape

29

The portion of Mars in which the Rover operates consists of eight connected locations

as shown in figure 3.1. The same information is presented in tabular form in table 3.4. The

number between connected way-points in figure 3.1 (and in table 3.4) is the energy cost

to travel between the two way-points when the Rover is running at medium speed and the

wheels are free of dust. The travel time is usually twice the energy cost when the Rover is

running at medium speed. When running at fast speed, the energy cost is doubled but the

travel time is halved. When the Rover is running at slow speed, the travel time is doubled

and it takes an additional 15% energy. Having dust on the wheels may add 15 or 30% to

the travel time.

Table 3.5. Executing the commands "2354C5381" starting at way-point 1 and time 0

At | WP | CMD | NRG | MEM | TIME | DIST
0 1 | 2@1 | 8/92 | 0/30 | 16/16 | 8/8
16 | 2 | 3@2 | 10/82 | 0/30 | 20/36 | 10/18
36 | 3 | 5@3 | 10/72 | 0/30 | 20/56 | 10/28
56 | 5 | 4@5 | 10/62 | 0/30 | 20/76 | 10/38
76 | 4 | C@4 | 1/61 | 0/30 | 20/96 | 0/38
9 | 4 | 5@4 | 10/51 | 0/30 | 20/116 | 10/48
116 | 5 | 3@5 | 10/41 | 0/30 | 20/136 | 10/58
136 | 3 | 8@3 | 10/31 | 0/30 | 20/156 | 10/68
156 | 8 | I@8 | 5/26 | 5/25 | 20/176 | 0/68

3.1.6 Commanding the Basic Mars Rover

30

As a sample of the basic Mars Rover operation, the Rover is instructed to move from

way-point 1 to way-point 4 for calibration and from there to way-point 8 to take a scientific

image. The basic Mars Rover has to be given each instruction to move from each way-point

to the next. The command sequence is "2354C5381". Table 3.5 show the Rover information

at each step in the execution of these commands.

The first two columns have the time and way-point locations before the execution of

the command in the third column. The fourth and fifth columns have the energy and mem-

ory used (or gained) during execution of the command along with the amounts available

after the step. The final two columns have the time required for the command and the

distance traveled (if any) along with accumulating totals.

F1G. 3.1. Waypoints and connections

31

32

3.2 Mars Domain Perturbations

This section defines several perturbations in the context of software agents and gives
sample perturbations in the Mars Rover domain. The basic Rover is not well equipped to
handle most of the perturbations. The metacognition systems described later in this chapter

and in the next two will enable the Rover to cope with the majority of them.

3.2.1 Perturbations

The agent failures described in the introduction were not caused by a failure of the
designers or in the execution of that design. In all the cases, the agent encountered a
change in the environment that had not been provided for in the agent.

The following are some of the problems that the Rover might encounter in the Mars
Rover domain. This is not an exhaustive list of the things that could happen. A devious
mind with a little time could fill several pages with possible perturbations. Perturbations

used in the experiments for this dissertation are indicated with [Pn] where n is 1 to 9.

3.2.2 Recharging Problems

Loss of recharge station One (or both) of the two recharge points (way-points 1 and 5)
stops functioning. The Rover can attempt to recharge at the way-point, but after 10

time units, the charging ends with no energy restored.

Longer charging time One (or both) of the two recharge points (way-points 1 and 5) start

recharging at a slower rate. It takes twice as long to recharge as normal.

Partial charging [P1] One (or both) of the two recharge points (way-points 1 and 5) only
charges the Rover for 30 energy units before stopping. Each subsequent attempt to

recharge will charge an additional 30 energy units.

33
Probabilistic charging [P4] The recharge action (R) only restores the Rover to full ca-
pacity a percentage of the time (75%). The remainder of the time it only partially

recharges the Rover’s battery.

3.2.3 Battery Problems

Reduced capacity [P2] The battery’s energy capacity is reduced to 75 from 100.! Charg-

ing attempts can only restore the battery to 75 units.

Leakage The battery loses power at the rate of one unit per 10 minutes in addition to the

energy to implement the requested action.

3.2.4 Calibration Problems

Longer calibration time [P3] It takes twice as long to calibrate as expected.

Probabilistic calibration The calibration action (C) only sets calibration to True a per-

centage of the time (75%).

Recharge loses calibration [P5] Recharging the Rover causes it to reset calibration to

False.

3.2.5 Localization Problems

Longer localization time It takes twice as long to localize as expected.

Probabilistic localization The localization action (L) only sets localization to True a per-

centage of the time (90% or 75%).

Recharge loses localization Recharging the Rover causes it to reset localization to False.

'Some of the examples use a Rover with maximum energy of 200.

34

3.2.6 Navigation Problems

Path energy change The energy required to travel between two specific way-points

changes.

Path time change [P6] The time required to travel between two specific way-points

changes.

Navigation energy change The energy required to travel between every two connected

way-points changes.

Navigation time change The time required to travel between every two connected way-

points changes.
Path blocked [P7] There is no longer a path between two specific way-points.

Dirty axle Movement takes longer and requires more energy until the axles are cleaned by

running at high speed or blowing them clean.
Speed requirement A specific speed (Fast, Medium, or Slow) is required to move between
two specific way-points.
3.2.7 Imaging Problems
Imaging energy change The energy required to take an image changes (generally more).
Imaging time change The time required to take an image changes (generally longer).

Probabilistic imaging change Some attempts to take an image fail to store the image in
memory. The energy cost is the same for a failing image command as it is for a

successful one.

35

3.2.8 Panoramic Problems
Panoramic energy change The energy required to take a panoramic image changes.
Panoramic time change The time required to take a panoramic image changes.

Panoramic imaging change Some attempts to take a panoramic image fail to store the
image in memory. The energy cost is the same for a failing image command as it is

for a successful one.

Dirty panoramic rotator [P8] The camera rotator for the panoramic images gets clogged

with dirt and will not work until blown clean.

3.2.9 Sensor Problems

Noisy sensor [P9] A sensor provides a value +/- a small amount of the true value.
Probabilistic sensor A sensor provides the correct value only some of the time.

Fixed sensor A sensor provides only a single (usually incorrect) value.

3.3 Level 0 Bereft: Planning Agent Without Metacognition

Adding a goal-oriented planner to the basic Mars Rover allows Mission Control to
send higher-level requests to the Rover and have them executed. This section describes the
requests that the Rover can accept, how those requests are translated into actions, and gives

examples of successful and unsuccessful scenarios.

3.3.1 Commands

In addition to the single letter/number commands that the basic Rover knows how to

execute, the level 0 Mars Rover can also accept goals to be performed listed in the first

36
column of the STRIPS Table 3.6. Goals that are to be achieved concurrently are separated
by commas. Goals that are to be achieved serially are separated by semi-colons. For
example, "TookImage2,TookImage3;Transmit" would first cause the Rover to generate and
execute a plan that would take images at way-points 4 and 8.2 After that, the Rover would
generate and execute a plan that transmitted the images back to Earth.

Once a plan to satisfy a goal or goals is generated, it is executed step by step until
its completion. As with the basic Rover, commands that cannot be executed (not enough
energy, not at the proper way-point) are replaced by the wait (W) command. When the
Rover has no more commands to process, it gives itself the sleep (Z) command and waits
for more commands to be sent.

The Mars Rover simulator I developed provides a command line and a point-and-click
interface for entering both the basic commands and the STRIPS goals. The command line
interface is the one used to command the Rover for the experiments. The point-and-click

graphic user interface is mainly for demonstrations.

3.3.2 Planner

The Rover uses a ground version of the classic STRIPS (Ghallab, Nau, & Traverso
2004). This planner is sufficient to take goals such as TakeImagel, Calibrate, etc. and turn
them into a sequence of actions that the Rover can execute.

The STRIPS operator table is shown in Figure 3.7. The top half of the table deals
with moving from way-point to way-point across the Martian terrain. The rest of it handles
the location and calibration preconditions for the operations that require them. The final
column in the table, Inverse, is used to keep plan generation from including an operation

and then trying to immediately use the inverse of that operation. For example, this prevents

Image location 1 is at way-point 1, Image?2 is at 4 and Image3 at 8.

Table 3.6. Goals for the Mars Rover with planning

Goal \ Description

Scientific Images
TookImagel Take a photo image at way-point 1
TookImage?2 Take a photo image at way-point 4
TookImage3 Take a photo image at way-point 8

Panoramic Images
TookPanoramicl | Take a panoramic image at way-point 1
TookPanoramic2 | Take a panoramic image at way-point 2
TookPanoramic3 | Take a panoramic image at way-point 3
TookPanoramic4 | Take a panoramic image at way-point 4
TookPanoramic5 | Take a panoramic image at way-point 5
TookPanoramic6 | Take a panoramic image at way-point 6
TookPanoramic7 | Take a panoramic image at way-point 7
TookPanoramic8 | Take a panoramic image at way-point 8

Navigation
Gotol Move the Rover to way-point 1
Goto2 Move the Rover to way-point 2
Goto3 Move the Rover to way-point 3
Goto4 Move the Rover to way-point 4
Goto5 Move the Rover to way-point 5
Gotob Move the Rover to way-point 6
Goto7 Move the Rover to way-point 7
Goto8 Move the Rover to way-point 8
Other
Transmitted Transmit images to Earth
Recharged Recharge the Rover’s battery
Localized Ensure that the Rover is localized
Calibrated Ensure that the Rover is calibrated
Extended

Fast Set movement speed to Fast
Medium Set movement speed to Medium
Slow Set movement speed to Slow
BlowCmplt Blow air to movement and panoramic motors
DiagCmplt Perform a sensor diagnosis
Wait Perform a wait action

Sleep

Shutdown the Rover

37

38
trying a plan that has "2@1" directly following "1@2". The loops "8@3,7@8,3@7" and
"1@3,8@7,3@8" are also deleted from any partial or generated plan. These little bits of
heuristics greatly reduce the time to generate a plan that has to move the Rover.

Note that energy, localization, and photo memory constraints are not modeled with this
simple STRIPS plan. Having enough energy is required for all commands except recharge
(R), wait (W), and sleep (Z) but the STRIPS planner doesn’t take this into account. Nor
does the planner ensure that there is enough available photographic memory before adding
a P or I command to the plan. It would be the responsibility of the Mission Controller not
to send goals that generate plans that exceed the capabilities of the Rover. Metacognition
will be offered later in this chapter as an alternate approach to handling the Rover’s limited

resources.

3.3.3 Sample Commands and Plans

If the Rover is at way-point 1, the command "TookImage2,Tooklmage3" could gen-
erate the plan: "2@1; 3@2; 5@3; 4@5; C@4; 1@4; C@4; 5@4; 3@5; 8§@3; 1@8" if
it chooses to satisfy the "TookImage2" goal first. If the STRIPS planner were to non-
deterministically choose to satisfy "TookImage3" first, the plan would be longer as it would
have to go to way-point 4 for the initial calibration and then return there after taking the
image at way-point 8: "2@1; 3@2; 5@3; 4@5; C@4; 5@4; 3@5; 8@3;1@8; 3@8; 5@3;
4@5; C@4; 1@4".

By default, the Rover tries several times to generate a working plan, keeping the short-
est plan generated for execution. While the difference in the two plans above is only two
steps, as more goals are specified, the differences in the best and worst plans generated

grow as well.

39

3.3.4 Plan Execution

Having a Mars Rover that can translate goals into a series of commands allows Mis-
sion Control to issue more compact instructions but doesn’t relieve them of ensuring that
the Rover doesn’t exceed its memory or energy constraints. As the Rover is given more
goals, the plans generally get longer and the likelihood of draining the battery or filling
memory increases. This section has the Rover generating and executing plans for grand
photographic and panoramic tours which nearly or do exceed the Rover’s limited resources.

The photographic tours require visiting the three way-points of scientific interest, tak-
ing photographic images there, and transmitting them back to Earth. The Rover is given
the goals in two parts to ensure that the transmission of the images is done after all three
images are taken: "TookPhotol,TookPhoto2,TookPhoto3;Transmitted". Table 3.8 traces
the Rover’s successful execution of the twenty-one step plan. In taking three photographic
images, the Rover used half of its 30 units of memory. But taking those images ran down
the battery to only 5% (39 units of 200 total). Luckily the Rover had enough power to
complete the photo tour by transmitting the images back to Earth.

The second example for the level O Rover has it going to each of the eight way-
points and taking a panoramic image at each. The eight first goals (TookPanoramicl,
TookPanoramic?2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,
TookPanoramic7, TookPanoramic8) requires an eighteen step plan: P@1; 2@1; P@2;
3@2; 5@3; 4@5; P@4; 5@4; P@5; 6@5; P@6; 5@6; 3@5; P@3; 7@3; P@7; 8@7;
P@8.

The first fifteen actions were executed successfully as shown in Table 3.9. The taking
of the first six panoramic images exhausted the Rover’s image memory and caused it to fail
on the sixteenth step (P@7) with the error: "Insufficient memory: had 0 needed 5". If the

Rover had been outfitted with more memory (40 units instead of 30), it could have taken the

40
panoramic image at way-point 7, and traveled to way-point 8 for the final image. But even
with the extra memory, the Rover wouldn’t have enough energy to transmit the panoramic

images back to Earth.

3.3.5 Resource Aware Planning

The Mars Rover operating at MCL level O (Bereft) can fail if it is given a string of
commands that tax its limited energy or photograph memory storage. Its only recourse is
to wait and receive further orders from its controllers. A more robust planner that takes
into consideration the energy and memory limitations could generate plans that include
sufficient recharges and transmits. Such resource-aware planners can be found in Ghallab,
Nau, and Traverso (2004). The execution of a plan with additional actions to recharge
the battery and transmit the images as necessary to free photographic memory is shown in

Table 3.10.

3.3.6 Resource Aware Planning with Perturbations

The carefully crafted plan shown in Table 3.10 can fail in a perturbed Martian envi-
ronment. For example, assume that the recharging circuit has been damaged and stops the
recharging cycle prematurely. It will only replenish the battery a maximum of 30 energy
units.’> When such a perturbation is added to the environment, the panoramic tour now fails
as seen in Table 3.11. The plan fails even sooner (Table 3.12) with a perturbation which

limits the capacity of the battery to 75 units instead of the usual 100 energy units.*

3This is perturbation 1 (P1) of the experiments.
4P2 of the experiments.

41

3.3.7 Limitations and Improvements

With a planner that doesn’t account for resources, the level 0 Mars Rover agent is
limited to goals that can be quickly achieved before resources (in this case, memory and
energy) are depleted. A more robust planner can overcome this limitation by inserting
actions that replenish the resources. However, these augmented plans can’t handle situa-
tions where the environment is perturbed beyond the environment model that governed the
planning.

The next section will explore adding Instinctive Metacognition to allow the simple
planner used in the Rover to handle the energy and memory resource limitations. The
Instinctive Metacognition is also capable of handling some of the perturbations that cause

purely plan-based (Metacognition level 0) Rovers to fail.

Table 3.7. The STRIPS table for the Mars Rover

opP Preconditions Add Delete Inverse
1@2 | AtWP2 AtWP1,Gotol AtWP2 2@1
2@1 | AtWP1 AtWP2,Goto2 AtWP1 1@2
2@3 | AtWP3 AtWP2,Goto2 AtWP3 3@2
3@2 | AtWP2 AtWP3,Goto3 AtWP2 2@3
3@5 | AtWP5 AtWP3,Goto3 AtWP5 5@3
3@7 | AtWP7 AtWP3,Goto3 AtWP7 7@3
3@8 | AtWP8 AtWP3,Goto3 AtWP8 8@3
4@5 | AtWP5 AtWP4,Goto4 AtWP5 5@4
5@3 | AtWP3 AtWP5,Goto5 AtWP3 3@5
5@4 | AtWP4 AtWP5,Goto5 AtWP4 4@5
5@6 | AtWP6 AtWP5,Goto5 AtWP6 6@5
6@5 | AtWP5 AtWP6,Goto6 AtWP5 5@6
7@3 | AtWP3 AtWP7,Goto7 AtWP3 3@7
T@8 | AtWPS8 AtWP7,Goto7 AtWP8 8@7
8@3 | AtWP3 AtWP8,Goto8 AtWP3 3@8
8@7 | AtWP7 AtWP8,Goto8 AtWP7 7@8
[@1 | AtWP1,Calibrated | TookImagel Calibrated

[@4 | AtWP4,Calibrated | TookImage2 Calibrated

[1@8 | AtWP8,Calibrated | TookImage3 Calibrated

P@1 | AtWP1 TookPanoramicl

P@2 | AtWP2 TookPanoramic2

P@3 | AtWP3 TookPanoramic3

P@4 | AtWP4 TookPanoramic4

P@5 | AtWP5 TookPanoramic5

P@6 | AtWP6 TookPanoramic6

P@7 | AtWP7 TookPanoramic?7

P@8 | AtWPS8 TookPanoramic8

R@1 | AtWP1 Recharged R@]1
R@5 | AtWP5 Recharged R@5
T@1 | AtWP1 Transmitted T@1
T@2 | AtWP2 Transmitted T@2
C@4 | AtWP4 Calibrated C@4
L@3 | AtWP3 Relocalized L@3
F Fast Slow,Medium

M Medium Fast,Slow

S Slow Fast,Medium

B@1 | AtWPI BlowCmplt

D DiagCmplt

W Wait

Z Sleep

42

Table 3.8. Executing the plan for photo tour (TookPhoto1, TookPhoto2, TookPhoto3;

Transmitted)

At | WP | CMD | NRG | MEM | TIME | DIST

Rover with extra energy: 200

0
16
36
56
76
96

116
136
156
176
196
216
236
256
276
296
316
336
356
372
392

—_ = N W N BB UWOKOWWWULNEAIOUWINDR—

2@]
3@2
5@3
4@5
Ce@4
S5@4
3@5
@3
[@8

3@8
5@3
4@5
Ce4
[@4
Ce@4
S@4
3@5
2@3
1@2
@1

T@l

8/192
10/182
10/172
10/162

1/161
10/151
10/141
10/131

5/126
10/116
10/106

10/96

1/95
5/90
1/89

10/79

10/69

10/59

8/51
5/46
7/39

0/30
0/30
0/30
0/30
0/30
0/30
0/30
0/30
5/25
0725
0725
0/25
0/25
5720
0/20
0/20
0/20
0/20
0/20
5/15
+15/30

16/16
20/36
20/56
20/76
20/96
20/116
20/136
20/156
20/176
20/196
20/216
20/236
20/256
207276
20/296
20/316
20/336
20/356
16/372
20/392
15/407

8/8
10/18
10/28
10/38
0/38
10/48
10/58
10/68
0/68
10/78
10/88
10/98
0/98
0/98
0/98
10/108
10/118
10/128
8/136
0/136
0/136

43

44

Table 3.9. Executing (partially) the plan for panoramic tour (TookPanoramicl, Took-
Panoramic2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,
TookPanoramic7, TookPanoramic8; Transmitted)

At [WP | CMD | NRG | MEM | TIME | DIST

Rover with extra energy: 200

0
30
46
76
96
116
136
166
186

216
232
262
278
298
328
348

P@]
2@l1
P@2
3@2
5@3
4@5
P@4
S@4
P@5
6@5
P@6
5@6
3@5
P@3
7@3
pP@7

~N W WU U BRUVWNND ==

5/195
8/187
5/182
10/172
10/162
10/152
5/147
10/137
5/132
8/124
5/119
8/111
10/101
5/96
10/86
+1/87

5/25
0/25
5/20
0/20
0/20
0/20
5/15
0/15
5/10
0/10
5/5
0/5
0/5
5/0
0/0
0/0

30/30
16/46
30/76
20/96
20/116
20/136
30/166
20/186
30/216
16/232
30/262
16/278
20/298
30/328
20/348
5/353

0/0

8/8

0/8
10/18
10/28
10/38
0/38
10/48
0/48
8/56
0/56
8/64
10/74
0/74
10/84
0/84

Insufficient memory: had 0 needed 5

45

Table 3.10. Executing a panoramic tour plan that handles limited memory and energy.

At | WP | CMD | NRG MEM | TIME | DIST
0 1 | P@1 5/95 5/25 30/30 0/0
30 | 1 | 2@l 8/87 0/25 16/46 8/8
46 | 2 | P@2 5/82 5720 30/76 0/8
76 | 2 | 3@2 | 10/72 020 | 20/96 | 10/18
% | 3 | 5@3 10/62 0/20 | 20/116 | 10/28
116 | 5 | 4@5 10/52 0/20 | 20/136 | 10/38
136 | 4 | P@4 S/I47 5/15 | 30/166 | 0/38
166 | 4 | S5@4 | 10/37 0/15 | 20/186 | 10/48
186 | 5 | P@5 5/32 5/10 | 30/216 | 0/48
216 | 5 | 6@5 8/24 0/10 | 16/232 | 8/56
232 | 6 | P@6 5/19 5/5 307262 | 0/56
262 6 | 5@6 8/11 0/5 16/278 | 8/64
278 | 5 | R@5 | +89/100 | 0/5 89/367 | 0/64
367 5 | 3@5 | 10/90 0/5 20/387 | 10/74
387 | 3 | P@3 5/85 5/0 | 30/417 | 0/74
417 | 3 | 2@3 10/75 0/0 | 20/437 | 10/84
437 | 2 | 1@2 8/67 0/0 16/453 | 8/92
453 | 1 | R@1 | +33/100 | 0/0 | 33/486 | 0/92
486 | 1 | T@l | 15/85 | +30/30 | 30/516 | 0/92
516 | 1 | 2@l1 877 0/30 | 16/532 | 8/100
532 2 | 3@2 | 10/67 0/30 | 20/552 | 10/110
552 | 3 | 8@3 10/57 0/30 | 20/572 | 10/120
572 | 8 | P@8 5/52 5/25 | 30/602 | 0/120
602 | 8 | 7@8 8/44 0/25 | 16/618 | 8/128
618 | 7 | P@7 5/39 5/20 | 30/648 | 0/128
648 | 7 | 3@7 10/29 0/20 | 20/668 | 10/138
668 | 3 | 2@3 10/19 0/20 | 20/688 | 10/148
688 | 2 | T@2 5/14 | +10/30 | 10/698 | 0/148

46

Table 3.11. Execution of a panoramic tour plan that handles limited memory and energy
that cannot handle a damaged recharger which only adds a maximum of 30 energy units.

At | WP | CMD | NRG | MEM | TIME | DIST
0 1 | P@1 | 5/95 5725 30/30 0/0
30 1 | 2@1 8/87 0/25 16/46 8/8
46 | 2 | P@2 | 5/82 5/20 | 30/76 0/8
76 | 2 | 3@2 | 10/72 020 | 20/96 | 10/18
9% | 3 | 5@3 | 10/62 0/20 | 20/116 | 10/28
116 | 5 | 4@5 | 10/52 0/20 | 20/136 | 10/38
136 | 4 | P@4 | 5/47 5/15 | 30/166 | 0/38
166 | 4 | 5@4 | 10/37 0/15 | 20/186 | 10/48
186 | 5 | P@5 | 5/32 5/10 | 30/216 | 0/48
216 | 5 | 6@5 8/24 0/10 | 16/232 | 8/56
232 6 | P@6 | 5/19 5/5 30/262 | 0/56
262 6 | 5@6 | 8/11 0/5 16/278 | 8/64
278 | 5 | R@5 | +30/41 0/5 89/367 | 0/64
367 | 5 | 3@5 | 10/31 0/5 20/387 | 10/74
387 3 | P@3 | 5/26 5/0 | 30/417 | 0/74
417 | 3 | 2@3 | 10/16 0/0 | 20/437 | 10/84
437 2 | 1@2 8/8 0/0 16/453 | 8/92
453 | 1 | R@1 | +30/38 | 0/0 | 92/545 | 0/92
P1 limits recharging to 30 per attempt
5451 1 | T@l | 15/23 | +30/30 | 30/575 | 0/92
5751 1 | 2@l 8/15 0/30 | 16/591 | 8/100
591 2 | 3@2 10/5 0/30 | 20/611 | 10/110
611 | 3 | 8@3 0/5 0/30 | o0/611 | 0/110
Insufficient energy: had 5 needed 10

47

Table 3.12. Execution of a panoramic tour plan that handles limited memory and energy

that cannot handle a weakened battery which can only store 75 energy units.

At | WP | CMD | NRG | MEM | TIME | DIST

P2 limits battery to maximum of 75

0
30
46
76
96
116
136
166
186

216
232

P@l1
2@1]
P@2
3@2
5@3
4@5
P@4
5@4
P@5
6@5
P@6

AN AR DW= =

S/I75
8/67
5/62
10/52
10/42
10/32
5/27
10/17
5/12
8/4
0/4

5/25
0/25
5720
0/20
0/20
0/20
5/15
0/15
5/10
0/10
0/10

30/30
16/46
30/76
20/96
20/116
20/136
30/166
20/186
30/216
16/232
0/232

0/0

8/8

0/8
10/18
10/28
10/38
0/38
10/48
0/48
8/56
0/56

Insufficient energy: had 4 needed 5

Chapter 4

MARS ROVER LEVEL 1: INSTINCTIVE

A hard-coded, instinctive metacognition is added to the Mars Rover presented in the
previous chapter. This will allow the Level 1: Instinctive Mars Rover to operate inde-
pendently and to successfully handle a wider range of problems. The general technique
describe herein can be applied to a variety of domains but each implementation will be

domain-specific.

4.1 Level 1 Instinctive: Planning Agent with Hard-coded Metacognition

Metacognition can be added to the Level 0: Bereft Mars Rover of the last chapter to
overcome the limitations of its simple planning system and to help it deal with perturbations
in the environment. There are multiple ways to accomplish this. One approach would be
to use a state machine and have exceptions cause changes in state. The approach described
in the following pages is both simple to describe and rich enough to show both the gains in
using it and its limitations.

Coddington (2007b; 2007a) describes a Mars Rover that uses metacognition to add
goals to the planner when the sensors cross preset thresholds. Each of these sensor expec-
tations are derived from ascribing motivations to the Rover: the desire to recharge when

energy is low, etc. To handle conflicts between motivations, multiple goal levels are added

48

49
to the planner with a plan only being generated for goals at highest non-empty level. The
sensors, thresholds, goals and goal levels are all domain-specific. The next two sections

describe the motivations of the Mars Rover and how they are used.

4.2 Motivations

If the Mars Rover were alive, it would likely have a desire to remain alive.! For the
Rover, this would translate into a desire to keep its energy level above zero. Actually, the
Rover would like to keep its energy level higher so that it would still have enough energy to
reach a recharge way-point before the energy level was depleted to zero. The Rover would
have the expectation that the energy sensor would always be above 40 or so.? The value
threshold for this motivation (and for all of the motivations) are domain-specific.

The level 1: Instinctive Mars Rover has six motivations that strive to keep the Rover
recharged, localized, and transmitting information back to Earth. The first one, Conserve
Energy, causes the Rover to seek a recharge point when the battery is getting low. Acquire
Data 1 and Acquire Data 2 have the Rover taking photo and panoramic images. When
the photo memory is getting full, Communicate Image Data has the Rover transmitting
the images back to Earth. The fifth motivation, Relocalize, keeps the Rover localized by
sending the Rover back to the re-localization point after traveling too long. The sixth and
last motivation, Slow Down, switches the Rover into slow speed if it loses localization. This
is done because the Rover can still move at slow speed when not localized. Table 4.1 lists
the motivations.

Each motivation has a test to determine when the associated expectation is violated

and the new goal to be added if it is. If the Rover already has the goal that is to be added,

TIssac Asimov would formulate this motivation as the third rule of robotics.

%If the Rover kept track of the amount of energy needed to reach a recharge point, the expectation value
could be dynamically determined. However, using a constant is simpler and works for the Mars Rover
simulation given here.

50

Name Expectation Test Added Goal | Goal Level

Conserve Energy energy < 40 Recharged | Emergency

Acquire Data 1 time since image > 250 TookImagen | Suggestion
nislto3

Acquire Data 2 time since panoramic > 100 | Panoramicn | Background
nis1to8

Communicate Image Data memory < 6 Transmitted | Immediate

Relocalize distance traveled > 400 Relocalized | Immediate

Slow Down —localized & speed # slow Slow Emergency

Table 4.1. Motivations for the Mars Rover

no additional goal is added.

The tests for distance traveled [since last localization], time since [last] image, and
the time since [last] panoramic can be handled by adding sensors to track these values. Or
the values needed by the expectation tests can be synthesized from monitoring successful
command execution and the distance traveled and mission time. This can either be done in
the Rover, in the metacognition system, or in the communication layer between the two.

For Acquire Data 1 and Acquire Data 2, one of a set of possible goals is randomly
selected. For Acquire Data 1 it will be TookImagel, Tooklmage2, or TookImage3. The
goal for Acquire Data 2 will be one of Panoramicl through Panoramic8. If the Rover
already has a Tooklmagen or Panoramicn goal then an additional one isn’t assigned.

The last column, Goal Level, will be discussed in the next section.

4.3 Goal Hierarchies
Intrinsically, the various motivations of the Mars Rover are in conflict with each other:
e The energy level remains high if no activity is performed.
e The Rover stays localized if it doesn’t move.

e Taking a scientific image or a panoramic photo uses memory.

51

Importance | Level Name
Highest 0 Emergency
1 Immediate
Middle 2 Command
3 Suggestion
Lowest 4 Background

Table 4.2. Goal Hierarchy for Mars Rover

e The Rover’s motivations can be in conflict with the instructions received from Earth.

These conflicts can become explicit when the Rover has to execute a long-running plan
involving multiple goals.

To resolve these conflicts, the Rover has multiple goal levels. The Rover only gener-
ates a plan using the goals at the highest non-empty level.

The Conserve Energy motivation, which attempts to keep the Rover supplied with
energy, adds its goal, Recharged, at the highest level, Emergency. Also added at the Emer-
gency level is the Slow goal of Slow Down. The motivations for transmitting back to Earth
(Communicate Image Data) and Localization (Relocalize) add their goals at the Immediate
level. Instructions from Earth are placed in the middle Command Goals level. Goals from
the Rover motivations to take detailed photographic images (Acquire Data 1) are added at
the Suggestion level. The Acquire Data 2 adds goals for taking panoramic images at the
lowest, Background level. Such goals will only be used to generate a plan for the Rover if

there are no goals at the four higher levels.

4.4 Instinctive Metacognition Plan Execution

The photographic grand tour (TookPhoto1, TookPhoto2, TookPhoto3; Transmitted) is
executed by the Level 1: Instinctive Rover exactly the same as the Level 0: Bereft Rover.

This is by design in that, unless there is a problem, the agent’s metacognition need not be

52
invoked. However, while the Level 0 Rover was unsuccessful in completing the panoramic
tour (see Table 3.9), the Level 1 Rover successfully takes all eight panoramic images and
transmits them to earth.

Table 4.3 shows the execution of the panoramic tour and the addition of new goals
at various levels as the test for different motivations becomes True. The motivated Rover
starts out at the same as the level O Rover but after executing 3@8 at time 232, the Acquire
Data I motivation adds the TakeImagen (in this case Takelmagel) goal at the Suggestion
level. Since this goal is at a higher (less important) level, the Rover continues with the
Panoramic Tour. After taking a panoramic image at way-point 3, the memory is less than
6, so the Communicate Image Data motivation adds a “Transmitted” goal at the Immediate
level. This goal is at a lower (more important) level than the remaining TakePanoramicn
goals (4, 5, and 6) so the Rover generates and starts executing a plan to move to a transmit
location and execute a T command. After the T@2 command at time 302 satisfies the
Transmitted goal, the Rover resumes the tour, creating a plan to satisfy the remaining goals
at the command level (TookPanoramic4, TookPanoramic5, and TookPanoramic6). The
Rover is ready to take the last panoramic image at way-point 4 at time 479 but the energy
level is less than 40, triggering the Conserve Energy motivation to add a Recharged goal
at the Emergency level. Once recharged, the Rover continues on the tour, taking the last
panoramic image at way-point 4 at time 698. Since all of the goals at the Command level
have been satisfied, the deferred goal of Transmitted is now active. The Rover moves to
way-point 2 and executes the T@2 command at time 788. At this point, the Panoramic
Tour with the deferred Transmit is complete. The Rover goes on to now starts to handle the
Suggestion level goal of Takelmagel that was added back at time 252. With the maximum
energy set to 100 (much less than is needed to complete a panoramic tour) the instinctive

Rover is still able to complete the tour, needing an additional two recharges.

53

Table 4.3. Executing (partially) the plan for panoramic tour (TookPanoramicl, Took-
Panoramic2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,

TookPanoramic7, TookPanoramic8; Transmitted)

At \WP \ CMD\ NRG \ MEM \ TIME \ DIST

Rover with extra energy: 200

0 1 | P@1 5/195 5/25 30/30 0/0

30 1 2@l 8/187 0/25 16/46 8/8

46 2 | P@2 5/182 5/20 30/76 0/8

76 2 | 3@2 10/172 0/20 20/96 10/18
96 3 | 8@3 10/162 0/20 20/116 | 10/28
116 | 8 | 7@8 8/154 0/20 16/132 8/36
132 | 7 | P@7 5/149 5/15 30/162 0/36
162 | 7 | 3@7 10/139 0/15 20/182 | 10/46
182 | 3 | 8@3 10/129 0/15 207202 | 10/56
202 | 8 | P@8 5/124 5/10 30/232 0/56
232 | 8 | 3@8 10/114 0/10 20/252 | 10/66

Time since last Image > 250, add Sug:TookImagen

252 | 3 [P@3 [5/109 5/5 | 30/282 | 0/66

Memory < 6, add Imm:Transmitted

282 | 3 | 2@3 10/99 0/5 20/302 | 10/76
302 2 | T@2 12/87 +25/30 | 25/327 0/76

Transmitted, resume panoramic tour

327 | 2 | 3@2 10/77 0/30 20/347 | 10/86
347 | 3 | 5@3 10/67 0/30 | 20/367 | 10/96
367 | 5 | P@5 5/62 5125 30/397 | 0/96
397 | 5 | 6@5 8/54 0/25 16/413 | 8/104
413 | 6 | P@6 5/49 520 30/443 | 0/104
443 | 6 | 5@6 8/41 0/20 16/459 | 8/112
459 | 5 | 4@5 10/31 0/20 | 20/479 | 10/122
Energy below 40, add Imm:Recharged
479 | 4 | 5@4 10/21 0/20 20/499 | 10/132

499 | 5 | R@5 | +179/200 | 0/20 | 179/678 | 0/132

Recharged complete, resume Tour

678 | 5 | 4@5 10/190 0/20 20/698 | 10/142
698 | 4 | P@4 5/185 5/15 30/728 | 0/142

Panoramic Tour complete, add cmd: Transmitted

728 | 4 | 5@4 10/175 0/15 20/748 | 10/152
748 | 5 | 3@5 10/165 0/15 20/768 | 10/162
768 | 3 | 2@3 10/155 0/15 20/788 | 10/172
788 | 2 | T@2 7/148 +15/30 | 15/803 | 0/172

Transmitted complete, continue with Takelmagen ...

54

4.5 Instinctive Metacognition with Perturbation

When either perturbation P1 (recharging limited to 30 units) or P2 (battery capacity
limited to 75 units) were added to the environment, the Rover with no metacognitive as-
sistance failed to complete the panoramic tour. This occurred even when a more robust,
resource-cognizant, planner was used. An instinctive Mars Rover equipped with some mo-
tivation rules can complete the tour with the P2 perturbation which reduced the memory
capacity to 75. Several additional recharges are needed and it takes about 20% longer than
with no perturbations, but it does succeed.

The story is not as bright when P1 (partial charging) is introduced into the environ-
ment. The Rover starts out fine, but after the first of three images of the photographic tour,
it finds itself in the position where it does not have sufficient energy to travel to the next
image location before needing to recharge again. A trace of the Rover failure to complete
a photographic tour with the P1 perturbation is shown in Table 4.4.

There are several ways to improve the instinctive Rover’s performance with the P1

perturbation.

o Instead of adding a single Recharge goal, the Conserve Energy motivation could add

two Recharge goals.

e A second Conserve Energy motivation could be added, that adds a Recharge goal, if

you are at a recharge way-point and the energy level is less than 100.

The first one adds a needless recharge action when there is no P1 perturbation but is mostly
harmless. The additional motivation would not hurt in the unperturbed case, would fix the
problem with the P1 perturbation, but would cause the Rover to remain forever at a recharge
way-point if the P2, reduced capacity, perturbation was active.

The cycle of deploy, fail, patch, and re-deploy is a familiar one in computer science

55

Table 4.4. Rover with Level 1: Instinctive metacognition failing to execute a photographic
tour with perturbation P1: Partial charging

At | WP | CMD | NRG | MEM | TIME | DIST
0 1 | 2@1 8/92 0/30 | 16/16 8/8
16 2 | 3@2 | 10/82 | 0/30 | 20/36 | 10/18
36 3 | 5@3 | 10/72 | 0/30 | 20/56 | 10/28
56 5 | 4@5 | 10/62 | 0/30 | 20/76 | 10/38
76 | 4 | C@4 | 1/61 0/30 | 20/96 0/38
% | 4 | l@4 5/56 5/25 | 20/116 | 0/38
116 | 4 | C@4 | 1/55 0/25 | 20/136 | 0/38
136 | 4 | 5@4 | 10/45 | 0/25 | 20/156 | 10/48
156 | 5 | 3@5 | 10/35 | 0/25 | 20/176 | 10/58
Energy below 40, added Recharged goal
176 | 3 | 5@3 | 10/25 | 0/25 | 20/196 | 10/68
196 | 5 | R@5 | +30/55 | 0/25 | 75/271 | 0/68
Partial recharge to 55
271 | 5 | 3@5 | 10/45 | 0/25 | 20/291 | 10/78
291 | 3 | 8@3 | 10/35 | 0/25 | 20/311 | 10/88
Needs another recharge
311 | 8 | 3@8 | 10/25 | 0/25 | 20/331 | 10/98
331 3 | 5@3 | 10/15 | 0/25 | 20/351 | 10/108
351 | 5 | R@5 | +30/45 | 0/25 | 85/436 | 0/108
436 | 5 | 3@5 | 10/35 | 0/25 | 20/456 | 10/118
456 | 3 | 5@3 | 10/25 | 0/25 | 20/476 | 10/128
476 | 5 | R@5 | +30/55 | 0/25 | 75/551 | 0/128
In loop recharging and moving but never
moving far enough to take another image

56
and robotics. Adding instinctive metacognition to an agent is a small step in improving its
autonomous capabilities; however, it is limited to the pre-programmed responses that the
agent’s designer includes. The next chapter explores a richer form of metacognition that
will, hopefully, enable the agent to function successfully in a broader range of perturbed

environments.

Chapter 5

MCL LEVEL 1: INSTINCTIVE

This is the first of three chapters, that takes my idea of multiple metacognitive levels,
to deconstruct and explain the existing MCL system that I will be modifying in Chapter 8.
The previous chapter described how a Level 1: Instinctive metacognition can be added
to an agent using motivations. Each motivation consisted of an expectation and a repair
to invoke if the expectation was violated. This chapter describes a level 1 metacognition
based on the Metacognitive Loop (MCL) (Schmill et al. 2007). As originally defined, MCL
was operating Level 3: Temporal system. It can be manipulated into operating at several
metacognitive levels. MCL operating at Level 1: Instinctive will be presented here. It will
instinctively suggest that the Rover discard its existing action plan and create a new plan
based on the current conditions. Using MCL at Level 2: Evaluative and Level 3: Temporal

will be presented in the next two chapters, respectively.

5.1 Note, Access and Guide (The NAG Cycle)

MCL consists of three phases that implement its metacognitive knowledge about prob-
lem detection, fault isolation, and corrective action for cognitive agents. These three phases
correspond to the process often used by humans in which we (1) notice that something is

not working, (2) make decisions about it (whether the problem is important, how likely it is

57

58
to get worse in the future, if it is fixable, etc.), and then (3) implement a response based on
the decisions that were made (ignore the problem, ask for help, attempt to fix the problem

using trial-and-error, etc.)

MCL Note Phase The MCL process starts with the Note phase that provides the
host system with a “self-awareness” component. MCL monitors the host system to detect
a difference between expectations and observations. An expectation is a statement about
the allowable values for a sensor. Statements such as “the mixing vat temperature will not
exceed 170 degrees” and “the flow in the coolant pipe will be between 80 and 90 gallons
per second” are expectations made about external sensors. An anomaly occurs when an
expectation is violated. Anomalies can also be about internal host processes such as “a
new plan will be generated no more than 5 seconds after a new subgoal has been made the
current subgoal.” When sensor information is at odds with expected values, an anomaly is
noted and MCL moves to the assess phase.

For the Chippy agent, once it found a reward, it would have an expectation that it
would always find a reward with the same value at that square. After the rewards were
switched, the next time the agent reached the old reward square the expectation would be

violated and MCL would then try to assess the problem.

MCL Assess Phase In the Assess state, MCL attempts to determine the cause of the
problem that led to the anomaly and the severity of the problem. The computation done
in this phase need not be excessive. Indeed, it is the philosophy of MCL that lightweight,
efficient problem analysis is better than ignoring the problem, attempting to design out
every conceivable problem, or to attempt to model and monitor large portions of the world.
In a Level 1: Instinctive implementation of MCL, this phase is almost nonexistent with a

direct connection between the exception and the corrective action.

59
MCL Guide Phase The third phase of the Metacognitive Loop is Guide, where
MCL attempts to guide the host system back to proper operation by offering a suggestion
as to what action(s) will return the sensor values to within the limits set by the expectations.
The suggestions available in this phase vary depending on the features of the host system.
A Chippy agent with MCL 1 whose reward expectation had been violated would re-
ceive (as in the hard-coded, domain-specific implementation described in Chapter 2) a
predetermined suggestion such as reset the policy.
Once the suggestion has been made, MCL returns to the exception monitoring state.
Any new exceptions will cause MCL to again enter the Note, Assess, and Guide phases of

the NAG cycle.

5.2 Sensors and Observations

MCL does not observe the environment directly but has to rely on the agent to provide
sensor information. The agent does not need to provide all of its sensor information to
MCL. Only those sensors that are tied to expectations actually need to be defined. Even
then, the agent can decided not to provide MCL with all of the observations for the defined
sensors. There is little benefit of withholding information from MCL, and MCL should be
given access to all of the sensor information that the agent has. In this section, the concepts

of sensors and observations as used by MCL are defined.

5.2.1 Sensor Nomenclature

A “sensor” is anything that provides the agent “observations” about the agent or the
environment. MCL allows the agent to define two kinds of sensors. Sensors that are native
to the agent are called “self” sensors. Sensors that describe properties of objects in the

world external to the agent are called “object” sensors. The main difference between these

60
two kinds of sensors is that the observations for self sensors are always obtainable but
objects may not always be observable by the agent.

As an example, consider a robot that moves from room to room. A self sensor can
tell the robot which room it is in so that information is always available. But the contents
(objects) of a room, observable while the robot is in the room, are not observable when the
robot leaves the room and enters another room. It is likely that the objects stay in the same
place and retain their size, color, etc., but this can no longer be determined by direct sensor
observation.

Each sensor defined to MCL needs to be given a unique name so that the sensor and

its observations can be uniquely identified.

Sensor Noise Sensors may or may not provide accurate observations for the item
they are monitoring. Often, a certain leeway is allowed. For example, a weight sensor may

only be accurate within two pounds.

Observations At any time, the agent can explicitly report the current observation
for one or more of the sensors. Observations are also provided when closing an expectation
group (defined in the next section) or invoking the NAG cycle using the MCL monitor call.

Explicit legal values or ranges of legal values may be associated with a sensor. If there
is an observation for the sensor outside of the legal values or range (taking any noise profile

into account) an exception is noted for the next monitor/NAG cycle.

5.3 Expectations and Exceptions

MCL only becomes active when there is a deviation between what should be and what
i1s. “What is” is obtained from the sensor observations. “What should be” is expressed as

expectations about sensor observations. Legal values and ranges for observations are one

61
way to express expectations (see previous section).

For purposes of organizing expectations that share common characteristics (e.g., that
are about the same external object) and to control when the expectations are tested for va-
lidity, expectations are assigned to expectation groups. Any number of expectation groups
can be defined, each containing one or more expectations.! An expectation group can be
related to another group in a parent:child relationship. An expectation group can be main-
tained for the entire life of the agent or created and closed as needed.

There are four types of expectations, based on when the expectation tests are per-

formed.

Effect Checked only when the expectation group is closed normally. An expectation group

can also be “aborted”, which closes it without checking the group’s expectations.

Maintenance Checked when the agent requests that MCL compare the sensor values to

the expectations but not when the expectation’s group is closed.

Delayed Maintenance Like Maintenance, but checking only starts after the specified time
has elapsed, thus defining an expectation that should be true in the future but is not

necessarily true now.

Temporal The exception is triggered if the time specified expires before the expectation’s

group is closed.

Expectation groups are terminated by either abortion or completion. Aborted expecta-
tion groups do not have their expectations checked. Completed expectation groups evaluate

their expectations tests using the latest observations.

! Actually, expectation groups don’t have to contain any expectations but such groups aren’t very interest-
ing or useful.

62

When the test in an expectation fails, it causes an exception. If the exception is the

result of a failing maintenance expectation detected in monitor processing, the MCL NAG

cycle is initiated. If the exception is caused by an effect expectation (e.g., one defined with

EC_TAKE_VALUE) failing during the expectation group completion checks, the exception
is held pending until the next monitor processing.

The Chippy agent would set an expectation that the integer value of the “RE-

WARD_1_VALUE” would maintain its value.

5.4 MCL Implementation

The most recent implementation of MCL (MCL2) was developed for Linux in C++
by Matt Schmill and ported to Mac OS X by this author. The MCL Application Program
Interface information (e.g., Tables 5.1 through 5.4) was derived from the C++ code and
the API documentation in (Schmill 2009). MCL2 was designed to support metacognition
level 3, Temporal. Using MCL2 as metacognition level 1, Instinctive required some minor

changes to mask out the higher level MCL2 features.

5.4.1 Sensor Properties

MCL associates three properties with each sensor: data type, class, and noise profile.

Optionally, legal values or ranges can also be specified.

Sensor Data Type MCL uses floating point numbers for the observation values.
Integers and other discrete values will need to be mapped to floating point numbers when
using MCL. The actual sensor format should be defined to MCL using the sensor data
type (PROP_DT) codes given in Table 5.1. All of the Chippy sensors would be defined as

DT_INTEGER as the contain location values (0-63) or reward values.

63

Table 5.1. Sensor data types (PROP_DT) and descriptions

Code Value | Description
DT_INTEGER 0 Integer values (including negative)

DT_RATIONAL 1 Floating point numbers
DT_BINARY 2 Integer values (always positive)
DT_BITFIELD 3 Multiple values in one number
DT_SYMBOL 4 Discrete values

Explicit legal values or ranges of legal values may be specified for a sensor. The
Chippy reward location sensors could be defined to only have a legal range of 0 to 63. Any

other value would indicate a problem with the agent’s location detection.

Sensor Class How the sensor is used by the agent or the origin of sensor information
can be used in MCL when evaluating exceptions involving the sensors. Table 5.2 lists the
values for the sensor class (PROP_SCLASS) property. The Chippy agent’s reward location
would be defined as SC_SPATIAL and the value sensors as SC_REWARD.

Table 5.2. Sensor classes (PROP_SCLASS) and descriptions

Code Value | Description
SC_STATE 0 Agent condition
SC_CONTROL 1 Agent actuator
SC_SPATIAL 2 Location
SC_TEMPORAL 3 Time based
SC_RESOURCE 4 Consumable
SC_REWARD 5 Feedback
SC_AMBIENT 6 Environmental
SC_OBJECTPROP 7 Object property
SC_MESSAGE 8 Message
SC_COUNTER 9 Incrementing value
SC_UNSPEC 10 | Unknown / Not specified

64

Sensor Noise Sensors may or may not provide accurate observations for the item
they are monitoring. Often, a certain leeway is allowed. For example, a weight sensor may
only be accurate within two pounds. MCL allows associating with each sensor a profile

of how accurate the sensor’s observations will be. Table 5.3 lists the values for the sensor

class (PROP_NOISEPROFILE) property.

Table 5.3. Sensor noise profiles (PROP_NOISEPROFILE)

Code Value | Description
MCL_NP_NO_PROFILE 0 No profile specified
MCL_NP_PERFECT 1 No error
MCL_NP_UNIFORM 2 Uniform error
MCL_NP_AUTOMATIC | OxFF | Error calculated

Expectations The list of expectation tests is given in Table 5.4.

5.5 Mars Rover Integration

To use MCL2, an agent establishes a connection either through the C++ API or using
the socket/telnet interface. For demonstration purposes, the Mars Rover simulation de-
scribed in the previous chapter invokes MCL2 over a TCP/IP interface.> An actual Mars
Rover would use the direct C++ interface. The TCP/IP interface is text-based for both the
requests and responses. This section shows the initialization of interface, the definition of

the sensors, creating an expectation, and monitoring expectations.

2The default port number is 5150 (the model number of the original IBM Personal Computer).

Table 5.4. Expectations Codes and the tests

Maintenance
Code Num | Test
EC_STAYUNDER 0 o<
EC_STAYOVER 1 0>
EC_MAINTAINVALUE 2 0=
EC_WITHINNORMAL 3 Vmin < 0 < Umax
Temporal
Code Num | Test
EC_REALTIME 4 | taoek < U
EC_TICKTIME 5 tick < U
Effect
Code Num | Test
EC_GO_UP 6 0e > 0
EC_GO_DOWN 7 0. < 0p
EC_NET_ZERO 8 0. = 0p
EC_ANY_CHANGE 9 0, <> 0p
EC_NET _RANGE 10 | Vyin < 0e < Upnag
EC_TAKE_VALUE 11 |o.=wv
EC_DONT_CARE 12 | none
EC_BE_LEGAL 13 | 0. € {values}

65

5.5.1 Initialization

The first few interactions with MCL2, shown in Figure 5.1, establish a name for the
agent (mr), the name of the ontology to be used (DW_MCL_ROVER.ont, Appendix B),
and the directory for configuration files (DW_MCL_ROVER). The ontology is effectively
ignored by the level 1 MCL but the interface requires that one be defined. The discussion

of the ontologies is deferred to section 6.1 in the next chapter.

66

send initialize (mr)

recv ok (initialized 'mr’.)

send ontology (mr, DW_MCL_ROVER)

recv ok (ontology for mr set to DW_MCL_ROVER)
send configure (mr, DW_MCIL_MARS)

recv ok (configured mr with DW_MCL_MARS.)

F1G. 5.1. Initializing MCL connection specifying ontology and domain

Sensor Default | MCL SC Type | MinMax | Expectation
Zero 0 Counter Yes General
Energy 100 Resource Yes Action
Memory 30 Resource Yes Action
Waypoint 1 Spatial Yes Action
Calibrated 0 State Yes Action
Localized 1 State Yes Action
Sleeping 0 State Yes General
Speed 1 State Yes Action
TotalDistance 0 Counter No Action
TotalTime 0 Counter No Action
LocalDistance 0 Resource No Action
TimeSincePhoto 0 Temporal No General
TimeSincePanoramic 0 Temporal No General

Table 5.5. The Mars Rover Sensors

5.5.2 Defining Sensors

The Rover’s available sensors were described in Section 3.1.2 and are listed in Ta-
ble 5.5. Sensors are defined to MCL by name and given an initial value as shown in
Figure 5.2. Next, the class for each sensor is defined with a setObsPropSelf command
(Figure 5.3). For those sensors that have a minimum and maximum value, a setObsLe-
galRangeSelf command tells MCL to monitor for values outside of the acceptable range
(Figure 5.4). As the last step in defining the sensors, we tell MCL the current (initial)

values using updateOvservables() as shown in Figure 5.5.

67

5.5.3 Defining Expectations

The Mars Rover uses two expectation groups. Group 1 is for general expectations
about the Rover that will be true during an entire simulation run. Expectation Group 2 is
used for each action. It is created and completed as each action is performed. Figure 5.6
shows the creation of the two expectation groups.

The definition of the Group 1 expectations is shown in Figure 5.7. There is an ex-
pectation defined that should keep the time between Photographic or Panoramic Images
below 1,000 seconds. In normal operation, the Rover should never go into a sleep state, nor
should the Zero sensor have any value other than 0.

The action expectations are different for each action and the current state of the Rover.
The costs (time, energy, and memory) for the actions are given in tables 3.2 and 3.4. Fig-
ure 5.8 shows the declaration of expectations for the initial 2@1 action. The WayPoint
sensor should change to 2. The Calibration and Localization sensors should maintain their
current values. The action costs 8 energy units so the Energy sensor should drop from
200 to 192. The Memory sensor should not change. The distance moved is 8 and the
time required is 16 so the TotalDistance and TotalTime sensors should become 8 and 16,

respectively. The last expectation is that the Rover’s speed should not change.

5.5.4 Monitoring and Responses

After every action, the Rover interacts with MCL to
1. indicate that the action is done using EGComplete,
2. ask MCL to evaluate the Rover’s situation, and

3. (if needed) respond to any MCL suggestions.

68

Figure 5.9 shows the interaction when MCL does not have a suggestion to make. The
sensor values in EGComplete are the same ones for the monitor call. When MCL doesn’t
have anything to suggest it returns an empty response. When MCL detects an expectation
violation, it can return one or more of the concrete suggestions listed in table 6.3 in the next
chapter. The Instinctive Mars Rover will only be getting back a single possible concrete
suggestion, CRC_NOOP. Figure 5.10 shows the interaction when MCL makes a suggestion

which the Rover will use to trigger replanning.

5.5.5 Rover Response to MCL Concrete Suggestions

This section lists the responses that the Rover will make to the MCL’s suggestions.
For this MCL level 1 implementation, only a single NOOP suggestion will be returned to

any and all expectation violations.

CRC_NOOP The Rover deletes the existing queue of planner actions to perform. This
will cause the Rover to invoke the STRIPS planner to create a new plan using the
current goals and sensor values. The Rover always returns “Suggestionlmplemented”

to MCL.

send declareObservableSelf (mr, Zero, 0)

recv ok (declared 'Zero’.)

send declareObservableSelf (mr, Energy, 200)

recv ok (declared ’"Energy’.)

send declareObservableSelf (mr, Memory, 30)

recv ok (declared ’'Memory’.)

send declareObservableSelf (mr, WayPoint, 1)

recv ok (declared ’'WayPoint’.)

send declareObservableSelf (mr, Calibrated, 0)
recv ok (declared ’'Calibrated’.)

send declareObservableSelf (mr, Localized, 1)

recv ok (declared ’Localized’.)

send declareObservableSelf (mr, Sleeping, 0)

recv ok (declared ’Sleeping’.)

send declareObservableSelf (mr, Speed, 1)

recv ok (declared ’Speed’.)

send declareObservableSelf (mr, TotalDistance, 0)
recv ok (declared ’'TotalDistance’.)

send declareObservableSelf (mr, TotalTime, 0)

recv ok (declared ’'TotalTime’.)

send declareObservableSelf (mr, LocalDistance, 0)
recv ok (declared ’LocalDistance’.)

send declareObservableSelf (mr, TimeSincePhoto, 0)
recv ok (declared ’'TimeSincePhoto’.)

send declareObservableSelf (mr, TimeSincePanoramic, 0)
recv ok (declared ’'TimeSincePanoramic’ .)

FIG. 5.2. Defining the names and initial values of the Rover’s sensors to MCL

69

send setObsPropSelf (mr, Zero, prop_sclass, sc_counter)

recv ok (set prop for ’'Zero’.)

send setObsPropSelf (mr, Energy, prop_sclass, sc_resource)

recv ok (set prop for ’'Energy’.)

send setObsPropSelf (mr, Memory, prop_sclass, sc_resource)

recv ok (set prop for ’'Memory’.)

send setObsPropSelf (mr, WayPoint, prop_sclass, sc_spatial)

recv ok (set prop for ’'WayPoint’.)

send setObsPropSelf (mr,Calibrated, prop_sclass, sc_state)

recv ok (set prop for ’'Calibrated’.)

send setObsPropSelf (mr, Localized, prop_sclass, sc_state)

recv ok (set prop for ’'Localized’.)

send setObsPropSelf (mr, Sleeping, prop_sclass, sc_state)

recv ok (set prop for ’'Sleeping’.)

send setObsPropSelf (mr, Speed, prop_sclass, sc_state)

recv ok (set prop for ’Speed’.)

send setObsPropSelf (mr, TotalDistance, prop_sclass,
sc_counter)

recv ok (set prop for ’'TotalDistance’.)

send setObsPropSelf (mr, TotalTime, prop_sclass, sc_counter)

recv ok (set prop for ’'TotalTime’.)

send setObsPropSelf (mr, LocalDistance, prop_sclass,
Sc_resource)

recv ok (set prop for ’'LocalDistance’.)

send setObsPropSelf (mr, TimeSincePhoto, prop_sclass,
sc_temporal)

recv ok (set prop for ’'TimeSincePhoto’.)

send setObsPropSelf (mr, TimeSincePanoramic, prop_sclass,
sc_temporal)

recv ok (set prop for ’'TimeSincePanoramic’.)

F1G. 5.3. Defining the property class of each of the Rover’s sensors to MCL

70

send setObsLegalRangeSelf (mr, Zero, 0,0)
recv ok (Added Zero range.)

send setObsLegalRangeSelf (mr, Energy, 0,100)
recv ok (Added Energy range.)

send setObsLegalRangeSelf (mr,Memory, 0, 30)
recv ok (Added Memory range.)

send setObsLegalRangeSelf (mr,WayPoint, 1, 8)
recv ok (Added WayPoint range.)

send setObsLegalRangeSelf (mr,Calibrated, 0, 1)
recv ok (Added Calibrated range.)

send setObsLegalRangeSelf (mr, Localized, 0, 1)
recv ok (Added Localized range.)

send setObsLegalRangeSelf (mr, Sleeping, 0, 1)
recv ok (Added Sleeping range.)

send setObsLegalRangeSelf (mr, Speed, 0, 3)
recv ok (Added Speed range.)

FIG. 5.4. Defining the range of legal values of the Rover’s sensors to MCL

71

send updateObservables (mr, {Zero=0, Energy=200, Memory=30,
WayPoint=1,Calibrated=0, Localized=1, Sleeping=0, Speed=1,
TotalDistance=0, TotalTime=0, LocalDistance=0,
TimeSincePhoto=0,TimeSincePanoramic=0})

recv ok (update success.)

FIG. 5.5. Setting the initial values for the sensors

send declareEG (mr, 1)

recy ok (expectation group declared (no parent/ref).)
send declareEG (mr, 2,1, NULL)

recv ok (expectation group declared (with parent/ref).

F1G. 5.6. Declaring MCL expectation groups

72

send declareSelfExp (mr, 1, TimeSincePhoto, ec_stayunder, 1000)

recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 1, TimeSincePanoramic,
ec_stayunder, 1000)

recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 1, LocalDistance, ec_stayunder, 600)

recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 1, Sleeping, ec_stayunder, 1)

recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 1, Zero,ec_maintainvalue)

recv ok (self expectation declared (0-arg).)

F1G. 5.7. Specifying general expectations to MCL

send declareSelfExp (mr, 2, WayPoint, ec_take_value, 2)
recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 2, Calibrated, ec_maintainvalue)
recv ok (self expectation declared (0-arg).)

send declareSelfExp (mr, 2, Localized, ec_maintainvalue)
recv ok (self expectation declared (0-arg).)

send declareSelfExp (mr, 2, Energy, ec_take_value, 192)
recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 2, Memory, ec_maintainvalue)
recv ok (self expectation declared (0-arg).)

send declareSelfExp (mr, 2, TotalTime, ec_take_value, 16)
recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 2, TotalDistance, ec_take_value, 8)
recv ok (self expectation declared (l-arg).)

send declareSelfExp (mr, 2, Speed, ec_maintainvalue)
recv ok (self expectation declared (0-arg).)

F1G. 5.8. Specifying expectations for 2@1 action

73

send EGcomplete (mr, 2, {Zero=0, Energy=192, Memory=30,
WayPoint=2,Calibrated=0, Localized=1, Sleeping=0,
Speed=1,TotalDistance=8, TotalTime=16, LocalDistance=8§,
TimeSincePhoto=16, TimeSincePanoramic=16})

recv ok (EG 2 Completed.)

send monitor (mr, {Zero=0, Energy=192, Memory=30,
WayPoint=2,Calibrated=0, Localized=1, Sleeping=0, Speed=1,
TotalDistance=8, TotalTime=16, LocalDistance=8,
TimeSincePhoto=16, TimeSincePanoramic=16})

recv ok ([1)

FIG. 5.9. Action expectation group completion and monitor with no suggestions

send monitor (mr, {Zero=0, Energy=67, Memory=15,
WayPoint=5,Calibrated=1, Localized=1, Sleeping=0, Speed=1,
TotalDistance=184, TotalTime=1045, LocalDistance=184,
TimeSincePhoto=813, TimeSincePanoramic=707})

recv ok ([response (type=suggestion, ref=0x00000001,
code=crc_sensor_diag,action=true, abort=true,
text="MCL response = (2,noop,crc_noop)")]

send suggestionImplemented (mr, 1)

recv ok (Suggestion 1 Implemented.)

FIG. 5.10. Monitor suggestion to create a new plan (crc_noop) with the Rover responding

that the suggestion was successful.

74

5.6 Demonstration with Perturbations

Tables 5.6 and 5.7 show a MCL Level 1 Rover coping with longer than expected
calibration times (P3).
The MCL process starts when the calibration command expectation group is com-

pleted with the Rover sending:

send EGComplete (mr, 2, {Zero=0, Energy=61, Memory=30,
WayPoint=4, Calibrated=1, Localized=1l, Sleeping=0,
Speed=1, TotalDistance=38, TotalTime=116,
LocalDistance=38, TimeSincePhoto=116,
TimeSincePanoramic=116})

MCL compares the observations given with the expectations for the expectation group.
After a calibration, the Energy decreases by 1, Memory should not increase or decrease,
TotalTime should increase by 20, and Calibration should stay at 1. But since the previous
TotalTime was 76, the new TotalTime should be 96, not 116. This violates the expectation

declared with:

] declareSelfExp(mr,2, Total Time,ec_take_value,96) \

The violation is recorded for further processing in the next MCL monitor call. It is
recorded by creating a MCLFrame which contains information about the violation includ-
ing a copy of the MCL Bayes network with the concrete indication of the exception inserted
into the Indications ontology. A new node, provenance:self is linked to the resource and
long-of-target nodes. This linkage was selected because the TotalTime sensor was given
the resource property and the TotalTime value of 116 was larger than the target level 96
specified in the expectation. The probabilities of these three nodes are set to 1.

The Rover completes the action execution cycle by calling the MCL monitor with:

75

send monitor (mr, {Zero=0, Energy=61, Memory=30, WayPoint=4,
Calibrated=1, Localized=1, Sleeping=0, Speed=1,
TotalDistance=38, TotalTime=116, LocalDistance=38,
TimeSincePhoto=116, TimeSincePanoramic=116})

MCL will analyze the problem, and provide guidance in the form of the “CRC_NOOQOP”
suggestion.

For the longer calibration time perturbation (P3), replanning is sufficient to complete
the tour. A MCL Level 1 Rover has less success when the perturbation is reduced recharg-

ing (P1) as shown in Table 5.8 et al..

At [WP | CMD | NRG | MEM | TIME | DIST
Initial plan of 2354CIC5381354C53211
0 1 | 2@1 8/92 0/30 | 16/16 8/8
16 | 2 | 3@2 | 10/82 | 0/30 | 20/36 | 10/18
36 | 3 | 5@3 | 10/72 | 0/30 | 20/56 | 10/28
56 | 5 | 4@5 | 10/62 | 0/30 | 20/76 | 10/38
76 | 4 | C@4 1/61 0/30 | 40/116 | 0/38
Calibration took long
MCL suggests 1:crc_noop
Setting plan to IC5381354C53211
116 | 4 | l@4 5/56 5/25 | 20/136 | 0/38
136 | 4 | C@4 1/55 0/25 | 40/176 | 0/38
Calibration took long
MCL suggests 1:crc_noop
Setting plan to 5381354C53211
176 | 4 | 5@4 | 10/45 0/25 | 20/196 | 10/48
196 | 5 | 3@5 | 10/35 0/25 | 20/216 | 10/58
Energy below 40, added Recharged goal
Setting plan to SR
216 | 3 | 5@3 | 10/25 0/25 | 20/236 | 10/68
236 | 5 | R@5 | +75/100 | 0/25 | 75/311 | 0/68
Recharged, resuming previous goals
Setting plan to 381354C53211
311 5 | 3@5 | 10/90 | 0/25 | 20/331 | 10/78
331 | 3 | 8@3 | 10/80 | 0/25 | 20/351 | 10/88
351 | 8 | I@8 5175 5/20 | 20/371 | 0/88
371 | 8 | 3@8 | 10/65 0/20 | 20/391 | 10/98
391 3 | 5@3 | 10/55 0/20 | 20/411 | 10/108
411 | 5 | 4@5 10/45 0/20 | 20/431 | 10/118
431 | 4 | C@4 1/44 0/20 | 40/471 | 0/118
Calibration took too long
MCL suggests 1:crc_noop
Setting plan to 53211
471 4 | 5@4 | 10/34 | 0/20 | 20/491 [10/128
Energy below 40, added Recharged goal
Setting plan to R
491 | 5 | R@5 | +66/100 | 0/20 | 66/557 | 0/128
Continued in Table 5.7

76

Table 5.6. MCL Level 1 Rover executing a photographic tour with perturbation P3 (longer

calibration time) with replanning (Part 1).

At |[WP | CMD| NRG | MEM | TIME | DIST

Recharged, resuming previous goals

Setting plan to 3211
557 5 | 3@5 | 10/90 0/20 | 20/577 | 10/138
5771 3 | 2@3 | 10/80 0/20 | 20/597 | 10/148
597 2 | 1@2 8/72 0/20 | 16/613 | 8/156
613 | 1 | @l 5/67 5/15 | 20/633 | 0/156

All images taken, adding Transmitted goal

Setting plan to T

77

633 1 [T@1 | 7/60 |+15/30 | 15/648 | 0/156
Only remaining goal is TookPanoramic8

Setting plan to 238P
648 | 1 | 2@I1 8/52 0/30 | 16/664 | 8/164
664 | 2 | 3@2 | 10/42 0/30 | 20/684 | 10/174
684 | 3 | 8@3 | 10/32 0/30 | 20/704 | 10/184

Energy below 40, added Recharged goal

Setting plan to 35R
704 | 8 | 3@8 | 10/22 0/30 | 20/724 | 10/194
724 | 3 | 5@3 | 10/12 0/30 | 20/744 | 10/204
744 | 5 | R@5 | +88/100 | 0/30 | 88/832 | 0/204

Recharged, resuming previous goals

Setting plan to 38P
832 | 5 | 3@5 | 10/90 0/30 | 20/852 | 10/214
852 | 3 | 8@3 | 10/80 0/30 | 20/872 | 10/224
872 | 8 | P@8 5/75 5/25 | 30/902 | 0/224

Completed photographic tour with added panoramic goal

Table 5.7. MCL Level 1 Rover executing a photographic tour with perturbation P3 (longer

calibration time) with replanning (Part 2).

78

5.7 Limitations

While an instinctive MCL can handle some problems, there are situations where an in-
stinctive MCL (that can make only a single suggestion) cannot provide adequate assistance
to the host system. Tables 5.8 and 5.9 show a MCL Level 1 Rover attempting to complete
a three photo tour with the reduced recharge (P1) perturbation. Each time the energy level
drops below 40, the Rover adds a Recharged goal. The perturbed R action only adds 30
energy units so the Rover’s energy level is below the 100 energy units specified in the MCL
expectation. MCL always makes the "NOOP’ suggestion and then the Rover replans. The
Rover is never able to take any of the three photos before getting into a state where it is not

able to accumulate enough energy to move to the next photographic location.

Table 5.8. MCL Level 1: Instinctive Rover executing a photographic tour with
perturbation P1: Partial recharge with replanning (Part 1).

At | WP | CMD | NRG | MEM | TIME | DIST
Setting initial plan to 2354C5381354CIC53211

0 1 | 2@1 | 8/92 0/30 | 16/16 8/8
16 | 2 | 3@2 | 10/82 | 0/30 | 20/36 | 10/18
36 | 3 | 5@3 | 10/72 | 0/30 | 20/56 | 10/28
56 | 5 | 4@5 | 10/62 | 0/30 | 20/76 | 10/38
76 | 4 | C@4 | 1/61 0/30 | 20/96 | 0/38
9% | 4 | 5@4 | 10/51 | 0/30 | 20/116 | 10/48
116 | 5 | 3@5 | 10/41 | 0/30 | 20/136 | 10/58
136 | 3 | 8@3 | 10/31 | 0/30 | 20/156 | 10/68

Energy below 40, added Recharged goal
Setting plan to 35R
156 | 8 | 3@8 | 10/21 | 0/30 | 20/176 | 10/78
176 S@3 | 10/11 | 0/30 | 20/196 | 10/88
196 | 5 | R@5 | +30/41 | 0/30 | 89/285 | 0/88
Recharge only added 30 units
MCL suggests 1:crc_noop
New plan is 381354CIC53211
285 5 | 3@5 [10/31 | 0/30 | 20/305 | 10/98
Energy below 40, added Recharged goal
Setting plan to SR
305 3 | 5@3 | 10/21 | 0/30 | 20/325 | 10/108
3251 5 | R@5 | +30/51 | 0/30 | 79/404 | 0/108
Recharge only added 30 units
MCL suggests 1:crc_noop
Setting plan to 381354CIC53211
404 | 5 | 3@5 | 10/41 | 0/30 | 20/424 | 10/118
424 | 3 | 8@3 | 10/31 | 0/30 | 20/444 | 10/128
Energy below 40, added Recharged goal
Setting plan to 35R
444 | 8 | 3@8 | 10/21 | 0/30 | 20/464 | 10/138
464 | 3 | 5@3 | 10/11 | 0/30 | 20/484 | 10/148
484 | 5 | R@5 | +30/41 | 0/30 | 89/573 | 0/148
Continued in Table 5.9

W

79

Table 5.9. MCL Level 1: Instinctive Rover executing a photographic tour with
perturbation P1: Partial recharge with replanning (Part 2).

At |WP|CMD| NRG |MEM | TIME | DIST
Recharge only added 30 units
MCL suggests 1:crc_noop
Setting plan to 381354CIC53211
573 \ 5 \ 3@5 \ 10/31 \ 0/30 \ 20/593 \ 10/158
Energy below 40, added Recharged goal
Setting plan to SR
593 | 3 | 5@3 | 10/21 | 0/30 | 20/613 | 10/168
613 | 5 | R@5 | +30/51 | 0/30 | 79/692 | 0/168
Recharge only added 30 units
MCL suggests 1:crc_noop
Setting plan to 381354CIC53211

692 | 5 | 3@5 | 10/41 | 0/30 | 20/712 | 10/178
712 | 3 | 8@3 | 10/31 | 0/30 | 20/732 | 10/188
Energy below 40, added Recharged goal
Setting plan to 35R

732 | 8 | 3@8 | 10/21 | 0/30 | 20/752 | 10/198
752 | 3 | 5@3 | 10/11 | 0/30 | 20/772 | 10/208
772 | 5 | R@5 | +30/41 | 0/30 | 89/861 | 0/208
Recharge only added 30 units
MCL suggests 1:crc_noop
Setting plan to 381354CIC53211
861 | 5 | 3@5 | 10/31 | 0/30 | 20/881 | 10/218
Energy below 40, added Recharged goal
Setting plan to SR
81 | 3 | 5@3 | 10/21 | 0/30 | 20/901 | 10/228
901 | 5 | R@5 | +30/51 | 0/30 | 79/980 | 0/228
Recharge only added 30 units
MCL suggests 1:crc_noop
Setting plan to 381354CIC53211
980 | 5 | 3@5 | 10/41 | 0/30 | 20/1000 | 10/238
1000 | 3 | 8@3 | 10/31 | 0/30 | 20/1020 | 10/248
Energy below 40, added Recharged goal
Setting plan to 35R
And so on and so on and so on ...

Chapter 6

MCL LEVEL 2: EVALUATIVE

This is the second of three chapters, that takes my idea of multiple metacognitive lev-
els, to deconstruct and explain the existing MCL system that I will be modifying in Chap-
ter 8. This chapter describes the Level 2: Evaluative version of MCL, that uses Bayesian
inference when analyzing the reasoning for an expectation failure and the appropriate sug-

gestion to make.

6.1 Ontologies (Indication, Failure, and Response)

For MCL to serve as a general-purpose tool for the brittleness problem for cognitive
systems, it should be able to perform its Note, Assess, and Guide phases without needing
extensive tailoring for each domain (Schmill et al. 2008; 2011). MCL should be able to
reason using mainly abstract, domain-neutral concepts to determine why a system is failing
and how to cope with the problem. To support this, three ontologies were created. Each of
the three ontologies is used by a different phase of MCL (see Table 6.1).

The Indications ontology is used in the Note phase when sensor input shows that an
expectation has been violated. The Assess phase uses the Failure ontology to determine
likely causes of the violated expectations. Once likely causes of the failure have been

identified, the Guide phase uses the Response ontology to determine appropriate response

81

82

to the failure.

Table 6.1. Ontologies used with NAG cycle

Phase | Ontology
Note | Indications

Assess | Failure
Guide | Response

Elements within each ontology are linked to others in the ontology to show an “is-a”
relationship. For example, the “sensor not responding” node in the Failure ontology is con-
nected to the “sensor failure” node to show that “sensor not responding” is a type of “sensor
failure.” Elements in one ontology may also be linked to elements in a different ontology
to show a possible “cause-and-effect” or “problem-solution” relationship. The general pat-
tern of ontology linkage is shown in Figure 6.1. This figure also shows how expectations
are linked to the Indications ontology elements and the elements of the Response ontology
lead to suggestions that MCL gives to the host system.

The sensors and expectations are part of the “concrete” realm of the host system.
Processing by MCL moves from the concrete expectations to the Indications, Failure, and
Response ontologies, and then back to the concrete suggestions implemented by the host
system. Figure 6.1 shows the division between the concrete and abstract processing. The
next sections expand on this process, going into each of the three ontologies in greater

detail.

6.1.1 Indications

The Indications ontology is comprised of three types of nodes (core, sensor, and di-

vergence) arranged in concrete and abstract sections. The purely abstract Indication nodes

83

Indications Failures Response
oA

EYETS
P MCL g8

¥
Mohitor Col‘ntrol

Cognitive agent

F1G. 6.1. Ontological Linkages

support concepts that cross multiple domains. These make up the core of the Indications
ontology. These nodes represent concepts such as “deadline missed,” “failed to change
state” and “reward not received.”

The sensor nodes of the Indications ontology model the sensors of the host system and
their attributes. When the sensors of the host system are defined, sensor nodes are added to
the Indications ontology.

The third set of nodes in the Indications ontology forms a linkage from the concrete
sensor and expectations nodes and the abstract, core nodes of the ontology. The divergence
nodes define how expectations has been violated. This part of the Indications ontology is
show in Figure 6.2.

It is the violation of expectations that starts the MCL NAG cycle. The type of violation
and the type of sensor are linked together to a core indications ontology node. Table 6.2

shows sensor and divergence nodes linked to core nodes.

84

Table 6.2. Sensor, Divergence and Core Node Indications Ontology Linkages

Core Node Sensor Divergence Node
Deadline missed temporal | late

Reward not received reward under

Resource overflow resource | over

Resource deficit resource | under

Failed state change state missed-unchanged
Unanticipated state change | state aberration
Asserted control unchanged | control | missed-unchanged

6.1.2 Failure

Once the violated expectations have been evaluated in the Note phase, MCL proceeds
to evaluate the problem indications to determine the cause in the Assess phase. The Failure
ontology is used in the problem determination. This phase is used (rather than mapping
indications directly to responses) because of the ambiguous nature of failures and their in-
dications: two different failures which need different responses might have the same initial
problem indications and a single problem might manifest itself with multiple indications.

The Failure ontology (Figure 6.3) is a catalog of the various problems that befall cog-
nitive systems. This includes problems with sensors, effectors, resources, and the domain
model (or models). The links in the Failure ontology are all of the is-a variety. Thus a “Sen-
sor Malfunction” is-a “Sensor Error” is-a “Knowledge Error” is-a “Failure”. The “Failure”

node is the root of the Failure ontology and all Failure ontology nodes eventually lead to it.

6.1.3 Response

As the Failure ontology was an itemized list of everything that can go wrong with a
cognitive system, the Response ontology (Figure 6.4) is a list of everything that can be done

about it. There are two types of nodes in the Response ontology: abstract and concrete.

85
The abstract nodes represent general problem-solving techniques and the concrete nodes
represent specific suggestions that MCL can send to the host system. The links within
the response ontology are for “is-a” relationships. For example, “Strategic Change” is-
a “System Response” is-a “Internal Response” which is-a “Response.” The “Response”

node is the root of the Response ontology.

6.1.4 Inter-ontology linkages

The three ontologies (Indications, Failure, and Response) are connected by inter-
ontology links. Core nodes in the Indications ontology connect to nodes in the Failure
ontology. Many nodes of the Failure ontology are connected to nodes in the Response
ontology. The linkages form a chain of reasoning from the violated expectation to a sug-
gestion that may correct the problem.

Figure 6.5 shows such a path through the ontology linkages that Chippy Q-learner
faced when it returned to what had been the positive reward square and received a negative
reward instead. Note that this is a very simplified diagram with most of the nodes and links
removed. When the Q-learner moves to the grid square that no longer contains the ex-
pected reward, the maintenance expectation of getting the reward in that square is violated.
This activates the “Reward not received” node in the Indications ontology. That node is
connected (via an inter-ontology link) to the “Model error” node of the Failure ontology.
The “Model error” node has two children, “Procedure model error” and ‘“Predictive model
error’”’ that are connected with intra-ontology links. The “Predictive model error”” node has
an inter-ontology link to the “Modify predictive response’” node of the Response ontology.
The “Modify predictive response” has a child node of “Rebuild model response” that is a
concrete node for generating the “Rebuild model” suggestion. This set of inter- and intra-
ontology linkages allows reasoning from the failed expectation of obtaining a reward to

rebuilding of the Chippy agent’s Q-table.

F1G. 6.2. Core Indications Ontology

86

Resource
error
cost
Lack of
Knowledge
error
Resource
error
effector Effector
noise failure
Sensor
error

Sensor
noise
Predictive
mode error

underfit
error
Overfit
error

FIG. 6.3. Failure Ontology

Bad
parameter

Sensor
Malfunction

Procedure
mode error

87

Response

Ask for @
Help
Relenquish Test Run
T control hypothesis diagnostic
Solicit
suggestio @
Effector
diagnostic
 TryAgain Modify
knowledge
Strategic
Modify Change
avoid
Modify
= g R
Revise :
Algorithm
Swap
Rebuild
models

Modify
procedure
Activate !
learning Adjust
parameter

Sensor
diagnostic

Amend
controller

Revisit
assumptions

FIG. 6.4. Response Ontology

88

Reward
Mot Received

Predictive
Model Error

FIG. 6.5. Example Ontology Connections

Predictive
Response

Rebuild Model
Response

89

90
6.2 Bayesian Conditional Probability Tables

For each problem indication, MCL needs to be able to determine the most likely cause
or causes of the failure. For each failure, the responses that are the most likely to correct the
failure need to be selected. Thus, given the sensors and the violated expectations, MCL will
try to find the responses with the highest probability of working. Actually, MCL should find
the response with the highest utility. For this discussion, all the costs will be the same, so
the response with the highest probability will also be the response with the highest utility.
The three ontologies and their inter-ontology linkages (which form a directed graph) can
be viewed as a Bayes net. Direct observation can be made of the sensors. By associating
conditional probability tables (CPTs) with each node in the three ontologies, MCL can use
Bayesian inference to compute the needed probabilities for the responses. Figure 6.6 shows

the addition of CPTs to a small section of the Response ontology.

6.3 MCL Implementation

This section adds to the agent developer’s view of MCL2 that was started in
Section 5.4. The Bayesian inference for MCL was initially implemented using the
Intel-contributed open source Probabilistic Network Library (PNL).! MCL2 uses Smile?
(Druzdzel 1999) from the Decision Systems Laboratory at the University of Pittsburgh.
Smile is supported on Mac OS X computers, which allowed the port of MCL2 to that

platform.

Ontology Definitions The three ontologies (Indications, Failure, and Response) and

the linkages between them are defined in one or more text files using a declarative language.

Thttp://www.sourceforge.net/projects/openpnl
Zhttp://genie.sis.pitt.edu/wiki/SMILE_Documentation

91

Predictive
Response

MPR P(ALR) MPR P(RMR)
t N Active Learning Rebuild Model 7
f 02 Response Response f 0

—

FIG. 6.6. Conditional probability tables for portion of MCL Response ontology

See Listing 6.1 for a short sample and Appendix B for a complete ontology.

Listing 6.1. Portion of MCL Failure Ontology
ontology failures (
node failure (name=failure ,
doc="the_,class_of_all_failures.")
node failure (name=knowledgeError,
doc="class_,of failures_pertaining_to_internal
knowledge _and_representations.")

node failure (name=plantError ,

doc="class_of failures_pertaining, to_the_physical\
agent.")

)

linkage all (
link abstraction (src=knowledgeError ,dst=failure)
link abstraction(src=plantError ,dst=failure)

92

Suggestions MCL assigns a Concrete Response Code for all suggestions that it re-
turns. The codes are listed in Table 6.3 below. The repairs that an agent initiates (if any)
upon receiving one of these codes in the monitor response from MCL depends on the agent.

The responses made by the Mars Rover are discussed in the next section.

Table 6.3. MCL Concrete Responses Code

Concrete Response Code Concrete Node Abstract Node
CRC_SOLICIT_HELP Solicit suggestion Ask for help
CRC_RELINQUISH_CONTROL | Relinquish control Ask for help
CRC_SENSOR_DIAG Run sensor diagnostic | Run diagnostic
CRC_EFFECTOR_DIAG Run effector diagnostic | Run diagnostic
CRC_SENSOR_DIAG Activate Learning Modify Predictive Model
CRC_EFFECTOR_RESET Rebuild Models Modify Predictive Model
CRC_ACTIVATE_LEARNING Adjust Parameters Modify Procedure Model

CRC_REVISIT_ASSUMPTIONS | Revisit Assumptions Modify Procedure Model
CRC_REVISE_EXPECTATIONS | Revise Expectations Modify Avoid

CRC_ALG_SWAP Algorithm Swap Strategic Change
CRC_CHANGE_HLC Change HLC Strategic Change
CRC_TRY_AGAIN Try Again System

6.4 Mars Rover Integration

This section describes additions to the integration of MCL with the Mars Rover be-
yond what was described for the MCL Level 1: Instinctive in Section 5.5. The initialization
of MCL, the definition of the sensors and expectations, and the monitor interface remain
the same. The only change to the Rover is to handle the longer list of possible concrete

responses shown in the table below.

CRC_IGNORE The Rover will immediately return “Suggestionlgnored.” This is an in-

ternal MCL2 code that should never be suggested to an agent.

93
CRC_NOOP The Rover deletes the existing queue of planner actions to perform. This
will cause the Rover to invoke the STRIPS planner to create a new plan using the

current goals and sensor values. The Rover always returns “Suggestionlmplemented”

to MCL.

CRC_TRY_AGAIN The Rover will repeat the last action and then send “Suggestion-
Implemented.” If the Rover cannot repeat the action (for example, it doesn’t have

enough energy), it will send “Suggestionlgnored.”

CRC_SOLICIT_HELP The Rover will add a “Sleep” goal to await instructions from
ground control. Other agents might ask for human assistance or from another

metacognitive resource.

CRC_RELINQUISH_CONTROL As with CRC_SOLICIT_HELP, the Rover will add a
“Sleep” goal to await instructions from ground control. For other agents, this sug-

gestion may result in releasing the auto-pilot so that a human can take over.

CRC_SENSOR_DIAG The Rover will add a “DiagCmplt” goal (to execute a Diagnos-
tic(D) command) at the immediate level. It will respond with “Suggestion Imple-
mented” when the goal is achieved regardless of the initial or final state of the sen-
sors. The Rover’s sensor diagnostic action is more like a sensor reset as it tries to
restore the sensors to the factory-calibrated state rather than providing a report of the

operating state of the sensors.

CRC_EFFECTOR_DIAG The Rover will add a “BlowCmplt” goal (to execute a Blow
(B) command) at the immediate level. It will respond with “Suggestion Imple-
mented” when the goal is achieved regardless of the initial or final state of the motors.

The Rover’s blow action is more like an effector reset as it tries to clean the motors

94
so that they can work correctly rather than providing a report of the operating state

of the motors.

CRC_SENSOR_RESET The Rover will add a “DiagCmplt” goal (to execute a Diag-
nostic (D) command) at the immediate level. It will respond with “Suggestion Im-
plemented” when the goal is achieved regardless of the initial or final state of the

SENnSsors.

CRC_EFFECTOR_RESET The Rover will add a “BlowCmplt” goal (to execute a Blow
(B) command) at the immediate level. It will respond with “Suggestion Imple-

mented” when the goal is achieved regardless of the initial or final state of the motors.

CRC_ACTIVATE_LEARNING The Rover is currently returning “Suggestionlgnored”

as it does not have a learning subsystem.

CRC_ADJ PARAMS As the Rover does for CRC_ACTIVATE_LEARNING, it will re-

turn “Suggestionlgnored” as the agent has no learning subsystem.

CRC_REBUILD_MODELS Depending on the last action the Rover performed, it would
adjust the STRIPS action table or the action cost table and return “Suggestionlmple-
mented.” If changing the tables is not possible (e.g., they had already been changed),

the Rover would ignore the suggestion and return “Suggestionlgnored.”
CRC_REVISIT_ASSUMPTIONS The Rover returns “Suggestionlgnored.”
CRC_AMEND_CONTROLLER The Rover returns “Suggestionlgnored.”
CRC_REVISE_EXPECTATIONS The Rover returns “Suggestionlgnored.”

CRC_ALG_SWAP The Rover returns “Suggestionlgnored.”

95
CRC_CHANGE_HLC The Rover returns “Suggestionlgnored.” As the Rover only has a

single High Level Controller (Motivations) there is no other HLC to change to.

CRC_RESCUE As with CRC_RELINQUISH_CONTROL and others, the Rover will add
a “Sleep” goal to await instructions from ground control. Other agents could use this

suggestion to completly start over.

CRC_GIVE_UP If MCL offers this suggestion, it is because MCL has determined that
no other suggestion could possibly provide any assistance and that the best course of
action at this point is to admit defeat. The Rover will just add a “Sleep” goal to await

instructions from Mission Control.

6.5 Demonstration with Perturbations

Section 4.5 has a trace (Table 4.4) of the Motivated Mars Rover attempting to do a
Photo Tour but failing when the recharge action only partially recharges the Rover (Per-
turbation P1). Also unable to complete a Photo Tour was the Rover with MCL Level 1:
Instinctive that always suggested replanning (NOOP) when there was an expectation vi-
olation. The addition of an Evaluative MCL to the Rover allows it to recover from this
problem. In this case, the MCL response of TRY AGAIN is sufficient for the Rover to

complete the tour, as shown in Tables 6.4 and 6.5.

96

Table 6.4. MCL Rover able to execute a photographic tour with perturbation P1: Partial
charging by retrying the recharge action. (Part 1)

At | WP | CMD | NRG | MEM | TIME | DIST

0 1 | 2@1 | 8/92 0/30 | 16/16 8/8
16 | 2 | 3@2 | 10/82 | 0/30 | 20/36 | 10/18
36 | 3 | 5@3 | 10/72 | 0/30 | 20/56 | 10/28
56 | 5 | 4@5 | 10/62 | 0/30 | 20/76 | 10/38
76 | 4 | C@4 | 1/61 0/30 | 20/96 | 0/38
9 | 4 | 5@4 | 10/51 | 0/30 | 20/116 | 10/48
116 | 5 | 3@5 | 10/41 | 0/30 | 20/136 | 10/58
136 | 3 | 8@3 | 10/31 | 0/30 | 20/156 | 10/68

Energy below 40, added Recharged goal
156 | 8 | 3@8 | 10/21 | 0/30 | 20/176 | 10/78
176 | 3 | 5@3 | 10/11 | 0/30 | 20/196 | 10/88
196 | 5 | R@5 | +30/41 | 0/30 | 89/285 | 0/88
Partial recharge to 41
MCL suggests crc_try_again
285 | 5 | R@5 | +30/71 | 0/30 | 59/344 | 0/88
344 1 5 | 3@5 | 10/61 | 0/30 | 20/364 | 10/98
364 | 3 | 8@3 | 10/51 | 0/30 | 20/384 | 10/108
384 | 8 | [@8 | 5/46 5/25 | 20/404 | 0/108
404 | 8 | 3@8 | 10/36 | 0/25 | 20/424 | 10/118
Energy below 40 again
424 | 3 | 5@3 | 10/26 | 0/25 | 20/444 | 10/128
444 | 5 | R@5 | +30/56 | 0/25 | 74/518 | 0/128
Partial recharge to 56
MCL suggests crc_try_again
518 | 5 | R@5 | +30/86 | 0/25 | 44/562 | 0/128
562 | 5 | 4@5 | 10/76 | 0/25 | 20/582 | 10/138
582 | 4 | C@4 | 1/75 0/25 | 20/602 | 0/138
602 | 4 | I@4 | 5/70 | 5/20 | 20/622 | 0/138
Only one photo left to go
Continued in Part 2

97

Table 6.5. MCL Rover able to execute a photographic tour with perturbation P1: Partial
charging by retrying the recharge action. (Part 2)

At | WP | CMD | NRG | MEM | TIME | DIST

Continuing with only one photo to go

622 | 4 | C@4 | 1/69 0/20 | 20/642 | 0/138
642 | 4 | 5@4 | 10/59 0/20 | 20/662 | 10/148
662 | 5 | 3@5 | 10/49 0/20 | 20/682 | 10/158
682 | 3 | 2@3 | 10/39 0/20 | 20/702 | 10/168
Energy below 40 once again
702 | 2 | 1@2 | 8/31 0/20 | 16/718 | 8/176
718 | 1 | R@1 | +30/61 | 0/20 | 69/787 | 0/176
Partial recharge to 61
MCL suggests crc_try_again
787 | 1 | R@1 | +30/91 | 0/20 | 39/826 | 0/176
826 | 1 | I@l 5/86 5/15 | 20/846 | 0/176
846 | 1 | T@1 | 7/79 | +15/30 | 15/861 | 0/176

The Transmission completes the photographic tour.

Finishing up with goal of TookPanoramic6

861
877
897
917
933

1 | 2@1 | 8/71 0/30 | 16/877
2 | 3@2 | 10/61 0/30 | 20/897
3 | 5@3 | 10/51 0/30 | 20/917
5 | 6@5 | 8/43 0/30 | 16/933
6 | P@6 | 5/38 5/25 | 30/963

8/184
10/194
10/204
8/212
0/212

Photographic tour and added goals complete

98

The MCL process starts when the R command expectation group is completed with

the Rover sending:

send EGcomplete (mr, 2, {Zero=0, Energy=41, Memory=30,
WayPoint=5,Calibrated=1, Localized=1, Sleeping=0,
Speed=1, TotalDistance=88, TotalTime=285,
LocalDistance=88, TimeSincePhoto=285,
TimeSincePanoramic=285})

MCL compares the observations given with the expectations for the expectation group.
After a recharge, the energy should be at the maximum but the energy level has climbed

only to 41. This violates the expectation declared with:

declareSelfExp(mr,2,Energy,ec_take_value,100) ‘

The violation is recorded and held pending until the next MCL monitor call. It is
recorded by creating a MCLFrame that contains information about the violation including
a copy of the MCL Bayes network with the concrete indication of the exception inserted
into the Indications ontology. A new node, provenance:self, is linked to the resource and
short-of-target nodes. This linkage was selected because the Energy sensor was given the
resource property and the Energy level of 41 fell short of the target level 100 specified in
the expectation. The probabilities of these three nodes are set to 1.

The Rover completes the action execution cycle by calling MCL monitor with:

send monitor (mr, {Zero=0, Energy=41, Memory=30, WayPoint=5,
Calibrated=1, Localized=1, Sleeping=0, Speed=1l,
TotalDistance=88, TotalTime=285, LocalDistance=88§,
TimeSincePhoto=285, TimeSincePanoramic=285})

MCL will analyze the problem, and provide guidance in the form of the “CRC_TRY_AGAIN”

suggestion.

At | WP | CMD | NRG | MEM | TIME DIST
1091 | 5 3@5 10/64 0/25 | 20/1111 | 10/254
1111 | 3 7@3 10/54 0/25 | 20/1131 | 10/264
1131 | 7 | P@7 5/49 5/20 | 30/1161 | 0/264

The Rover completed one panoramic tour

and is starting the next but this time

the path between nodes 3 and 8 is blocked.
1161 | 7 3@7 10/39 0/20 | 20/1181 | 10/274
1181 | 3 5@3 10/29 0/20 | 20/1201 | 10/284
1201 | 5 | R@5 | +71/100 | 0/20 | 71/1272 | 0/284
1272 | 5 | P@5 5/95 5/15 | 30/1302 | 0/284
1302 | 5 3@5 10/85 0/15 | 20/1322 | 10/294
1322 | 3 | P@3 5/80 5/10 | 30/1352 | 0/294
1352 | 3 8@3 9/71 0/10 | 30/1382 | 10/304

The path is blocked.
MCL suggests crc_try_again

1382 \ 3 \ s@3 \ 9/62 \ 0/10 \ 30/1412 \ 10/314

We try again but still blocked.
MCL suggests crc_try_again

1412 3 | 8@3 [9/53

| 0710 [30/1442 | 10/324

We try again but still blocked.
MCL suggests crc_try_again

And so on and so on ...

99

Table 6.6. Rover with MCL level 2 failing to execute a panoramic tour with perturbation

P7, blocked path

6.6 Limitations and improvements

While an instinctive MCL can handle some problems and an evaluative MCL even

more, there are situations where evaluative MCL cannot provide adequate assistance to the

host system. As seen in Table 6.6, the “best” suggestion MCL can make, “Try Again”, fails

to move the Rover around the blocked path. As the Rover is blocked again and again, MCL

keeps reevaluating and keeps coming up with its “best” (but ineffective) suggestion of “Try

Again”.

The evaluative MCL’s lack of a sense of time leads to an implementation where

each expectation violation is evaluated independently with an initialized ontology network.

The violations are added as concrete indications to the network, probabilities are adjusted

100
throughout the network, and the concrete repair suggestions are selected based on cost and
probability. When the next expectation violation occurs, the evaluation occurs anew with a
fresh ontology network.

The problem with this approach is that it will give the same suggestion for the same
expectation violation every time. This is not a problem if that suggestion repairs the current
situation and the violation only reoccurs when the failure is reintroduced later. However,
if the first suggestion doesn’t fix the problem, MCL will not move on to try other sug-
gestions. This problem can be partially corrected by supplying MCL with feedback on its
suggestions. This feedback can be used to raise and lower the cost of the suggestion.

A general solution to this situation is to have MCL compare the current set of expec-
tation violations with those that have previously occurred. MCL can then decide to resolve
the current violations in the context of previous violations or to start evaluation afresh using
a new ontology network to handle a new problem. Adding this sense of prior violations,

the temporal element, is the subject of the next chapter.

Chapter 7

MCL LEVEL 3: TEMPORAL

This is the third of three chapters, that takes my idea of multiple metacognitive levels,
to deconstruct and explain the existing MCL system that I will be modifying in the next
chapter. This chapter describes how MCL works as a Level 3: Temporal metacognition
component for use with agent systems. The Level 2: Evaluative MCL from the previ-
ous chapter is expanded to include remembering past violation expectations. When a new
expectation violation occurs, MCL compares the current violation to previous ones to de-
termine if it should analyze the violation as a new problem or as continuation of an older
one.

As shown in the previous chapter, the Metacognitive Loop can be effective in lessen-
ing the problem of brittleness in cognitive systems when unexpected perturbations occur.
Using Bayesian inference over the Indications, Failure, and Response ontologies allows
MCL to better handle perturbations than agents without metacognition or those with only
hard-coded responses to stimuli. Fine tuning the ontologies and the conditional probabil-
ity tables could provide incremental improvement in performance. However, an extension
to the evaluative MCL may be able to offer even greater benefits. Saving past exception
violations and the successful and unsuccessful attempts to repair the failure(s) adds a tem-

poral dimension to MCL. Figure 7.1 shows the addition of previous exception violation

101

102

information as part of the meta-knowledge of the enhanced Metacognitive Loop.

-~ 2
Ontologies, Meta-cognitive ;::::s
expectations Loop 3'G ide
e peestons . Gui
| violations |

suonsadsng

v
=
.0
=]
)
>
b=
L
Wi
0

Cognitive
Agent

F1G. 7.1. Reentrant MCL

This chapter describes an approach to comparing the agent’s MCL state at the time of
the current exception with states from previous exceptions. MCL will decide if the current
exception appears related to any saved previous exceptions and either base its evaluation on
the current exception alone or combined with the previous exception(s). In the first section,
the information available at the time of an expectation violation is enumerated. Next, the
details of how MCL stores exception states is presented, describing what is stored, how it is
retrieved, and when it is discarded. How MCL compares the exception states comes next,

with a description of the temporal comparison function currently included with MCL.

103
7.1 What MCL Knows When an Exception Occurs

When an expectation is violated, MCL has available a number of pieces of information
about its internal state and the state of the agent it is supporting. Whether the expectation
violation is noticed when an expectation group is completed, or during a monitor call, the
same information is available. This section lists and describes the information available at
the time of the exception. The items are ordered from simplest to most complex. Expec-
tation violations associated with the P1: Partial Recharge perturbation in the Mars Rover

domain is used as an example but the information is generally domain-independent.

7.1.1 Expectation Group ID (EGID)

All expectations are assigned to an expectation group to control when the expectations
are tested for validity. Each expectation group is assigned a unique number: the Expectation
Group ID (or EGID). For agents with many expectation groups (such as having a different
expectation group for each of several actions), this can be a rich source for discriminating
between different problems. However, using many groups requires the agent’s designer
to do more work in defining the agent to MCL interface. The Expectation Group ID is
independent of the evaluation technique by MCL. It is directly related to the expectation,
but several different exceptions can have the same Expectation Group ID.

In the current implementation of the Mars Rover, only two EGIDs are used. Every
Mars Rover expectation is associated with either the EGID of 1 (for expectations valid over
the life of the Rover) or the EGID of 2 (for expectations that are valid only for the current
action). The recharge (R) action has an expectation that the energy level at the completion

of the action becomes 100 units and is associated with the EGID of 2.

104

7.1.2 Expectation Group Hierarchy

Expectation groups can contain other expectation groups as well as expectations. The
Expectation Group Hierarchy is the list of Expectation Group IDs from the terminal to the
root. If the agent’s designer uses multiple expectation groups, then a number of hierarchies
are possible. Like the Expectation Group ID, the Expectation Group Hierarchy is indepen-
dent of the evaluation technique by MCL. It is directly related to the violated expectation,
but several different exceptions can have the same Expectation Group Hierarchy.

The Mars Rover uses only two groups, with the permanent group (EGID=1) being the
parent of the action group (EGID=2). Thus, the parent group of the recharge action energy

expectation is 1 and the Expectation Group Hierarchy is <1,2>.

7.1.3 Expectation Violation Signatures (EVS)

Every expectation is described as a tuple consisting of

Expectation type The expectation types were given in Table 5.4. An expectation’s ex-
pectation type determines when and how the observation from the sensor is to be

compared to the parameter value of the expectation.

Sensor The sensor whose observations are being tested. The sensors for the Mars Rover

are listed in Table 5.5.

Parameters The value to compare with the observation from the sensor (if needed). For
example, expectation types of EC_STAYUNDER and EC_TAKE_VALUE need one
parameter value, EC_WITHINNORMAL needs two parameter values, while type
EC_GO_DOWN doesn’t need any parameter values.

Like the Expectation Group ID and Expectation Group Hierarchy, the Expectation

Violation Signature is independent of the evaluation technique by MCL. It is directly related

105
to the violated expectation, but several different exceptions can have the same Expectation
Group Signature.

Expectation Violation Signatures for the Mars Rover domain sample perturbations
are given in Table 8.2. The Expectation Violation Signature for the Mars Rover recharge
action (R) energy expectation is < EC_TAKE_VALUE, Energy, 100 >. Itindicates

that when the expectation group completed, the Energy sensor had a value other than 100.

7.1.4 Initial Indications

When an expectation is violated, the expectation type and the sensor type are used
to set nodes in the Indications ontology to True. These nodes are the “Initial Indications”
of the exception and follow directly from the violated expectation using the mapping in
Table 6.2. There are two or three indicators that describe where the expectation violation
was detected, the type of sensor, and type of violation. As the Initial Indications are nodes
in the Indications ontology, the Initial Indications are tied to MCL’s evaluation technique
of using Bayesian inference over ontologies. Just as different violated expectations can
have the same Expectation Violation Signatures, different violated expectations can have
the same Initial Indications.

The Expectation Violation Signature for the Mars Rover recharge action energy expec-
tation is < EC_TAKE_VALUE, Energy, 100 >. The Initial Indications that would

result from the violation of that expectation would have three parts:

provenance:self The Energy sensor is one that observes the Mars Rover itself. A sensor

that provides observations about external objects would have provenance:object.

resource The Energy sensor was declared as measuring a resource (as opposed to a reward,

temporal, or control sensor).

106

short-of-target The observed value of the Energy was less than the value the expectation

believed it would reach.

7.1.5 Initial Indication Signature (IIS)

Combining the Expectation Group ID (EGID) with the Initial Indications creates an
“Initial Indication Signature”. The IIS is tied to MCL’s evaluation technique of using
Bayesian inference over ontologies. Different expectation violations can have the same
IIS.

Initial Indication Signatures for sample Mars Rover perturbations are given in Ta-
ble 8.2. For the violated Recharge expectation, this is a tuple of (< EG=2, {prove-

nance:self resource short-of-target} >).

7.1.6 Bayesian Network

The exception activates specific nodes in the Indications ontology. In turn, these nodes
affect the likelihood of other nodes in the Indications ontology and, through inter-ontology
links, nodes in the Failure and Response ontologies. By looking at the Initial Indications,
you can see what the initial activations for the exceptions are; by looking at the Bayesian
network, you can see the diagnosis of the problem (in the Failure ontology) and the pre-
scription (in the Response ontology). Exceptions with different Initial Indications may have

similar nodes with high probability in other parts of the network.

7.1.7 MCL Frame

All of the Meta data information above is included in an MCL data structure called
the “frame”. A frame is created for each exception. It also contains various miscellaneous
pieces of data (mostly counts). Table 7.1 lists the data in the MCL frame. Items used only

for internal housekeeping are not listed.

107

Table 7.1. MCL Frame Information

Item Description

Ontologies A Bayesian network formed by the Indications, Failure, and
Response ontologies

State Current state in the repair process

Active Response The recommended concrete response node
Expectation Group | Number of expectation group with the violated expectation

Parent Group Number of parent of the expectation group with the violated
expectation

Failures Number of failing repairs

Successes Number of successful repairs

Signatures List of Expectation Violation Signatures

Ontology States List of previous ontology states

7.1.8 Frame Entry Vector

All of the information about an expectation violation is collected by MCL in a Frame
Entry Vector (FEV). It either contains the information listed in the sections above or a
reference to it. These items are given in Table 7.2.

The vECode (Entry Code) is set when the FEV is created or is reused. Most FEVs
are created in response to an exception violation and have the ENTRY_VIOLATION code.
If MCL uses the frame to generate a response, the frame may be reentered (reprocessed)
if the host replies that the repair in the response worked (REENTRY_SUCCESS) or not
(REENTRY_FAIL). See Table 7.3 for a complete list of Frame Entry Codes.

The major improvement my research made to MCL was designing and implementing
algorithms (described in Section 8.4) to evaluate when an expectation violation was a new
problem (ENTRY_VIOLATION) or when it was a reoccurrence of a previously seen prob-
lem (REENTRY_RECURRENCE). Being able to tell the difference between new problems
and previously seen problems lets MCL make better repair suggestions to the agent. The

Evaluative MCL in Chapter 6 doesn’t make such distinctions, so it repeatedly suggested

108
TRY AGAIN when the Rover encountered a block path. Being able to associate the current
failure to execute a command with a previous failure to do so allows MCL to suggest a

different repair that may have more success.

Table 7.2. MCL Frame Entry Vector information

Item Section | Description

vEG 7.1.1 Violation Expectation Group Key
vEVS 7.1.3 Expectation Violation Signature
vIIS 7.1.5 Violation Initial Indication Signature
vRef 7.1.7 Violation Frame Referent

vECode | 7.1.8 Entry or Reentry code

Table 7.3. MCL Frame Entry Codes

Code Description
ENTRY_UNKNOWN Un-initialized frame
ENTRY_NEW Newly created frame
ENTRY_HIA Host initiated action
ENTRY_VIOLATION Expectation violated
ENTRY_CLEAN No violation

REENTRY_RECURRENCE Recurrence of the violation
REENTRY_ALIAS_VIOL An alias violation occurred
REENTRY_HOST_SUCCESS | Successful response from host
REENTRY_HOST_FAIL Failed response from host
REENTRY_HOST_ABORT Host aborted response
REENTRY_HOST_IGNORE | Host ignored response

7.2 Saving MCL Exception Violation State

To compare the current expectation violation to past violations, the past violation must

be saved and accessible. This section looks at what is saved, how it is accessed and how

109

old exception violations are discarded.

7.2.1 What Is Saved

MCL saves previous and current exception violation information in two lists of Frame
Entry Vectors. The pending list contains frames for violations that occur between calls to
monitor. Violations that are detected when an exception group completes are put into the
pending list. The main MCL frame list is for frames from monitor calls. These can be
frames created by an exception noted by monitor or frames that monitor moved from the

pending list. After a call to monitor, there will be no frames in the pending list.

7.2.2 How it is Referenced

When comparing states to determine if they are similar, the list of Frame Entry Vectors
is processed sequentially. The current implementation is to have of all of the FEVs in

memory. Future implementation may use a database.

7.2.3 When it is Discarded

While the current implementation has provision for the removal of FEVs from the
monitor list, no such actions are being performed. This is less of a problem than it might

appear because

1. only exceptions are saved and exceptions by their nature should be exceptional events

and

2. the experimental tasks the Rover is asked to perform are limited.

When to purge FEVs and which FEVs to purge is a subject for future research.

110

7.3 Comparing MCL Exception Violation States

The general description of the workings of MCL’s metacognitive loop (note, access,
guide) was given in Chapter 5 for MCL Level 1: Instinctive. This section delves deeper
into the code and data structures to provide a framework for discussion of the changes that
support effective temporal operation.

The monitor() routine has to decide if it should respond at this time or not. It could

decline to provide assistance if

1. it is operating in asynchronous mode and insufficient time has passed since the last

monitor call or

2. MCL is not active, having been stopped by a call to stopMCL().

Otherwise, the monitor() routine calls the nag() routine to execute the MCL Notice, Assess
and Guide function. The responses returned from nag() are returned as the result from
monitor().

The nag() function first checks for any new expectation violations with a call to note().
If there are any new exceptions or any pending exceptions, then access() and guide() are
called for each exception. The combined responses from the guide() calls are returned as
the result of nag(). If there are no new or pending exceptions, no responses are returned
from nag().

The main processing of note() is to loop over each expectation group and then over
each expectation within the expectation group. If an expectation is not supported by the ob-
servations, an expectation violation (an exception) is noted by creating a FrameEntry Vector.

At this point, the note() routine has a list of frames from exceptions it discovered
as well as any frames created from pending exceptions. These frames can be processed

separately, with each generating a response, or two or more can be combined if they are

111

deemed sufficiently similar.
note() determines which frame(s) describing expectation violations that it will send to
guide() by using a frame comparison function to determine if the new violation is similar
to any previous expectation violations. The temporal comparison function used by the
stock version of MCL is described in the next section. Experimental temporal comparison

functions are described in the next chapter.

7.4 Sample Temporal Comparison Function

The stock version of MCL Level 3: Temporal contains a temporal comparison function
called "passive" that declares the current exception the same as a previous exception if both

the Expectation Group ID and the Exception Violation Signature are the same.

7.5 Mars Rover Integration

There are no changes to the Mars Rover beyond those described for MCL Level 2:

Evaluative in Section 6.4 as the temporal comparison function is internal to MCL.

Chapter 8

TEMPORAL COMPARISON FUNCTIONS

The “passive” temporal comparison function that has been included in MCL (and was
described in the previous chapter) uses only two of the several elements that are available in
its comparison. This chapter looks at the construction of several other temporal comparison
functions that use different items available to MCL at the time of an expectation violation
(as listed in Section 7.1).

The first section of this chapter looks at the information available when an expectation
violation is identified (from Section 7.1). The items of the information are examined in
terms of how they could contribute to a function that is able to separate new problems
from old problems independent of the domain. The second section describes a number of
temporal comparison functions created for this research. A few of the temporal comparison
functions were purposely constructed to be suboptimal, but useful as baseline cases. Most,
however, were built to make the best possible use of the exception state information. In
the next section, using sample perturbations from the Mars Rover domain, the temporal
functions are evaluated for their ability to distinguish between different problems. This is
followed by a short section on how these functions were implemented within MCL. In the

final section, two comparison functions are demonstrated using the Mars Rover.

112

113

8.1 Information for Temporal Comparison Functions

A Level 3: Temporal metacognition keeps a history of past exceptions, the sugges-
tions given for those exceptions, and if the agent reported it, whether the suggestions were
successful. Using this temporal history, a Level 3 MCL is in a better position to suggest the
best response for the current exception then a Level 2: Evaluative MCL. A Temporal MCL
will favor responses that were successful for exceptions similar to the current exception.
However, in a dynamic environment the problem(s) now may not be the same as when the
prior exception occured.

For MCL, all of the knowledge we have about the previous exceptions, the suggested
repairs(s) and the results of those repairs, are saved within the Frame data structure. What
is needed is a way to compare the prior frames with the current one that will be simple to
explain, easy to implement, quick to execute, and successful in improving the performance
of the host systems.

The items available in the saved MCL frames (as listed in the previous chapter) are
examined here to see how well they satisfy the first three criteria. A violation of the expec-
tations that can occur with the partial recharge perturbation (P1) in the Mars Rover domain

is used as an example but the discussion is domain-independent.

Expectation Group ID (EGID) The EGIDs of two MCL frames are easy to compare with
a single numeric comparison. The amount of information in the EGID will vary
with the host implementation. The Mars Rover simulation has only two expectation
groups so every exception is either from the permanent EGID of 1 or the action EGID
of 2. For the Mars Rover, the EGID could be made more meaningful by creating an
expectation group for each action. One could even create a separate expectation

group for each action at each location.

Having many expectation groups does not mean that the cause of two exceptions in

114
the same group are related. An energy sensor that reads too low could cause the
same recharge expectation (< EC_TAKE_VALUE, Energy, 100 >)tofailasa
battery that only recharges to half its maximum level or a battery that only recharges

a portion on each attempt.

Expectation Group Hierarchy While the EGID is only a single number, the Expectation
Group Hierarchy is a vector of numbers. The list of Expectation Groups is likely
to be small in practice, allowing for very quick comparisons. Like the EGID, the
problem discrimination utility of the Expectation Group Hierarchy will depend on

how the host system divides its expectations into groups.

Expectation Violation Signatures (EVS) The EVS consists of the expectation type, the
sensor being evaluated, and the parameter value(s). The EVS of a previous frame
can be directly compared to the EVS of the current exception using three numeric
or string equalities. Repeated violations of the same expectation would produce the

same EVS. Exceptions with different sensors will have different EVSs.

Initial Indications The Initial Indications are the nodes activated in the Bayesian network
in response to the exception. As it doesn’t include specific sensor information or any
expectation values, Initial Indications is more general than the Expectation Violation
Signature (EVS) for the same exception. The list of initial activation nodes can be

obtained as a string, allowing easy and quick comparisons.

Initial Indication Signature (IIS) IIS is the combination of the Initial Signature and the
EGID. IIS shares the characteristics of both. It has the implementation-specific EGID
and the more general Initial Indications. It is easy to implement and quick to execute

as it is an ANDing of the results of the EGIS and Initial Indications comparisons.

Bayesian Network (BN) The heart of the MCL exception/repair evaluation is the Bayesian

115
network that classifies the exception, determines the failure, and suggests a response.
Different exceptions will produce different truth values in the nodes of the network.
As the networks can be extensive, and the differences between two networks sub-
tle, no quick, easy, fast method has been found to compare two arbitrary Bayesian

networks.

While the indications portion of the network changes as initial indication nodes are
linked in, the failure and response portions stay structurally static however much the
node probabilities may change. Thus, a comparison of the probabilities associated

with the concrete response nodes can be efficiently implemented.

Table 8.1 summarizes my subjective rating of the frame information elements accord-
ing to their simplicity, implementation, and execution. The scale for the three categories
is great, good, fair, and poor. Ideally, the best comparison functions would rate as great in
all categories as well as (and most importantly) be an excellant discriminator between the

same and different problems.

Table 8.1. Frame information elements rated

Element | Simplicity | Implementation | Execution
EGID Great Great Great
EGH Good Good Good
EVS Good Good Good
II Good Good Good
IIS Good Good Good
BN Fair Fair Fair

“The next section discusses the frame comparison functions as they will be used within

the MCL implementation.

116

8.2 Frame Comparison Functions

Based on the analysis in Section 8.1, I created several frame comparison functions.
They should allow the Level 3: Temporal metacognition in MCL to select the correct ex-
pectation violation frame (either the new one or one from a previous violation) that would
let the access phase provide the best repair suggestion.

I designed the first three (F1: First, F2: New, and F3: Random) as experimental
controls and they are not expected to perform well. The frame comparison functions most
likely to provide sufficient differentiation to allow MCL to give good advice to the Mars
Rover (from the analysis in Section 8.1) are Expectation Violation Signature (EVS) or

Initial Indication Signature (IIS), either singularly (F4 or F5) or in combination (F6).

8.2.1 F1: Always The Same (First) Frame

This function always declares that the two frames are equal. In practice, this means
that any new exception frame is declared equal to the first exception frame. Thus, MCL
sees each expectation violation as the result of a single perturbation. The only advantages
of this algorithm are that it is easy to code and extremely quick in execution. It is expected

to be a very poor performer.

8.2.2 F2: Frames Always Different (New)

This function returns the opposite of the previous as it always declares the two frames
to be different. Thus, MCL will always use the new exception frame for evaluation, ignor-
ing any previous exception frames. When operating with this frame comparison function,
the Level 3: Temporal MCL is reduced to Level 2: Evaluative. Like the first algorithm, this

one is easy to code and extremely quick in execution.

117
8.2.3 F3: Random

As with the previous two algorithms, this one does not actually compare the two
frames, but delivers its verdict based on a random number generator: half of the time the
frames are declared equal and half of the time the frames are declared not-equal. Like the

first two algorithms, this one is easy to code and extremely quick in execution.

8.24 F4: EVS Equal

Unlike the first three functions, this function (and the ones that follow) do take the val-
ues in the two frames into account in its comparison. If the Exception Violation Signature
(sensor, expectation type, value) of the two frames are the same then this function declares

the two frames equal.

8.2.5 FS5: IIS Equal

This function compares the Initial Indication Signatures (IIS) of two frames to deter-
mine if the frames represent the same exception. If the IIS of the two frames are the same

then the two frames are declared equal.

8.2.6 F6: IIS and EVS

This functions tests both the IIS and EVS of two frames and doesn’t judge the frames
equal unless both match. The idea was that if either the F4: EVS or the F5: IIS comparisons
gave false positives, using both would limit the false positives. The downside is that if either

IIS or EVS has a false negative then the two frames being compared are declared not equal.

118
8.2.7 F7: EVS but not IIS

This function tests both the IIS and EVS of two frames and declares the frames equal
if the EVS of the two frames match but the IIS do not. It was not expected that this function
would perform well but the worse it performed, the more likely that an IIS comparison of

the frames would have made the correct determination.

8.2.8 F8: IIS but not EVS

This function tests both the IIS and EVS of two frames and declares the frames equal if
the IIS of the two frames matches but the EVS doesn’t. It was not expected that this function
would perform well but the worse it performed, the more likely that an EVS comparison of

the frames would have made the correct determination.

8.3 Static Evaluation of Comparison Functions

The nine sample perturbations used in the Rover simulation generate expectation vio-
lations with the EVS and IIS values given in Table 8.2. Using these values (and having the
expectation group hierarchy always being 2/1) it is possible to determine the results of the
frame comparison functions for the Rover simulation.

The comparison tables (Tables 8.3 through 8.13) have one row and column for each
of the nine numbered Mars Rover perturbations from section 3.2.1 and Table 8.2. A check
mark (,/) in a square on the diagonal, where the row and column perturbations are the same,
indicates that the comparison function can correctly tell when there are two instances of the
same perturbation. A check mark in the other squares indicates that the comparison func-
tion can correctly detect that these two perturbations are different. A perfect comparison
function would have check marks in all of the squares.

The percentage of correct numbers reported for the comparison functions assumes

119
that each of the perturbations are equally probable. The only time this is likely to be true
is in the experiments conducted for this dissertation. This makes these numbers highly

theoretical and highly suspect.

Static Evaluation of Expectation Group ID Comparison In the Rover simulation,
using EGID correctly predicts when problems are caused by the same perturbation but it is
always incorrect when the problems are caused by different perturbations. This is shown

in Table 8.3. Overall it is correct only 11% of the time.

Static Evaluation of Expectation Group Hierarchy Comparison Like the EGID,
the Expectation Group Hierarchy currently predicts which failures are caused by the same
perturbations but is always wrong when the causes are different. Thus, Table 8.4 has check-

marks only on the diagonal.

Static Evaluation of F1: First Comparison This comparison function is purely for
reference and statistical purposes. It always matches the first (oldest) frame on the frame
list. Doing so gives it a perfect score when the perturbations are the same but always wrong

when they are different as show in Table 8.5 for a combined static score of 11%.

Static Evaluation of F2: New Comparison This comparison function is also
purely for reference and statistical purposes. It never matches an existing frame on the
frame list. This makes it always wrong when the perturbations are the same and always
correct when they are different (Table 8.6). As there are nine different perturbations, this

gives a combined static score of 88%.

Static Evaluation of F3: Random Comparison This is the third and final compar-

ison function purely for reference and statistical purposes. It randomly (50-50) matches the

120

first frame in the frame list otherwise it creates a new frame. It should have a 50% correct

rate. Anything else is experimental error (as shown in Table 8.7).

Static Evaluation of F4: EVS Comparison Like EGID and Expectation Group
Hierarchy, EVS correctly determines when the failure is caused by the same perturbations.
Unlike them, however, it also succeeds in most cases where the perturbations are different
which is why Table 8.8 has so many more check-marks than Tables 8.3 and 8.4. It fails
in cases such as P1 and P2 where both perturbations can cause unexpected values on the
same sensors. Its total static correct rate of 85% outperforms EGID and Expectation Group

Hierarchy.

Static Evaluation of Initial Indications Comparison The static performance of
Initial Indications (Table 8.9) is close to that of EVS. With the perturbations of the Mars

Rover simulation it is slightly better, achieving 90% correct evaluations.

Static Evaluation of F5: IIS Comparison Since the Exception Group ID is always
the same in the Mars Rover simulation, it is not unexpected that the static performance of

IIS (Table 8.10) should be equal to that of the Initial Indications.

Static Evaluation of F6: EVS and IIS Comparison This is the first of three com-
parison functions combining EVS and IIS. When taking their results together (Table 8.11),
IIS dominates and it gets the same overall score of 90% as all of the perturbation pairs are

evaluated the same as with just IIS alone (Table 8.10).

Static Evaluation of F7: EVS and not IIS Comparison Using a negated IIS as

a check on EVS improves on EVS different perturbations score at the cost of missing all

121
of the same perturbations on the diagonal as shown in Table 8.12. The total performance,

however, is quite close (83% vs. 85% for EVS).

Static Evaluation of F8: IIS but not EVS Comparison When taking their results
together (Table 8.11), IIS dominates and it gets the same overall score of 90% as all of the

perturbation pairs are evaluated the same as with just IIS alone (Table 8.10).

Summary of static comparison evaluation Table 8.14 summarizes the static eval-
uation of the various comparison functions. Of the functions that directly compare portions
of the expectation violation information, Initial Indications and IIS are the strongest with
both having 90% correct. EVS is second at 85%. The EVS and IIS combined methods ap-
pear no better than IIS alone. Of the statistical baseline methods, New compares favorably
to IIS in the multiple perturbation test.

Based on the static evaluation, IIS comparison should provide the best performance as

the frame comparison function for MCL Level 3: Temporal assisting a Mars Rover.

Table 8.2. Sample Exception Information

P1: Partial charging

EVS
IIS

< EC_TAKE_VALUE, Energy, 100 >
< EG=2, {provenance:self, resource, short-of-target} >

P2: Reduced capacity

EVS | < EC_TAKE_VALUE, Energy, 100 >
IS < EG=2, {provenance:self, resource, short-of-target} >
P3: Longer calibration time
EVS | < EC_TAKE_VALUE, TotalTime, 20 >
IIS | < EG=2, {provenance:self, temporal, long-of-target} >
P4: Probabilistic calibration
EVS | < EC_TAKE_VALUE, Calibrated 1 >
IIS < EG=2, {provenance:self, state, short-of-target, missed-
unchanged} >
P5: Recharge loses calibration
EVS | < EC_MAINTAIN_VALUE, Calibration >
IS < EG=2, {provenance:self, state, cwa-decrease} >
P6: Path time change
EVS | < EC_TAKE_VALUE, TotalTime 20 >
IS < EG=2, {provenance:self, temporal, short-of-target} >
P7: Blocked path
EVS | < EC_TAKE_VALUE, WayPoint 8 >
IIS < EG=2, {provenance:self, spatial, short-of-target, missed-
unchanged} >
P8: Dirty panoramic rotator
EVS | < EC_TAKE_VALUE, TotalTime, 20 >
IIS < EG=2, {provenance:self, temporal, short-of-target} >
P9: Noisy sensor
Item | Value
EVS | < EC_TAKE_VALUE, Energy, 100 >
IIS < EG=2, {provenance:self, resource, short-of-target} >

122

123

Table 8.3. Static Evaluation of comparing frames by Expectation Group ID
172 | Pl | P2 | P3| P4 |P5|P6|P7|PS|P9
Pl | /
P2 V
P3 V
P4 V
P5 V
P6 V
P7 Vv
P8 vV
P9 V

Table 8.4. Static Evaluation of comparing frames by Expectation Group Hierarchy
12| Pl | P2 | P3| P4 |P5|P6|P7|PS|P9
Pl |/
P2 V
P3 V
P4 V
P5 V
P6 V
P7 Vv
PS8 V
P9 V

Table 8.5. Static Evaluation of comparing frames by F1: First
172 | Pl |P2 | P3| P4|P5|P6|P7|P8|P9
Pl |/
P2 V
P3 V
P4 V
P5 V
P6 V
P7 V
PS8 V
P9 V

Table 8.6. Static Evaluation of comparing frames by F2: New

172

Pl

P2

P3

P4

P5

P6

P7

P8

P9

Pl
P2
P3
P4
PS5
P6
P7
P8
P9

L
L

v

L
L <
L K

<<
<<

L K
L K
D NGNS NG SN N

L

Table 8.7. Static Evaluation of comparing frames by F3: Random

121 PI P2 P3| P4 P5|P6|P7 | P8|PY
I VIV |V [V |V
A AR VAN, v
prlviviviv] |v|v|v
Pely ||y VAR,
Ps |y VARANAN
Polv | | V]|V VAR,
AR AR AREANY

LA AR ARANY Vv
P9 vivl Ivivl v

Table 8.8. Static Evaluation of comparing frames by F4: EVS

12

Pl

P2

P3

P4

P5

P6

P7

P8

P9

Pl
P2
P3
P4
P5
P6
P7
P8
P9

v

L
L

L L
Ll

<
<

Ll

Ll K
L
DU N S N
L

124

Table 8.9. Static Evaluation of comparing frames by Initial Indications

172

Pl

P2

P3

P4

P5

P6

P7

P8

P9

Pl
P2
P3
P4
PS5
P6
P7
P8
P9

V

L

L

L
Ll
Ll

<<
<<

LUl
L

L

L K
L

Table 8.10. Static Evaluation of comparing frames by F5: IIS

12

P2

P3

P4

P5

P6

P7

P8

P9

Pl
P2
P3
P4
P5
P6
P7
P8
P9

S
<R ==

LU
L

<
<

Ll

LUl
L
L K

L

Table 8.11. Static Evaluation of comparing frames by F6: EVS and IIS

172

Pl

P2

P3

P4

P5

P6

P7

P8

P9

Pl
P2
P3
P4
P5
P6
P7
P8
P9

v

L
L
L

L

<
<

Ll

D NGNS NG S NN

L

L K

L

125

Table 8.12. Static Evaluation of comparing frames by F7: EVS but not 1IS

172 | P1

P7

P8 | P9

Pl
P2
P3
P4
P5
P6
P7
P8
P9

< <L =< <=z
QSRR R

R RN
LR R <. <3

<R R =k T
LRl L 3

L
S NG SN U SO

L

Table 8.13. Static Evaluation of comparing frames by F8: IIS but not EVS

172 | P1

~
N

P7

P8 | P9

Pl
P2
P3
P4
)
P6
P7
P8
P9

LR R <
<R R
LR R T
S E NN RN

SN Y
<L R S

<

Ll

L K
L

Table 8.14. Static Evaluation of Frame Comparison Functions

Comparison Percent Correct

Method Total | Same | Different
Expectation Group ID 11 100 0
Expectation Group Hierarchy 11 100 0
F1: First 11 100 0
F2: New 88 0 100
F3: Random 56 55 56
F4: EVS 85 100 83
Initial Indications 90 | 100 88
F5: 1IS 90 | 100 88
F6: EVS and IIS 90 | 100 88
F7: EVS but not IIS 83 0 94
F8: IIS but not EVS 90 | 100 88

126

127

8.4 Implementation

I implemented (in C++) several frame comparison algorithms as described in Sec-
tion 8.2 above. See Appendix C for the code listings.

MCL would normally use one and only one frame comparison function, I imple-
mented several to determine which one worked best in the Mars Rover simulation. For
testing and evaluative purposes, the frame comparison function is easily changed using the
MCL APL

I also implemented a new MCL API command, setREB(), which allowed the Mars

Rover to change the frame comparison function at the start of each experiment.

8.5 Mars Rover Integration

There are no changes to the Mars Rover beyond those described for the Rover using
MCL (evaluative) in Section 6.4 as the temporal comparison function(s) are internal to
MCL. For the purpose of experimentation, MCL API functions were added to allow the
agent to select the temporal comparison. Figure 8.1 show the conversation between the
agent and MCL to set the temporal comparison function to F4: IIS. The codes to select the

various temporal comparison functions are listed in Table 8.15.

send setREB (mr, four)
recv ok (REB set to ' four’.)

FIG. 8.1. Setting the Temporal Comparison Function to F4: IIS for a agent initialized with
the key *mr’

128

Code Fn | Name

default Passive

one F1 | First

two F2 | New

three F3 | Random

four F4 | EVS

five F5 | IS

Six F6 | EVS and IIS
seven | F7 | EVS but not IIS
eight | F8 | IIS but not EVS
nine Passive

Table 8.15. Codes for Static Evaluation of Frame Comparison Functions

8.6 Examples

This section looks at two frame comparison functions in action. Two motivated Mars
Rovers augmented by MCL Level 3: Temporal, one using F1: First and one using F5: IIS,
attempt to complete a triple panoramic tour that is first perturbed by P7: Blocked path and
then by P1: Partial charging!. The P1 and P7 perturbations are very different problems
and should be treated differently by MCL. Table 8.9 shows that the F5: IIS comparison
function should be able to correctly distinguish between the perturbations while the F1:
First comparison function (Table 8.5) does not.

When the Rover encounters the blocked path, the first suggestion made by MCL will
be to retry the movement action. This will not succeed and MCL will then suggest that the
Rover rebuild its models. After taking the blocked path out of its STRIPS table, the Rover
is able to generate a plan that moves it around the blocked path. The Rover continues on
and completes the second panoramic tour where the perturbation is changed to P1, reduced
recharge. For this perturbation the effective repair is to try again. But the TRY AGAIN

repair failed for the blocked path perturbation so if MCL cannot distinguish between the

'See Section 9.1 for details of the triple panoramic tour.

129
two perturbations, MCL will not suggest TRY AGAIN when the recharge action fails to
completely recharge the Rover. This is the Rover execution trace shown in Table 8.17.
If the comparison function can distinguish that the perturbations are different, MCL will

suggest TRY AGAIN (as in Table 8.16) and the Rover can complete the tour.

130

Table 8.16. Rover with MCL level 3 and IIS comparison successfully executing a
photographic tour with perturbation P7: Blocked Path and then with P1: Partial Charging
At | WP | CMD | NRG | MEM | TIME DIST
0 1 | P@1 | 5/95 5/25 | 30/30 0/0
The Rover starts and completes an unperturbed Panoramic Tour.
For the second tour the path between 3 and 8 is blocked.
1146 | 8 [3@8 | 9/61 | 0/20 | 30/1176 | 10/262
The movement fails because the path is blocked.
MCL suggests TRY AGAIN and the Rover tries.
1176 | 8 [3@8 | 9/52 | 0/20 | 30/1206 | 10/272
But not very successfully.
1206 | 8 | 3@8 | 9/43 | 0/20 | 30/1236 | 10/282
This time MCL suggests REBUILD MODELS.
The 3@8 action is removed from the
STRIPS tables, and a new plan created.
1236 | 8 | P@8 | 5/38 5/15 | 30/1266 0/282
1266 7@8 | 8/30 | 0/15 | 16/1282 8/290
1282 | 7 | 3@7 | 10/20 | 0/15 | 20/1302 10/300
This time a different route is chosen and
the Rover goes on to complete the tour.
2618 | 1 | P@1 | 5/36 | 5/15 | 30/2648 0/590
2648 | 1 | R@1 | +30/66 | 0/15 | 64/2712 0/590
When the recharge doesn’t live up to expectations,
MCL suggests TRY AGAIN.
2712 [1 [R@1 [+30/96 | 0/15 | 34/2746 [0/590
The Rover goes on to complete the third tour.
4978 | 8 | P@8 | 5/55 | 5/15 | 30/5008 | 0/1030
Photographic tour with added goal complete

o0

131

Table 8.17. Rover with MCL level 3 and F1: First comparison unsuccessfully executing
a photographic tour with perturbation P7: Blocked path and then with perturbation P1:
Partial charging

At | WP | CMD | NRG | MEM | TIME DIST
0 1 | P@1 | 5/95 5/25 30/30 0/0
30 1 | 2@1 | 8/87 0/25 16/46 8/8

The Rover starts and completes an unperturbed Panoramic Tour.

For the second tour the path between 3 and 8 is blocked.

1439 | 7 | P@7 | 5/70 | 5/15 | 30/1469 0/348
1469 | 7 | 8@7 | 8/62 0/15 | 16/1485 8/356
1485 | 8 | P@8 | 5/57 5/10 | 30/1515 0/356
I515| 8 | 3@8 | 9/48 0/10 | 30/1545 10/366

The movement fails because the path is blocked.
MCL suggests TRY AGAIN and the Rover tries.

1545 8 [3@8 | 9/39 | 0/10 | 30/1575 | 10/376
But not very successfully.
1575 | 8 | 3@8 | 9/30 | 0/10 | 30/1605 | 10/386

This time MCL suggests REBUILD MODELS.
The action 3@8 is removed from the STRIPS table.

The Rover re-plans, finds another route and complete the tour.
For the third tour, the perturbation changes to reduced recharge
3126 | 5 | R@5 [+30/59 | 0/10 | 71/3197 [0/730

MCL with the First temporal comparison function
can’t tell that this is a different problem.
So MCL suggests SENSOR DIAG instead of TRY AGAIN
3197 | 5 | D@5 [20/39 | 0/10 | 10/3207 [0/730
which uses enough power so that the Rover need to recharges.
4185 | 5 | R@5 | +30/55 | 0/20 | 75/4260 | 0/882
And then MCL suggests SENSOR DIAG again

4260 | 5 | D@5 | 20/35 | 0/20 | 10/4270 | 0/882
And this repeats self over and over again.
5225 5 [R@5 [+30/45] 0/10 | 85/5310 [0/1042
5310 | 5 | D@5 | 20/25 | 0/10 | 10/5320 | 0/1042
5320 | 5 | R@5 | +30/55 | 0/10 | 75/5395 | 0/1042
5395 | 5 | 3@5 | 10/45 | 0/10 | 20/5415 | 10/1052
5415| 3 | 7@3 | 10/35 | 0/10 |20/5435| 10/1062
5435 | 7 | 3@7 | 10/25 | 0/10 |20/5455| 10/1072
5455 | 3 | 5@3 | 10/15 | 0/10 | 20/5475 | 10/1082

The Rover keeps looping through these same instructions
as MCL keeps suggesting SENSOR DIAG.

Chapter 9

METHODOLOGY

The claim made in this dissertation is that adding memory of past problems to the
MCL advisor provides better assistance to the agent than a MCL advisor without such
memory. The previous two chapters described how such temporal knowledge is added to
MCL with several proposed temporal comparison functions. The two chapters addressed
the first three of the five research questions. This chapter describes how the claim will be
demonstrated and provides the metrics that will be used to answer the final two research
questions.

The primary measure for the success of the proposed research is how well the proposed
MCL temporal comparison function improves the performance of the host system in a
perturbed environment. For baselines, experiments will also be run using non-temporal
forms of MCL: Bereft, Instinctive and Evaluative. Only if the agent using temporal MCL
with one of the proposed MCL temporal comparison functions performs better than agents
using non-temporal MCL will the proposed function be judged as successful.

The remainder of this chapter provides details about the experiments to be run and
the evaluation of the results. The next section describes the task that each agent will be
required to perform and gives an example of an agent completing it. This chapter’s second

second will show how the environment will be perturbed for the various experiments. The

132

133
configurations that will be used for each of the twelve Mars Rovers is also given there.
The final two sections of this chapter describe the metrics that will be collected from each
experiment and how those metrics will be analyzed to determine the effectiveness of the

assistance provided to the Rover by the various MCL configurations.

9.1 Evaluation Domain

The Mars Rover domain described in Section 3.1 will be used to evaluate the MCL
Frame comparison function. The basic task used will be a panoramic tour in which the
Rover will have to travel to all eight waypoints and at each take a panoramic image. The
Rover has neither energy nor storage to complete the task directly. It will have to recharge
its battery a few times during the process, as well as transmitting the collected panoramic
images, before being able to finish the tour. Additionally, due to the length of the panoramic
tour, the motivation to collect a photographic image will be triggered causing the Rover to
pursue a Takelmagen goal.

An example execution of such a tour using the Motivated Mars Rover from Chapter 4
(MCL Level 0: Bereft) is given in Tables 9.1 and 9.2. In the first part of the tour, the Rover
visits all eight locations, takes the panoramic images and transmits them. These actions
took 32 steps using a plan from the STRIPS planner that is less than optimal but reasonable
given the planner’s limitations. However, while satisfying the goals of the tour, the Rover
generated additional goals due to its Take Photo and Take Panoramic Image motivations.
To satisty these additional goals took another 10 steps. The faster the Rover can complete
its assigned tasks, the fewer additional Photo and Panoramic tasks will be added by the
motivations.

In the experiments, the Rover is required to perform three panoramic tours in succes-

sion. Between each tour, the environment is perturbed. Each experiment is controlled by a

At [WP|CMD| NRG | MEM | TIME | DIST
Initial plan of P238P35P4P56P537P83P2P
0 1 | P@l 5/95 5/25 30/30 0/0
30 | 1 | 2@1 8/87 0/25 16/46 8/8
46 | 2 | 3@2 | 10/77 0/25 20/66 | 10/18
66 | 3 | 8@3 | 10/67 0/25 20/86 | 10/28
86 | 8 | P@8 5/62 5/20 | 30/116 | 0/28
116 | 8 | 3@8 | 10/52 0/20 | 20/136 | 10/38
136 | 3 | 5@3 | 10/42 0/20 | 20/156 | 10/48
156 | 5 | P@5 5/37 5/15 | 30/186 | 0/48
Energy low, Preempting with Recharged goal
Setting plan to just R
186 | 5 | R@5 | +63/100 | 0/15 | 63/249 | 0/48
Resuming tour, new plan of 6P54P53P7P32P
249 | 5 | 6@5 8/92 0/15 | 16/265 | 8/56
265 6 | P@6 5187 5/10 | 307295 | 0/56
Too long since last photo, Added TookImage3
2951 6 | 5@6 8/79 0/10 | 16/311 | 8/64
311 5 | 4@5 | 10/69 0/10 | 20/331 | 10/74
331 4 | P@4 5/64 5/5 30/361 | 0/74
Memory low, Preempting with Transmitted
Setting plan to 532T
361 | 4 | 5@4 | 10/54 0/5 | 20/381 | 10/84
381 | 5 | 3@5 | 10/44 0/5 | 20/401 | 10/94
401 | 3 | 2@3 | 10/34 0/5 20/421 | 10/104
Energy low, Preempting with Recharged goal
Setting plan to 1R
421 2 | 1@2 8/26 0/5 16/437 | 8/112
437 | 1 | R@1l | +74/100 | 0/5 | 74/511 | 0/112
Resuming Transmitted plan with T
511 1 \ T@1 \ 12/88 \ +25/30 \ 25/536 \ 0/112
Resuming tour, new plan of 2P3P7P
536 | 1 | 2@1 8/80 0/30 | 16/552 | 8/120
552 | 2 | P@2 5175 5/25 | 30/582 | 0/120
582 | 2 | 3@2 | 10/65 0/25 | 20/602 | 10/130
Continued in Table 9.2

134

Table 9.1. Sample Panoramic tour by a Motivated Mars Rover with MCL Level O (Part 1).

135

At | WP | CMD | NRG MEM | TIME DIST
602 | 3 | P@3 5/60 5/20 30/632 0/130
632 | 3 | 7@3 10/50 0/20 | 20/652 10/140
652 | 7 | P@7 5/45 5/15 30/682 0/140

Finished Panoramic Image taking part of tour
New goal: Transmitted, plan of 32T
682 | 7 [3@7] 10/35 | 0/15 [20/702 | 10/150

Energy low, Preempting with Recharged goal

Setting plan to SR
702 | 3 | 5@3 10/25 0/15 20/722 10/160
722 | 5 | R@S5 | +75/100 | 0/15 751797 0/160

Resuming Transmitted goal
Setting plan to 32T
797 [5 [3@5] 1090 | 0/15 | 20/817 | 10/170
Too long since last Panoramic Image
Adding TookPanormaic8 as low level goal

817 | 3 | 2@3 | 10/80 0/15 20/837 10/180
837 | 2 | T@2 7/73 | +15/30 | 15/852 0/180
Finished photo tour, Goals now TookImage3 and TookPanoramic8
Setting plan to 354C538I

852 | 2 | 3@2 | 10/63 0/30 | 20/872 10/190
872 | 3 | 5@3 10/53 0/30 | 20/892 10/200
892 | 5 | 4@5 10/43 0/30 | 20/912 10/210
912 | 4 | C@4 1/42 0/30 | 20/932 0/210
932 | 4 | 5@4 | 10/32 0/30 | 20/952 10/220

Energy low, setting plan to R
952 | 5 | R@5 [+68/100 | 0/30 [68/1020 | 0/220
Resuming TookImage3 goal, plan is381
1020 | 5 | 3@5 | 10/90 0/30 | 20/1040 10/230
1040 | 3 | 8@3 | 10/80 0/30 | 20/1060 10/240
1060 | 8 | I@8 575 5/25 | 20/1080 0/240
Setting plan to P for TakePanoramic8
1080 | 8 | P@8 | 5/70 | 5/20 [30/1110 | 0/240
Panoramic tour with added goals complete

Table 9.2. Sample Panoramic tour by a Motivated Mars Rover with MCL Level O (Part 2).

136
script that sets the goals for the Rover, perturbs the environment, and waits for the Rover
to complete each set of goals. A sample script is shown in Figure 9.1. When the script
starts, the goals for the Rover are set so that it will execute a panoramic tour and run until
all goals are satisfied. After that, a perturbation is added to the environment, the panoramic
tour goals set and the simulation run until there are no more goals to be satisfied. When (if)
the Rover completes the second tour, the first perturbation is removed and another pertur-
bation (possibly the same one) is added. The goals for the panoramic tour are again set and
the Rover set off to finish the third tour. At this point, the controlling script is complete and

the experiment ends.

9.2 Experiments

Several experiments were performed using various MCL levels, perturbations and

frame comparison functions.

9.2.1 Experiment MCL Levels

Four of the six MCL levels will be used in the experiments. The Motivated Mars

Rover (which includes a Level 1: Instinctive component) will be augmented with
MCL Level 0: Bereft that gives the Rover no additional benefit,

MCL Level 1: Instinctive that will re-plan if there is an action expectation violation,
MCL Level 2: Evaluative and

MCL Level 3: Temporal which will suggest a variety of repairs.

MCL Levels 4 and 5 are not included as they are still hypothetical.

137

9.2.2 Experiment Perturbations

For each of the four MCL levels, several experiments are run varying the perturbations
introduced between the first and second, and second and third panoramic tours. Seven
different perturbations selected from Section 3.2 are used along with the null perturbation,
PO. The perturbations used are listed in Table 9.3. As two perturbations are used per
experiment, there are fifty-six different scenarios (8 x 8 — 8 duplicate pairs) but all sixty-

four pairings are run.

Table 9.3. Eight perturbations used in the experiments

Num Description Section

0 No perturbation

1 Partial charging 322
2 Reduced capacity 323
3 Longer calibration time 324
4 Probabilistic calibration 3.2.2
5 | Recharge loses localization | 3.2.4
6 Path time change 3.2.6
7 Blocked path 3.2.6

9.2.3 Experimental Temporal Comparison Functions

For MCL Level 3: Temporal, experiments will be run with each of the eight frame
algorithms described in Section 8.2. The frame comparison algorithms are enumerated in
Table 9.4. An additional temporal comparison function, F9: Passive, is included in the
experiments. This is the default temporal comparison function included with MCL and
was described in Section 7.4.

The total number of experiments is determined by the number of MCL levels (4), the

number of perturbation combinations (64), and the number of frame comparison algorithms

138

Table 9.4. Nine frame comparison algorithms used in the experiments

Num Description Static
Evaluation
1 First (Same) 11
2 New (Different) 88
3 Random (50/50) 50
4 EVS 85
5 IIS 90
6 EVS and IIS 90
7 EVS but not IIS 83
8 IIS but not EVS 90
9 Passive —

(9). As the algorithms are only used at MCL Level 3: Temporal, the base number of
experiments to be performed is: 64 + 64 + 64 464 x 9 = 768. To reduce the variability and
to perform ANOVA (Judd, McClelland, & Ryan 2009) calculations, each set of experiments

needs to be performed twenty times, for a grand total of at least 15,360 experiments.

9.3 Metrics Collection

Each experimental run collects several pieces of information to confirm the comple-
tion (or not) of the three panoramic tours as well as to evaluate the performance of MCL

and the frame comparison functions under the various perturbation conditions.

9.3.1 CSYV files

The experiment software records data in comma separated variable (CSV) files to al-
low easy incorporation into most spreadsheet, graphing, and data analysis programs. The
first line of each file is a header with a short name for each column. The remaining lines

contain the data from one experimental variation. The data columns are detailed in Ta-

139

bles 9.5 and 9.6. A short sample results file in shown in Figure 9.2.

9.3.2 SQL files

A utility program takes one or more CSV files generated from running the experiments
and combines them into an sqlite3 database. From this database, a series of SQL queries
are run to produce reports on the experiment results. In addition to the standard queries,
ad-hoc SQL requests can be made to delve deeper into the data.

The database consists of two tables: one to record the CSV file names used, and
another to record the experimental data itself. The description of the fields is the same
as those given in Tables 9.5 and 9.6. The SQL to create the database tables is given in

Figure 9.3.

9.4 Evaluation Criteria

The purpose of the experiments is to support the claim that an agent using metacog-
nition with a temporal component (level 3) and the proper frame comparison function will
perform better in a perturbed environment than an agent using instinctive or evaluative
metacognition. The number of steps required to complete a triple panoramic tour will be
used as the primary method to compare the Rover using different MCL levels and frame
comparison functions.

ANOVA analysis (NIST/SEMATECH 2003) is done to determine if the Mars Rover
performance using one MCL level (and frame comparison function) is statistically signifi-
cant from another. The null hypothesis is that there is no difference between the number of
steps needed to complete the triple panoramic tour when using the different MCL compo-

nents. This analysis is done using the Python statlib.anova package.'

Thttp://code.google.com/p/python-statlib

140

The success of the MCL Frame comparison function will be evaluated by the number
of tours completed and the average number of actions (steps) required. A single metric,
a letter grade from A to F, is used to combine both number of steps and number of tour
failures. As usual, the lower letter grades are better (A is best).

Computing the grade score starts by grading each trial using the criteria in Table 9.7.
Next, the number of trials for each letter score is determined. Each count is then multiplied
by the score for the grade given in Table 9.7. These are summed and then divided by the
number of experimental trials to get a numeric score between 0 and 100. A score greater
than 90 is assigned an A, greater than 80 a B, greater than 70 a C, greater that 60 a D.

Scores of 60 or less are given an F.

141

on start: call rover.set_goal_at_level (' TookPanoramicl,
TookPanoramic2,
TookPanoramic3,
TookPanoramici4,
TookPanoramich,
TookPanoramiché,
TookPanoramic7,
TookPanoramic8;
Transmitted’),
run until nogoal;
on sleep: stop;
and then
on start: call rover.set_ezp(P3),
call rover.set_goal_at_level (' TookPanoramicl,
TookPanoramic?2,
TookPanoramic3,
TookPanoramic4,
TookPanoramich,
TookPanoramicé,
TookPanoramic7,
TookPanoramic8;
Transmitted’),
run until nogoal;
on sleep: stop;
and then
on start: call rover.set_ezp(P6),
call rover.set_goal_at_level (' TookPanoramicl,
TookPanoramic2,
TookPanoramic3,
TookPanoramici4,
TookPanoramich,
TookPanoramicé,
TookPanoramic7,
TookPanoramic8;
Transmitted’),
run until nogoal;
on sleep: stop;

F1G. 9.1. Sample experiment script for three panoramic tours with perturbations.

Table 9.5. Description of the fields in the experiment result CSV file (Part 1).

Column | Values Description
MCL 0-3 MCL Level (see Section 9.2.1)
FRM 1 —9 | Frame comparison algorithm (see Table 9.4)
P1 0-7 Perturbation after first tour (see Table 9.3)
P2 0 — 7 | Perturbation after second tour (see Table 9.3)
STEPS >0 Total number of actions performed
TTIME >0 Total time to complete the script
TDIST >0 Total distance traveled
CMPLT | 0 — 100 Percent of three tours completed
1 >0 Number of Goto WayPoint 1 actions
2 >0 Number of Goto WayPoint 2 actions
3 >0 Number of Goto WayPoint 3 actions
4 >0 Number of Goto WayPoint 4 actions
5 >0 Number of Goto WayPoint 5 actions
6 >0 Number of Goto WayPoint 6 actions
7 >0 Number of Goto WayPoint 7 actions
8 >0 Number of Goto WayPoint 8 actions
B >0 Number of Blow actions
C >0 Number of Calibrate actions
D >0 Number of Diagnose actions
F >0 Number of Fast Speed actions
I >0 Number of Take Image actions
L >0 Number of Localize actions
M >0 Number of Medium Speed actions
P >0 Number of Take Panoramic actions
R >0 Number of Recharge actions
S >0 Number of Slow Speed actions
T >0 Number of Transmit actions
\% >0 Number of Wait actions
Z >0 Number of Sleep actions

142

Table 9.6. Description of the fields in the experiment result CSV filea (Part 2).

143

Column Values | Description

knt_zero > 0 | Monitor give no suggestions

knt_one >0 | Monitor give one suggestion

knt_two >0 | Monitor give two suggestions
knt_three >0 | Monitor give three suggestions
knt_four >0 | Monitor give four or more suggestions
UNKNOWN >0 | Times an Unknown CRC suggested
IGNORE > 0 | Times Ignore suggested

NOOP > 0 | Times No Operation suggested
TRY_AGAIN >0 | Times Try Again suggested
SOLICIT_HELP >0 | Times Solicit Help suggested
RELINQUISH_CONTROL | >0 | Times Relinquish Control suggested
SENSOR_DIAG > 0 | Times Sensor Diagnostic suggested
EFFECTOR_DIAG > 0 | Times Effector Diagnostic suggested
SENSOR_RESET > 0 | Times Sensor Reset suggested
EFFECTOR_RESET > 0 | Times Effector Reset suggested
ACTIVATE_LEARNING >0 | Times Activate Learning suggested
ADJ_PARAMS > 0 | Times Adjust Learning Parameters suggested
REBUILD_MODELS > 0 | Times Rebuild Models suggested
REVISIT_ASSUMPTIONS | >0 | Times Revisit Assumptions suggested
AMEND_CONTROLLER > 0 | Times Amend Controller suggestion
REVISE_EXPECTATIONS | >0 | Times Revise Expectations suggestion
ALG_SWAP >0 | Times Algorithm Swap suggested
CHANGE_HLC >0 | Times Change HLC suggested
RESCUE >0 | Times Rescue suggested

GIVE_UP >0 | Times Give Up suggested
optionsExhausted > 0 | Times response Options Exhausted
otherResponse >0 | Times an unlisted response was given

144

A

SENSOR_DIAG

,ACTIVATE_LEARNING,ADJ_PARAMS,REBUILD_MODELS,REVISIT_ASSUMPTIONS, J,J,
688 more lines here

four, UNKNOWN, IGNORE,NOOP, TRY_AGAIN, SOLICIT_HELP,RELINQUISH_CONTROL,
— AMEND_CONTROLLER,REVISE_EXPECTATIONS,ALG_SWAP,CHANGE_HLC,RESCUE,GIVE_UP,optionsExhausted,otherResponse

F1G. 9.2. Sample CSV experiment file showing the header row (split to fit on page) and the first and last several data rows

1,0,0,0,143,3835,840,100,47,4,13,26,8,23,4,3,7,0,3,0,0,3,2,0,27,14,0,6,0
1,0,0,1,166,4777,946,100,69,7,16,29,8,26,4,6,4,0,3,0,0,3,2,0,27,25,0,6,0
1,0,0,2,154,4195,916,100,54,5,14,31,6,24,5,4,7,0,3,0,0,3,2,0,27,17,0,6,0
1,0,0,3,126,3388,704,100,42,4,12,21,7,20,3,4,3,0,3,0,0,3,1,0,27,12,0,6,0
1,0,0,4,300,5459,890,90,51,8,17,27,8,23,3,5,3,0,3,0,0,2,2,0,26,15,0,6,0
1,0,0,5,145,3890,860,100,47,5,13,29,6,24,3,3,7,0,3,0,0,3,2,0,27,14,0,6,0
1,0,0,6,147,3887,860,100,48,8,17,27,6,21,3,3,6,0,3,0,0,3,2,0,27,15,0,6,0
1,0,0,7,300,4712,556,90,34,5,12,17,4,14,2,2,3,0,2,0,0,2,1,0,23,10,0,5,0
3,9,7,0,300,4178,428,90,25,4,9,12,3,11,3,2,2,0,1,0,0,1,1,0,15,7,0,3,0,0,298,1,0,1,0,0,0,0, 4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,1,300,4232,420,90,24,2,6,14,3,11,2,3,3,0,1,0,0,1,1,0,16,7,0,3,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,2,300,4106,384,90,21,2,7,14,2,8,1,2,4,0,1,0,0,1,0,0,15,6,0,3,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,3,300,4075,366,90,21,1,6,13,2,9,2,2,3,0,1,0,0,1,0,0,14,6,0,3,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,4,300,4018,368,90,20,2,7,13,2,8,2,2,3,0,1,0,0,1,0,0,14,6,0,3,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,5,300,4252,458,90,26,2,7,16,3,12,2,2,4,0,1,0,0,1,1,0,16,7,0,3,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,6,300,3743,268,90,14,1,5,9,2,6,1,1,3,0,1,0,0,1,0,0,10,4,0,2,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,9,7,7,300,3865,330,90,17,3,7,11,2,7,1,1,3,0,1,0,0,1,0,0,10,5,0,2,0,0,298,1,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

)
<
™
z -
e m
= a
- g
s
=
[ATERVING)
= o |
O p Ml
< P
H#m
R o
i
2 h
[¢]
N
= 44
i)
=R
H‘éo
H 2w
n o~ 3
D_.Q)Lil
m‘:m
o -~
)
TP
~ g4
DJ’%Dl
— O
4 O
Mo
ENO
|]
Lk
=
% =]
mn

CREATE TABLE filenames (
fn_id integer primary key autoincrement,

filename text);

CREATE TABLE experiments (
exp_id integer primary key autoincrement,

file_id integer, "MCL” integer , "FRM”’
"P1° integer , *P2° integer , >STEPS”’
"TTIME” integer , ’'TDIST’ integer , °'CMPLT’
1’ integer , 2’ integer, '3’ integer, 4’
’5’ integer , '6° integer, 7’ integer, '8’
B’ integer , 'C’ integer , 'D’ integer, 'F’
"I’ integer , 'L’ integer, 'M’ integer, ‘P’
'R’ integer , 'S’ integer, T’ integer , W’
’Z’ integer ,

>knt_zero’ integer, ’knt_one’
>knt_two’ integer , "knt_three”’
>knt_four”’ integer ,

"UNKNOWN’ integer , ’'IGNORE’

"NOOP’ integer , "TRY_AGAIN’
>SOLICIT_HELP’ integer ,

"SENSOR_DIAG’ integer , ’EFFECTOR_DIAG’
"SENSOR_RESET’ integer , 'EFFECTOR_RESET’
>ACTIVATE_LEARNING’ integer ,

*ADJ PARAMS’ integer , "REBUILD_MODELS’
"REVISIT_ASSUMPTIONS’ integer ,

> AMEND_CONTROLLER’ integer ,
"REVISE_EXPECTATIONS’ integer ,

"ALG_SWAP’ integer , ’CHANGE_HLC’
"RESCUE”’ integer , "GIVE_UP’
optionsExhausted”’ integer ,
otherResponse’ integer);

F1G. 9.3. SQL CREATE TABLE statements for the MCL/Mars Rover experiments

integer ,

integer ,

integer ,
integer ,
integer ,
integer ,
integer ,
integer ,

integer
integer

integer
integer

"RELINQUISH_CONTROL’ integer

integer
integer

integer

integer
integer

145

Table 9.7. Grading Criteria for a Single Experimental Trial

Grade | Points | Criteria

A 95 Number of steps less than average number of steps for un-
perturbed trials

B 85 Number of steps less than average number of steps plus one
standard deviation of the unperturbed trials

C 75 Number of steps less than average number of steps plus two
standard deviations of the unperturbed trials

D 65 Number of steps more than average number of steps plus two
standard deviations of the unperturbed trials but less than the
maximum number of steps allowed for experimental trials

F 0 Number of steps equal to maximum number of steps allowed

for experimental trials

146

Chapter 10

RESULTS

The triple-panoramic tours using the MCL metacognition Levels 0: Bereft, 1: Instinc-
tive, 2: Evaluative, and 3: Temporal were run as prescribed in the preceding methodology
chapter. The averaged tabular results are included in Appendix A. The figures and tables in
this chapter provide summary information or explore specific experimental results. There

were
e 100 experimental results CSV files analyzed,
e 38400 experimental trials,
e and a maximum of 500 steps allowed in a trial.

The experimental results will be presented in three phases. First are the trials with no
perturbations as these form a baseline against which the other trials will be judged. Next
are trials where the same perturbation is used in the second and third parts of the triple
panoramic tour. After that are trials using two different perturbations. In the last section,
the frame comparison function with the best performance is determined along with some

general observations.

147

148

10.1 No Perturbation Results

The basic information about the unperturbed experimental trials is given in Table 10.1.
Of the 38400 experimental trials, 600 were done without any perturbations. In an ideal
world, with a perfect planner, all 600 trials should have the same number of steps. But
the Rover has only a simple, non-deterministic, STRIPS planner which introduces some

variability in the quality of plans generated.

Table 10.1. Unperturbed Trials

What Number
PO experiments 600
PO minimum number of steps 123
PO average number of steps 147
PO maximum number of steps 183
PO minimum total time 3293
PO average total time 3901
PO maximum total time 4797
PO average step time 26.54

This variability is shown in the histograms of the steps required to complete the un-
perturbed plans shown in Figure 10.1. The best trial had 123 steps and the worst 183. The
unperturbed Mars Rover experiment trials were completed in an average of 147.1 steps.
The executed steps averaged 26.54 seconds per step. Most steps take 16 or 20 seconds but
recharge (R) and transmit (T) may take longer.

Table 10.2 shows the 600 trials divided by the MCL level and Frame comparison
method used. An ANOVA test (bottom of Table 10.2) shows that there is no statistical dif-
ference between the trials when considering the MCL level / Frame comparison functions.
This is the expected result as, when there are no perturbations, MCL is not invoked.

The average of 147.1 steps and the standard deviation of 9.0 are used to fill in the step

149

34 -

Y

123 147

—
o0
W

F1G. 10.1. PO Histogram

limits for the letter scores defined in Table 9.7. Table 10.3 shows the step limits for the five

grades.

Table 10.2. PO Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o

MO: Bereft 127 | 1459 | 168 | 9.78
M1: Instinctive 127 | 1474 | 168 | 9.06
M2: Evaluative 127 | 1456 | 163 | 9.11
M3: Temporal 134 | 148.3 | 160 7.5
F1: First 128 | 147.1 | 165 | 8.51
F2: New 130 | 147.7 | 163 | 7.92
F3: Random 124 | 1474 | 167 | 10.25
F4: EVS 123 | 145.8 | 162 | 8.12
F5: 1IS 124 | 1475 | 164 | 9.68
F6: EVS and IIS 132 | 146.6 | 169 | 8.94
F7: EVS butnot IIS | 129 | 148.6 | 183 | 10.9
F8: IIS but not EVS | 132 | 147.5 | 162 | 8.07

ANOVA judged all methods equal

Table 10.3. Grading Limits for a Single Experimental Trial

Grade | Points

Criteria

95

Number of steps < 147

85 148 < Number of steps < 156

75 157 < Number of steps < 165

65 166 < Number of steps < 499

| | Q) W >

0

Number of steps = 500

150

10.2 Single Perturbation Results

151

In this section, Mars Rover experimental trials with a single perturbation are analyzed.

For each perturbation, a histogram and statistics table are shown. Table 10.4 has a list of

figures and tables for the seven single perturbation trials.

Table 10.4. Single Perturbation Histograms and Statistics

Perturbation Histogram Statistics

P1: Partial charging Figure 10.2 | Table 10.7
P2: Reduced capacity Figure 10.3 | Table 10.8
P3: Longer calibration time Figure 10.4 | Table 10.9
P4: Probabilistic calibration Figure 10.5 | Table 10.10
P5: Recharge loses calibration | Figure 10.6 | Table 10.11
P6: Path time change Figure 10.7 | Table 10.12
P7: Blocked path Figure 10.8 | Table 10.13

Table 10.5 shows the number of completed single perturbation trials for each of the
four MCL levels with level 3 broken out for various frame comparison functions. Of the
seven different perturbations, P7: Blocked path caused the most failures with P2: Reduced
capacity and P1: Partial charging a distant second and third.

MCL Level 0: Bereft, failed to complete any trial with P1: Partial charging or P7:
Blocked path. MCL Level 1: Instinctive, which re-planned on any expectation failure fared
only slightly better being able to complete one trial of fifty with P1: Partial charging. MCL
Level 2: Evaluative, failed with P2: Reduced capacity and P7: Blocked path. The MCL
level 1 and 2 failures are consistent with the failure examples give in Tables 4.4 and 6.6 at
the end of Chapters 3 and 6.

Table 10.6 shows the average number of steps for the trials with a single perturbation.

The lower the average number of steps, the better the performance. Where there were

152
failures in Table 10.5, Table 10.6 will have an average number of steps near or equal to
500.

MCL Level 2, Evaluative, and MCL Level 3, Temporal, comparison routine 2: New,
have the same failures in Table 10.5 and comparable steps in Table 10.6. This was expected
as the MCL Level 2 treats every exception as a new event as does the New comparison

function.

153

0O 8 05 05 05 O0S O € 05 O 0 0 yred payoord Ld
0¢ 0S¢ 05 0 0 0 05 0 05 O0OS 0S¢ O0S a3ueyo own Yred 9d
0S 0S 0S 0S 0S 0S 0S 0S 0S 0S 0S 0S | UoneIqIEed Saso[d5Ieydy Gd
06 0 05 0 05 0 0SS 0 0s O0s 0 O0S uoneIqifes onsifqeqold yd
06 0 05 0 05 0 0 0 0 O0s 0 O0S own uoneIqIed 13U ¢4

0O 05 05 06 05 0 O o0 O0S O 0S¢ 0¢ Aroeded peonpay zd
0¢ 0 05 0 0 05 05 05 0S5 O0S I 0 SursTeyo fented 1d
0 0 05 0 0 0 0SS 05 0SS 0S 0S 0§ uoneqinirad oN 0d
84 LA 94 Sd ¥vd &4 A 14 EW W [N OW uonyvq.iniod

uoneqrnaad 9[3urs v Aq paropury uaym uonouny uostredwod swel] / DN Aq pale[dwo)) sinoy, *S'01 2qeL

154

006 68¢ LST 6ST &SI ¥91 00§ Lye LST 00S 005 00S yred payoord Ld
ovt ovl 0SI 9vl L¥yI LyDI Lyl LvD 8vI LyI L¥I Lyl o3ueyo own yred 9d
19T LST S9T 8ST 091 LST 19T 9ST 8ST LST 8ST 9SI | UOneIqI[ed saso] 931y Gd
Lyl 0S1L 8yl 0OSI Syl LvI 81 S¥I Lyl o6vl Syl 161 uonerqifes onsifiqeqold yd
L1e 0ce ovl ovl 8yl o6vl 9cc 8¥l Lvl 61¢ Lyl 6Vl owm uoneIqIed 13U ¢4
006 LLT 091 €91 GLT 891 00S LLT LLT 00S €91 651 Kyroeded paonpay zd
891 PvLI 891 CLT OLT S8T 891 OLI 891 OLT Se6v 00S Sursreyo [enred 1d
Lyl 8¥1L OvI Lyl Syl LyI LyI Lyl 8Vl SvI Lyl Svl uoneqinirad oN 0d
84 LA 94 Sd pd E4d A 14 EWN AN IWN OW uonyvgniiod

uoneqrnad a3urs v Aq paropury uaym uonduny uostredwod swelr] / TDIN Aq sdaig a5ei1oay "9° ([dqeL

155
10.2.1 P1: Partial Charging

The inability of the MCL Level 0: Bereft and MCL Level 1: Instinctive, to complete
panoramic tours with the P1: Partial charging perturbation skews the P1 histogram, Fig-
ure 10.2. It is shown with a broken horizontal axis to allow more of the information to
seen. For any histogram with failure trials, two averages are give: one including the 500
step trials, and one without. In this case, the average is 226.13 when the failing cases are
included and 172.02 when they are not.

The ANOVA analysis given at the bottom of Table 10.7 shows puts MCL levels 0
and 1 in the same poorly performing group and separates into three groups with temporal

comparison functions F2: New and F6: EVS and IIS doing the best.

99 M

T

ol ||||I|.||."||II||||||I| |||||||||"|||II“ oflol oo on ‘ ‘ ‘

138 172 283

F1G. 10.2. P1 Histogram

Table 10.7. P1 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F |G
MO: Bereft 500 | 500.0 | 500 000 O O O 50|F
MI1: Instinctive 273 14955 500 32110 O O 1 49| F
M2: Evaluative 143 | 170.7 | 243 11706 |2 9 9 30 O |C
M3: Temporal 140 | 1689 | 215|13.12|2 6 10 32 0 | C
F1: First 139 | 1704 | 210 | 14022 7 8 33 0 |C
F2: New 143 | 168.1 | 189 | 125212 8 12 28 0 |C
F3: Random 145 | 185.6 | 283 |2855|1 3 2 44 0 |D
F4: EVS 144 | 1705 | 207 | 11.12 |1 4 11 34 0 |D
F5: 1IS 148 | 1729 | 2391678 0 7 5 38 0 |D
F6: EVS and IIS 140 | 168.1 | 198 | 1164 |3 5 10 32 0 | C
F7: EVSbutnotIIS | 142 | 174.1 | 236 | 1672 5 4 39 0 |D
F8: IISbutnot EVS | 138 | 168.8 | 196 | 1428 |2 10 9 29 0 |C

ANOVA ordered grouped methods

C F2: New and F6: EVS and IIS
C-D M2, M3, F1, F4, F5, F7 and F8
D F3: Random
F MO: Bereft and M1: Instinctive

10.2.2 P2: Reduced Capacity

156

Reducing the battery of the Rover proved more challenging than reducing the amount

of recharge. MCL Level 2: Evaluative, failed completely as did its twin MCL Level 3:

Temporal with comparison function F2: New. Also failing was MCL Level 3: Tempo-

ral with comparison function F8: IIS but not EVS. So while a Rover with MCL Level 1:

Instinctive, can handle this perturbation, Rovers with what should be a “better” metacog-

nitive assistance do not. All of the failing MCLs keep suggesting TRY AGAIN when the

recharge action brought the Rover’s battery only up to 80 energy units and not the expected

100. MCL continued repeating the advice until the trial was stopped at 500 steps. While

TRY AGAIN is good advice in some cases (e.g., P1: Partial charging), it does not solve the

problem of reduced battery capacity.

157

The ANOVA analysis reflects the difference between the failing and non-failing trials.

150 M

I
130 169 223 H 2

F1G. 10.3. P2 Histogram

158

Table 10.8. P2 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F |G
MO: Bereft 132 1 159.7 | 1866|1204 |6 10 18 16 0 | C
MI1: Instinctive 140 | 1633 | 200 | 1172 13 17 18 0 | C
M2: Evaluative 500 | 500.0 | 500 00,0 O O O 50|F
M3: Temporal 150 | 1770 | 22311509 |0 3 4 43 0 |D
F1: First 153 | 1775] 204 | 11,18 | 0 1 4 45 O |D
F2: New 500 | 500.0 | 500 000 O O O 50|F
F3: Random 139 | 168.7 | 194 | 1268 |3 2 16 29 0 |C
F4: EVS 149 | 1758 | 205105810 1 6 43 0 |D
F5: IIS 130 | 1633 | 19412596 8 16 20 0 | C
F6: EVS and IIS 130 | 1609 | 182 1203 |7 8 15 20 0 |C
F7: EVSbutnotIIS | 161 | 1773 | 203 1055|{0 O 5 45 O |D
F8: IIS but not EVS | 500 | 500.0 | 500 000 O O O 50|F
ANOVA ordered grouped methods
C MO, M1, F5 and F6
C F3: Random
D M3, F1, F4 and F7
F M2: Evaluative, F2: New and F8: IIS but not EVS

10.2.3 P3: Longer Calibration Time

With longer calibration time, the Rovers were divided into those whose average num-
ber of steps were around 149 (about the same as unperturbed) and whose average steps
were near 320. So while there were no complete failures, MCL Level 2: Evaluative and
MCL Level 3: Temporal with comparison functions 2, 7, and 8 provided poor advice which
doubled the number of steps. This difference between the two groups of trials is statistically
significant as seen in the ANOVA analysis in Table 10.9.

Rovers using MCL Level 0: Bereft, didn’t notice the longer calibration time. The
Rovers using MCL Level 1: Instinctive, responded to the expectation failure by re-planning.
This didn’t change the calibration times but may have resulted in slightly better plans. The

other Rovers were divided into those whose metacognitive assistant offered 7RY AGAIN

159
once and those that continued to offer it again and again. Repeated attempts to Calibrate
eventually drained the battery until recharging became imperative. Once the Rover was
recharged, it moved on to take the photographic image. This time, the assistant’s bad
advice didn’t stop the Rover from completing the panoramic tour. The bad advice did

cause a lengthy delay.

21 1

3 L |.J.”\L|\..\m‘u|\MA\”!"\‘MMWﬂml. o 4wy

118 205 440

F1G. 10.4. P3 Histogram

Table 10.9. P3 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F|G
MO: Bereft 127 | 1490] 169 | 896|120 22 5 3 OB
M1: Instinctive 118 | 1473] 166 | 971 |25 16 8 1 OB
M2: Evaluative 269 | 3192 | 414 ({28541 0 O O 50 O |D
M3: Temporal 133 1 1474 | 164 | 95125 14 11 O O |B
F1: First 133 | 1487 | 173 | 94223 15 11 1 O |B
F2: New 261 | 326.1 | 4403576 | 0 O O 50 O|D
F3: Random 132 | 1494 | 165| 896 |21 16 13 0O O |B
F4: EVS 131 | 148.7 | 167 | 88520 22 6 2 O |B
F5: 1IS 130 | 1468 | 166 | 89227 16 5 2 0 |B
F6: EVS and IIS 136 | 1490 | 168 | 83825 16 8 1 O |B
F7: EVS butnot IIS | 256 | 320.1 | 41712913 0 O O 50 O |D
F8: IIS but not EVS | 262 | 317.7 | 3853384 | 0 0 O 50 0 |D

ANOVA ordered grouped methods

B MO, M1, M3, F1, F3, F4, F5 and F6
D M2, F2, F7 and F8

10.2.4 P4: Probabilistic Calibration

160

Generally only three Photo Image actions are needed during a triple panoramic tour so

only three calibrations will need to be done. The repair, TRY AGAIN, should be sufficient

to overcome this perturbation. The calibration action would be repeated until it eventually

succeeds (usually on the next attempt) and then 7RY AGAIN would not be suggested. The

ANOVA analysis (bottom of Table 10.10) does separate the experimental trials into three

distinct sets despite having very close means.

Rovers using MCL Level 0: Bereft, whose metacognitive agent would not suggest TRY

AGAIN, would get a failure upon attempting to take the image while not calibrated. The

failure would cause a new plan to be generated which would include a calibration. Rovers

using MCL Level 1: Instinctive, would re-plan when the calibration expectation. This plan

would start with a calibration action so they were effectively doing the TRY AGAIN repair.

32 m

\ 4

122 148 199

F1G. 10.5. P4 Histogram

Table 10.10. P4 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F|G
MO: Bereft 132 | 151.8 | 181 | 1031 |16 20 10 4 O |B
M1: Instinctive 12511456 | 172 | 922|124 23 2 1 O0|B
M2: Evaluative 125 | 149.3 | 165 93119 20 11 O O|B
M3: Temporal 122 | 1475 176 | 10.1 {21 19 9 1 O |B
F1: First 126 | 145.1 | 192 | 1156 |30 13 6 1 O |B
F2: New 126 | 1480 | 164 | 936|124 17 9 0 O |B
F3: Random 124 | 147.1] 162 | 905|119 24 7 0 O |B
F4: EVS 127 | 1458 | 164 | 86229 15 6 O 0| B
F5: 1IS 133 | 150.1 | 167 | 862 |21 17 10 2 0| B
F6: EVS and IIS 129 | 1482 | 182 | 10622 19 7 2 0| B
F7: EVSbutnot IIS | 132 | 150.2 | 199 | 122319 18 10 3 O |B
F8: IIS butnot EVS | 127 | 147.6 | 167 | 1024 (22 17 10 1 O | B

ANOVA ordered grouped methods

B M1: Instinctive, F1: First and F4: EVS
B M2, M3, F2, F3, F5, F6, F7 and F8
B MO: Bereft

161

162
10.2.5 PS5: Recharge Loses Calibration

In order to take an Image (I), the camera has to be calibrated (C). Since these are done
at different nodes, a movement command must be executed between the I and C commands.
If the movement causes the power level to drop too low, then a recharge (R) must be done.
With the P5 perturbation, a recharge after doing a calibration requires another calibration
to be done. Since only three Images are likely added to a triple panoramic tour, only three
calibrations should be needed.

If the Rover does a calibration and then a recharge, MCL levels 1 and above would
notice the loss of calibration. A second recharge (such as after a TRY AGAIN) would not
lose calibration because the Rover was no longer calibrated. The new plan would now
direct the Rover to calibrate. With a full battery, the Rover would be able to calibrate and
take the photographic image without needing to charge again. The ANOVA analysis shows

that there were no significant performance differences between the trials.

22 1

. | ol »

123 159 294

Y

F1G. 10.6. P5 Histogram

163

Table 10.11. PS5 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F|G
MO: Bereft 132 | 1565 | 219 (1998 |15 16 10 9 O |B
M1: Instinctive 131 | 158.1 | 221 (212713 16 13 8 O |B
M2: Evaluative 134 | 1574 | 282 |2581 |19 13 12 6 O |B
M3: Temporal 130 | 158.3 | 227 | 214716 10 18 6 O | B
F1: First 127 | 156.2 | 224 (2212120 14 8 8 OB
F2: New 123 | 1615 | 2943253120 12 9 9 O |B
F3: Random 126 | 1573 | 226 2324120 7 12 11 O |B
F4: EVS 124 | 161.0 | 224 12685 |16 12 9 13 O | B
F5: 1IS 128 | 158.8 | 230 | 2507 |18 12 10 10 O | B
F6: EVS and IIS 128 | 1657 | 228 | 3214|120 8 7 15 0| B
F7: EVSbutnotIIS | 131 | 157.5| 225 | 245120 9 13 8 O |B
F8: IIS but not EVS | 131 | 161.8 | 225 | 25.18 | 12 15 13 10 O | B

’ ANOVA judged all methods equal

10.2.6 P6: Path Time Change

Like changing the time to perform re-calibration, changing the time to move from one
node to another did little to the performance of the Rover. The times for completing the
triple panoramic tour with this perturbation were not much different from those without a
perturbation. The ANOVA analysis isolated F6: EVS and IIS which had the highest mean
into its own group otherwise there were no significant performance differences.

While every Rover’s triple panoramic tour had to include three calibrations and thus
the Rover had to encounter the changed calibration time at least twice, not every tour
needed to move between nodes 3 and 8. Also, when movement was made between those
two nodes, MCL would see the longer transit time and make a TRY AGAIN suggestion.
But as the Rover would have moved, it could no longer re-execute the 3@8 (or 8@3) com-

mand so the TRY AGAIN suggestion would be ignored.

164

32 - M

b= W h o,

124 147 175

F1G. 10.7. P6 Histogram

Table 10.12. P6 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F|G
MO: Bereft 129 | 1473 | 175 | 96525 16 8 1 O |B
MI1: Instinctive 126 | 147.2 | 165| 948 126 18 6 O O |B
M2: Evaluative 126 | 1475 | 170 | 9.67 |27 14 8 1 O |B
M3: Temporal 131 | 148.1 | 167 | 89324 16 9 1 O |B
F1: First 132 11473 | 161 | 846|121 23 6 0 O |B
F2: New 133 [147.7 | 162 | 761 |27 16 7 0 O |B
F3: Random 126 | 1475 170 | 9.15 121 20 8 1 O|B
F4: EVS 132 | 147.1 | 162 | 86724 18 8 0 O |B
F5: 1IS 125 11466 | 171 | 992|122 22 5 1 O |B
F6: EVS and IIS 131 | 1505 | 164 | 828 |19 15 16 0 O | B
F7: EVS butnotIIS | 124 | 146.6 | 168 | 967 |25 20 4 1 O |B
F8: IIS but not EVS | 128 | 146.2 | 167 | 1038 |26 16 7 1 0 |B
ANOVA ordered grouped methods
B M0, M1, M2, M3, F1, F2, F3, F4, F5, F7 and F8
B F6: EVS and IIS

165
10.2.7 P7: Blocked Path

Rovers using MCL Levels 0: Bereft, 1: Instinctive, and 2: Evaluative, were unable
to complete any tours with the path blocked between nodes 3 and 8. Some MCL Level 3:
Temporal, Rovers failed completely (comparison functions 2 and 8). Other Rovers (with
comparison functions 1 and 7) had some successes and failures. While the rest (3, 4, 5, and
9) had all successes.

The failures were caused by TRY AGAIN being offered as the suggestion again and
again. The success occurred when the TRY AGAIN was judged to have failed and REBUILD
MODELS suggested or when a low battery allowed the Rover to ignore the TRY AGAIN

suggestion, recharge, and then have a plan that avoided the broken node 3 to node 8 link.

309 M

134 162 307

F1G. 10.8. P7 Histogram

166

Table 10.13. P7 Statistics by MCL / Frame comparison function

MCL Level Min | Mean | Max o A B C D F |G
MO: Bereft 500 | 500.0 | 500 000 O O O 50|F
M1: Instinctive 500 | 500.0 | 500 000 O O O 50|F
M2: Evaluative 500 | 500.0 | 500 000 O O O 50|F
M3: Temporal 135 | 157.3 | 186 1146 23 12 9 0 |B
F1: First 144 |1 3470 | 500 | 16762 |1 3 7 12 27| F
F2: New 500 | 500.0 | 500 000 O O O 50|F
F3: Random 140 | 1643 | 196 | 1245 |3 10 15 22 0O | C
F4: EVS 134 | 1589 | 185 964 |4 17 14 15 0 | C
F5: IS 138 | 1592 | 187 | 1118 |7 16 17 10 0 | C
F6: EVS and IIS 137 | 157.8 | 183 | 1098 |8 15 16 11 0O | C
F7: EVSbutnotIIS | 152 | 389.7 | 500 | 15050 2 4 12 32| F
F8: IIS but not EVS | 500 | 500.0 | 500 00{0 O O O 50|F
ANOVA ordered grouped methods
B-C M3, F4, F5 and F6
C F3: Random
F F1: First and F7: EVS but not IIS
F MO, M1, M2, F2 and F8

10.2.8 Analysis of Single Perturbation

Table 10.14 shows the steps taken, total time, and counts of action performed for the
best and worst MCL level / frame comparison function for each single perturbation. By
looking at the best cases, the triple panoramic tour is likely to require 3 photographic im-
ages (1) and therefore 3 calibrations (C), 12 recharges (R) (unless the perturbation involves
recharging in which case you need 24), 24 to 27 panoramic images (P), 6 transmissions (T)
and 1 location (L).

For PO: No Perturbation, the best (MCL Level 3: Temporal, with comparison function
F4: EVS) and the worst (MCL Level 3: Temporal, with comparison function F7: EVS but
not IIS) owe their places to variations in the plans generated by the STRIPS planner. Rovers

who get longer plans end up having to take extra images and panoramic views which forces

167
additional recharges, transmissions, calibrations, and localizations.

With P1: Partial charging, the important counts to observe are for 5 and R. A Rover
with MCL Level 3: Temporal, and comparison function 7: EVS but not IIS, went to the
recharge location 18 times (about the same as the best PO time) but, because of the TRY
AGAIN suggestion, recharged 28 times. A Rover using MCL Level 1: Instinctive, without
such TRY AGAIN guidance, returned to node 5 115 times for 115 recharges and would still
be doing it if the trial hadn’t been stopped at 500 steps.

An excessive number of recharges, 447, was also done by the MCL Level 2: Evalu-
ative Rover with the most steps for P2: Reduced capacity. In this case, MCL noticed that
the recharge did not bring the battery level to the expected 100 level and suggested that
the recharge be done again. As the reduced battery capacity will never advance the bat-
tery level past 80, when the repeated recharge did not reach the anticipated 100 level, TRY
AGAIN was again suggested. This bad advice repeated to the end of the trial at 500 steps.

More calibrations than normal were done with P3: Longer calibration time, P4: Prob-
abilistic calibration, and P5: Recharge loses calibration.

Table 10.15 shows the MCL repair suggestions made for the single perturbation trials.
Naturally, the unperturbed (PO) trials have no suggestions as no exceptions were raised.
TRY AGAIN was the most suggested repair and it was suggested for all perturbations. RE-
BUILD MODELS was suggested by some when it was seen that TRY AGAIN wasn’t work-
ing. A distant third was SENSOR DIAGNOSTIC which was only suggested by the very

desperate coping with the blocked path.

168

8 91 O I T 0 0 1 0O ov v € ¢l € 91 S 1 €LTL 00¢ 0N JSTOM
el Lc 0 I ¢ 0 0 ¢ 0 9 L € 91 ¢ 1C ST L 796¢ el 4 1s9dg
yivd paysolq :/d
L1 Lc 0 ¢ v 0 0 ¥ 0 v 9 ¢ LT 8 149 0Cc 6 CeSy CLI OIN ISIOM
14! Lc 0 I ¢ 0 0 ¢ 0O ¢ € € 6l 9 ¢ or ¢ C8¢CE 144! Ld 1s9dg
a5upyd w1 Ywvd 9d
187 Lc 0 ¥ ¢€ 0 0 91l 0 v 14 ¢ IS . 6F Iy 0C ¢€8IL ¥6¢C d ISTOM
4! Lc 0 I ¢ 0 0 ¢ 0 ¢ 14 v 6l ¢ ¢ or ¢ I16C¢ €Cl o 1s9g
UODAQIIDD $ISO] dSIDYIIY G
0c¢ Lc 0 ¢ ¢ 0 0 9 0 9 9 ¥ 0¢ 6 6¢ ¢¢ 11 ¢¢gIS 661 LA JSTOM
14! Lc 0 I € 0 0 ¢ 0 9 14 ¢ 8l 9 0¢ or ¢ LOEE (44! ¢IN 1s9dg
uonvAqIDI JUSNIGPGOLd “Hd
61 8¢ 0 ¢ ¥ 0 O 9T 0O ¢ S 9 6¢ 8 0¢ LT L Yoorlt Ovv cd ISIOM
I Lc 0 I € 0 0 ¢ 0o ¥ € ¥ Ol ¢ 61 IT v €61¢ SI1 IIN 1s9dg
U1} UOUDAQDD 42SUOT €
vy ¢ 0 0 T 0 0 1 0 I I ¢ 6 4 1T L € Y0¥0T 00§ 44\ ISIOM
L1 Lc 0 I € 0 0 ¢ 0 ¢ € v 6l 9 61 1 LSSE (0] od 1s9dg
&ovdpo paonpay :z7d
SIT ST 0 8 T O O 1 0 6¢ ¢¢ ¢ CII ¢ 891 ¢TI ¢ 11891 00S OIN ISIOM
8¢ Lc 0 [¢ 0 0 ¢ 0 ¥ € ¢ 81 9 0¢ [T v [89¢ 8¢l 8d 1s9dg
Su134vyo g 1d
81 Lc 0 ¢ v 0 0 ¥ 0 9 S AN Y4 6 LE Ic 6 L6LY €81 LA JSTOM
Cl Lc 0 [¢ 0 0 ¢ 0o ¢ € € ol 9 IC or ¢ £6¢CE e€Cl vd 1s9dg
uonypqiniiad oN :0d
o d W 1T I 4 d D qg 8 Z 9 ¢ 4 £ 4 [ulJ sdais YoM

SuoIeqINIod 9[3UIS JOJ SUONBQINIId AQ QOUBWIONS] ISIOA PUB 1sog #1°01 9[9eL

169

Table 10.15. Repair suggestions made by MCL / Perturbation

)
S

Pl P2 pP3 P4 PS5 P6 P7

0 0 0 0 0 0 0

0 0 0 0 0 0 0
4268 765 102 30 250 1644
8046 70772 32025 371 1378 54301

Repair Suggestion
Unknown

Ignore

noop

Try again

Solicit help
Relinquish control
Sensor diagnostic
Effector diagnostic
Sensor reset
Effector reset
Activate learning
Adjust params
Rebuild models
Revisit assumptions
Amend controller
Revise expectation
Algorithm swap
Change HLC
Rescue

Give up

Options exhausted
Other response

ecloloBoBololole)
S oo oo o0
ecBoBolBoBeolole)
1
S A
oo W
=)
p—
p—
O NOoO O

150 250 5 4

N

111

cBeoBeoBoBoBoBolBolohohohohohohohohohohohohoh o)
ecloloBoBololeolaol]
ecBeoBoBoBoBoBoBoBoloolohohooloRol el
cBeoBoBoBoBoBoBoBol S oloBooBoloRol e
ecloBoBolBoBoloolohhohohohohohohoh)
eBeoBoBoBoBoBolol el =Nl l)

eNeoBoloBoNoloReNe]
eNeoBoloBololoReNe]

Each trial with a single perturbation was graded and tabulated with the results shown
in Table 10.16. When averaged and a final grade assigned, it is clear that there is no
single standout. MCL Levels 0: Bereft, 1: Instinctive, 2: Evaluative, and the comparison
functions F2: New and F8: IIS but not EVS all score badly due to the number of failures.
The best, MCL Level 3: Temporal with comparison functions (4, 5, 6, and passive), are

clustered together with F5: IIS a slight favorite.

Table 10.16. Single Perturbation Grades by MCL / Frame comparison function

170

MCL Level Min | Mean | Max | o A B|C| D F | G
MO: Bereft 127 | 252 | 500 | 157 | 82 |84 |51 | 33 | 100 | F
M1: Instinctive 118 | 250 | 500 | 157 | 90 |86 |46 | 29 | 99 | D
M2: Evaluative 125 | 277 | 500 | 152 | 67 |56 |40 | 87 | 100 | F
M3: Temporal 122 | 157 | 227 | 17 | 94 |91 |73 92 | O | B
F1: First 126 | 184 | 500 | 92 | 97 |76 |50 | 100 | 27 | C
F2: New 123 | 278 | 500 | 152 | 73 |53 |37 | 87 | 100 | F
F3: Random 124 | 159 | 283 | 20 | 88 [82 |73 (107| O |C
F4: EVS 124 | 158 | 224 | 17 | 94 [89 |60 | 107 | O | C
F5: 1IS 125 | 156 | 239 | 16 | 101 | 98 | 68 | 83 0 |B
F6: EVS and IIS 128 | 157 | 228 | 17 | 104 | 86 | 79 | 81 0O |B
F7: EVSbutnotIIS | 124 | 216 | 500 | 107 | 66 |54 |40 | 158 | 32 | D
F8: IIS but not EVS | 127 | 277 | 500 | 152 | 62 |58 39| 91 [100 | F

ANOVA ordered grouped methods

B-C M3, F4, F5 and F6
C F3: Random
C F1: First

D F7: EVS but not IIS

D-F MO: Bereft and M1: Instinctive

F M2: Evaluative, F2: New and F8: IIS but not EVS

10.3 Dual Perturbation Results

Experimental trials with two different perturbations make up the majority of the Mars

Rover experiments. The average number of steps from the PxPy trials by MCL level and

temporal comparison function are shown in Appendix A. The summary information (min,

mean, max steps and standard deviation) with grades and ANOVA groupings is below in

Table 10.17. The catastrophic failures for single perturbations (e.g., P1: Reduced recharg-

ing for MCL Levels 0: Bereft, 1: Instinctive and P2: Reduced capacity for MCL Level 2:

Evaluative) also caused failure when these perturbations were part of a dual perturbation

trial. Even when each perturbation of a dual trial could be conquered singularly, having

171
two perturbations could cause a trial to reach the 500 step limit. The only Rover that did

not have a complete failure was the one using the random frame comparison function.

Table 10.17. PxPy Grades by MCL / Frame comparison function

MCL Level Min | Mean | Max | o A B C D F G
MO: Bereft 122 | 288 | 500 | 169 | 680 | 652 | 382 | 234 | 1252 | F
MI1: Instinctive 118 | 292 | 500 | 171 | 711 | 663 | 355 | 181 | 1290 | F
M2: Evaluative 124 | 318 | 500 | 161 | 459 | 371 | 264 | 733 | 1373 | F
M3: Temporal 122 | 162 | 500 | 40 | 756 | 819 | 811 | 792 22 | C
F1: First 120 | 199 | 500 | 112 | 771 | 672 | 642 | 727 | 388 | C
F2: New 123 | 318 | 500 | 161 | 431 | 368 | 276 | 752 | 1373 | F
F3: Random 117 | 161 | 411 | 21 | 696 | 738 | 757 | 1009 0 C
F4: EVS 123 | 161 | 500 | 38 | 812 | 790 | 781 | 800 17 | C
F5: 1IS 123 | 161 500 | 42 | 835|919 | 774 | 637 35 | B
F6: EVS and IIS 121 161 500 | 40 | 836 | 849 | 828 | 664 23 | B
F7: EVS butnot IIS | 124 | 222 | 500 | 113 | 480 | 498 | 469 | 1346 | 407 | D
F8: IIS but not EVS | 123 | 316 | 500 | 162 | 453 | 371 | 287 | 723 | 1366 | F

ANOVA ordered grouped methods
B-C M3, F3, F4, F5 and F6
C F1: First
D F7: EVS but not IIS
F MO: Bereft and M1: Instinctive
F M2: Evaluative, F2: New and F8: IIS but not EVS

Table 10.18 shows the repair suggestions made by the MCL levels O through 3.
There are no suggestions for MCL Level O: Bereft, as that Rover only uses its own, pre-
programmed motivations. MCL Level 1: Instinctive was set to always return NOOP which
the agent interprets as a suggestion to create a new plan from the current goals based on
the current status. As it was in Table 10.15, TRY AGAIN was the top suggestion by far, fol-
lowed by REBUILD MODELS and SENSOR DIAGNOSTIC. F3, the random comparison
function, also tried several other suggestions and, at times, ran out of alternate repairs to

suggest.

172

gOOOOOOOOO
—
(@\l

S OO O OO OO

0r68¢S

[cReleolNeoNoNoloRel d=Nelloelelielelo o)

6866CC

S OO OO OO oo
ecleBoloNohohaehaolh)
e eBoBelelol ==l
S OO OO OO OO
eNeBoBoNeRl =Nelo)

\O
\O
=N
N
o
[ag]
=2
[Q\
=2
~
S
N
o~
)
D
A

80L

S
o
—
N

S OO OO

LLTS

0

0

ILYT I¥9¥1 S6LYYPS v8YCL 0€8Y1 SSPESS
0 0 0 0 0 144912

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

QOO OO DD OO DO OO0 OO0 O OO
SO O OO OO DO OO0 OO0 O OO

S OO O OO OO
S OO OO o OO

S OO O OO OO

VLITTL 8VITI
0 0

eleBelolel-l"h=hehahalelelolel =) ==l i)

S OO NO O OO OO oo
<
N
—
—

asuodsar 1010
pasneyxe suondpo
dn aA1n

NN

OTH d8uey)

dems w03y
uoneoadxa asIAey
IQ[[ONUOD puawWy
suondwmnsse J1S1A9Y
S[opou p[IMgoy
sweted isnlpy
Surured[91eAndYy
19591 10J0o)Jq
19591 IOSUQS
onsousgerp 10309 H
o1sougerp I0suas
[onuod ysiburjoy
djoy 101108

uregde A17,

doou

a1ou3|

umouyun

84

x|

94 Sd v &d ad 4 EN n N OnW

uosa33ng A1vday

uonounj uostredwod swel] / TDIN Aq opewt suonsagsns Jreday] ‘§1°01 2qeL

173

10.4 The Best Frame Comparison Function

Measured by average number of actions (Table 10.19), several MCL Level 3 frame
comparison functions were tied. The same functions were closely packed for average
elapsed time (Table 10.20), and percent of tasks completed (Table 10.21) with frame func-

tion F3: Random, with a slight lead.

Table 10.19. Average number of actions

Best Counts | MCL/Frame
288 | MO: Bereft
292 | M1: Instinctive
318 | M2: Evaluative
162 | M3: Temporal
199 | F1: First

318 | F2: New
— 161 | F3: Random
= 161 | F4: EVS
= 161 | F5: 1IS
= 161 | F6: EVS and IIS

222 | F7: EVS but not IIS
316 | F8: IIS but not EVS

Looking at the grades of all the trials (Table 10.17), the same comparison functions
are the top rated: F3: Random, F4: EVS, F5: IIS, F6: EVS and IIS. F6: EVS and IIS had
the most As, barely beating F5: IIS which had the most As and Bs, while only F3: Random
had no failures. The four functions are not statistically different from each other nor from
MCL Level 3: Temporal using the default passive comparison function, according to the

ANOVA analysis in Table 10.22.

Table 10.20. Average elapsed time

Best Time

MCL/Frame

7135
7806
7175
4384
5129
7169
= 4339
4361
4373
4363
5646
7132

MO: Bereft

M1: Instinctive
M2: Evaluative
M3: Temporal

F1: First

F2: New

F3: Random

F4: EVS

F5: 1IS

F6: EVS and IIS
F7: EVS but not IIS
F8: IIS but not EVS

Table 10.21. Percent of tasks completed

Best Counts

MCL/Frame

60
59
57
99
87
57
e 100
99
98
99
87
57

MO: Bereft

M1: Instinctive
M2: Evaluative
M3: Temporal

F1: First

F2: New

F3: Random

F4: EVS

F5: 1IS

F6: EVS and IIS
F7: EVS but not IIS
F8: IIS but not EVS

174

175

—— 0000 0000 0000 0000 0000 L9900 0000 0000 98L0 0000 0000 84
0000 —— 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 L4
0000 0000 —— 8SLO €0L0 L8O 0000 0000 LECO 0000 0000 0000 94
0000 0000 8SLO —— LS6'0 LISO 0000 0000 86¢0 0000 0000 0000 Sd
0000 0000 ¢€OL0 LS60 —— S¢S0 0000 0000 <TOV'0O 0000 0000 0000 ¥4
0000 0000 L8O LISO S¢S0 —— 0000 0000 L8890 0000 0000 0000 @ ¢td
L99°0 0000 0000 0000 0000 0000 —— 0000 0000 VvL8O 0000 0000 ¢4
0000 0000 0000 0000 0000 0000 0000 —— 0000 0000 0000 0000 I1d
0000 0000 LECO 86£0 <COVO L8Y'O 0000 0000 —— 0000 0000 0000 €N
98L°0 0000 0000 0000 0000 0000 ¥L8O 0000 0000 —— 0000 0000 TN
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 —— 8ev0 1IN
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 8ev0 —— O
84 x| 94 S v &d ad [4 W N N on

uonouny uosredwod awelq / [9A9] TDIN JO qBISS0ID) VAONY 2201 2I9BL

176

10.5 Comparison to Predicted Performance

Section 8.3 showed the results of performing a static evaluation of MCL Level 3:
Temporal comparison functions. Table 8.14 showed the total expected correct comparisons
for the experimental perturbations.

The top three comparison functions in the static evaluation were F5: IIS, F6: EVS and
IIS, and F8: IIS but not EVS with 90% correct each. F2: New (88%), F4: EVS (85%) and
F7: EVS but not IIS (83%) followed closely. The worst two were F1: First (11%) and F3:
Random (56%).

Of the top comparison functions from the static evaluation, only F5: IIS and F6: EVS
and IIS remained in the top tier of the experimental results. The two worst from the static
evaluation did well in the experiments with F3: Random rising to the top tier and F1: First
to the second. F8: IIS but not EVS, which was tied for first place in the static evaluations,
dropped to the lowest tier in the experiments. The static evaluations were a poor predictor
of experimental success. Table 10.23 compares the static and experimental tiering of the

comparison functions.

177

Table 10.23. Static versus Experimental Comparison Function Evaluation

Comparison Static Experimental | Prediction
Method Percent | Tier | Grade | Tier | Success
F1: First 11 4 C 2 | Poor

F2: New 88 2 F 5 | Very Poor
F3: Random 56 3 C 1 | Poor

F4: EVS 85 2 B 1 Good

F5: 1IS 90 1 B 1 Great

F6: EVS and 11S 90 1 B 1 Great

F7: EVS but not 11S 83 2 D 3 | Poor

F8: IIS but not EVS 90 | F 5 | Very Poor

10.6 Answers to Research Questions

The search for the temporal comparison function was also to determine the answers

to five questions:

How to determine that the current and previous symptoms are related? For
MCL, symptom states are captured in an data object called a frame. It is easy to come up
with comparison functions (e.g., New) that do not correctly identify related and non-related
symptoms. There are also several comparison functions that can (usually) make the correct

determination (e.g., IIS, EVS, and IIS AND EVS).

How sure are we that we have made the correct determination? A static analysis
of the frame comparison functions for the Mars Rover context were at best around 90%
correct. In practice, the functions IIS, EVS, and IIS AND EVS almost always assisted the

Rover in completing its task in the face of perturbations.

178
How does the correct determination affect the response? The frame state sets
nodes in the concrete indications portion of the Bayesian network of MCL. They influence

which repair suggestion (if any) that MCL will make.

How much does the correct determination improve performance? When the
temporal comparison function made the correct determination there was often a definite
performance gain. With the P3: Longer calibration time perturbation, the average number
of steps needed to complete the triple panoramic tour was halved for those Rovers whose
comparison functions correctly advised, versus those whose didn’t. At other times, the

improvement (if any) was not statistically significant.

How much does the incorrect determination degrade performance? Making an
incorrect determination is not usually fatal unless the same bad advice is repeated over and
over again. This was the downfall of a couple of the poor frame comparison functions
(e.g., First, and EVS BUT NOT IIS). Even the good frame comparison functions (with the
notable exception of Random) were sometimes not able to guide a Rover to a successful

completion of the task.

Chapter 11

RELATED WORK

Cox (2005b) provides a survey of selected Al metacognition research areas through
2000 (and a little beyond). Newer research is surveyed by Anderson and Oates (2007).
This chapter starts by looking at pre-ontology and early-ontology MCL work. Next, Case-
based Reasoning and Model Based Reflection are examined as another approach to assist-
ing agents. It ends with a section on a topic not covered in the survey papers, monitoring

multi-agent systems.

11.1 Pre-ontology Metacognitive Loop

An early version of MCL was part of a hybrid system to assist Learning agents using
both Neural Networks and a symbolic logic reasoner (Hennacy, Swamy, & Perlis 2003).
The Metacognitive Loop (Anderson & Perlis 2005), with its notice, assess, and guide
phases, is offered as a solution to the problem of brittleness in Al systems as due to the
lack of perturbation tolerance. A trio of problem domains (reinforcement learning, naviga-
tion, and human-computer dialogue) is shown to benefit from adding MCL. Three research

areas were proposed corresponding to the three MCL phases:

1. How should expectations be formulated to best track the performance of the systems?

2. How should the reasoning about the exceptions be organized?

179

180

3. What are the best strategies for guiding a system back to proper operation?

The first and third questions remain open issues. Bayesian inference over three sets of
ontologies is thought to be the answer to the second question and this dissertation has
shown it to be an effective approach (at least in the Mars Rover domain).

Three alternatives to the incorporation of MCL to deal with perturbations have been

suggested (Anderson et al. 2006):

1. Do nothing,

2. Incorporate a recovery strategy for every possible problem, and

3. Create an extensive world model and continually compare the actual and predicted

performance.

The first of these approaches offers nothing except ease of implementation while the last
two are too expensive to use. MCL is offered as a cost-effective alternative as it has only
a moderate cost and can greatly improve a system’s tolerance to perturbation. This is
demonstrated with the Chippy grid world. Perturbation in Chippy was used to explore
different expectations (average reward and steps between rewards), different assessment
techniques (immediate and cumulative), and different recovery strategies (increasing the
exploration rate and resetting the Q values). All of this was tailored for Q-learning and
would not be applicable to other types of cognitive systems. The approach outlined in this
dissertation can produce the same perturbation tolerance as observed in the MCL-enhanced
Chippy, but is applicable to more types of systems.

Another domain used in early MCL research was TRAINS (Allen ef al. 1994; 1996;
Ferguson, Allen, & Miller 1996) where a human and a computer carry out a natural-

language dialog about controlling trains. MCL was used in the detection and resolving

181
of ambiguities (Perlis, Purang, & Andersen 1998; Traum et al. 1999). An MCL com-
ponent was also built into ALFRED (Active Logic for Reason-Enhanced Dialog) (Ander-
son et al. 2004; Josyula, Anderson, & Perlis 2003). Active Logic (Elgot-Drapkin 1988;
Elgot-Drapkin & Perlis 1990; Elgot-drapkin ef al. 1993; Purang 2001; Miller 1993) com-
bines inference rules with a time-tagged knowledge base. ALFRED also uses use-mention
distinction (Saka 1998) when processing utterances(Anderson ef al. 2002). ALFRED is
able to ask the user for help when it doesn’t know a term and then to use that knowledge

later to implement the user’s request (Josyula 2005).

11.2 Early Ontology Metacognitive Loop

In 2007, MCL went through a metamorphous to replace many of its domain-specific
elements by using three ontologies linked together (Anderson et al. 2007). However,
instead of using Bayesian inference, MCL would reason from expectations to response by
spreading activation (Anderson 1983; Anderson & Pirolli 1984; Cohen & Kjeldsen 1987).
Additional domains were also explored including human-computer dialogue (Schmill et al.
2007) and the Chippy reinforcement learner (Anderson et al. 2008) that is also used as an

example in this dissertation.

11.3 Case-based Reasoning

Case-based reasoning (CBR) uses past experiences to solve new problems (Hammond
1986; 1989; 1990; Kolodner 1993). Humans are thought to make use of CBR as we reason
from stories (previous experience) (Schank & Leake 1989; Schank 1990) using reasoning
by analogy (Leake 1996a) when presented with a new situation. That is, we internalize the
basic elements of our experiences as stories. Then, when faced with a new problem, we

retrieve a previous experience that is similar to the current one. We use the similar story

182
to provide the outline of a plan for dealing with the current situation. The assumptions
underlying the computer use of CBR (Leake 1996b) are that similar problems have similar
solutions and that an agent will often encounter problems that it has seen in the past. A
temporal MCL can be viewed as using the same general techniques as it uses knowledge
about past expectation violations in attempting to resolve new violations.

CBR is generally shown as having four steps (Aamodt & Plaza 1994):
Retrieve Find a past case similar to the current problem.
Reuse Use the similar past case in the solution to the current problem.
Revise Update the past case by noting how well it solved the current problem.

Retain Save the updated case information for successful adapted solutions.

A Level 3: Temporal MCL will also perform these steps, using a frame comparison func-
tion to find a similar past exception. It then modifies the Bayesian network from the past
exception with the indications of the new exception. When the agent responds that the
repair suggestion was successful (or not), MCL saves the updated exception.

The main research in this dissertation was to find a “good” function with which to
compare past expectation violations with the current violation. Similarity metrics provide
the same function for case-based reasoning (Bento & Costa 1994) and (Veloso & Carbonell
1994). Constructive similarity assessment (Leake 1992; 1995; Leake, Kinley, & Wilson

1997) looked at making the judgement dynamic rather that using a fixed set of criteria.

11.4 Model Based Reflection

Model-based reflection (MBR) (Stroulia 1994; Stroulia & Goel 1995; 1996) also uses
a three-phase approach to provide metacognition. The “monitor” phase checks expecta-

tions, the “assign blame” phase determines the cause of the failure, and the “redesign”

183
phase makes the necessary corrections. Rather than using a general model of cognitive sys-
tems and their failures, MBR uses a detailed model of the problem solver using structure-
behavior-function (SBF) models. Having these models allows the expectations to be auto-
matically generated.

MBR uses a model of the agent and the environment when deciding the cause of the
problem. This model could become quite large with a large search space and may only
be partially observable (Ulam, Goel, & Jones 2004). Rather than searching the complete
space, large systems could be broken down into parts. Blame then could be assigned at the
top level (Jones & Goel 2005). If the agent has several tasks, each of which is controlled by
reinforcement learning, MBR could aid the agent in deciding which task’s learning needed
modification based on the assignment of failure to that part (Ulam et al. 2005).

As systems become more complicated, there is a greater chance that system faults
will damage more components so being able to detect and isolate faults becomes more
important (Tinds, Terra, & Bergerman 2002; Tinés & Terra 2002). The NASA Deep Space
I spacecraft! is equipped with a MDR system that monitors its systems and performs failure
analysis and correction (Williams & Nayak 1996; Williams & Nyak 1999). Nuclear power
systems also can benefit from systems that detect and isolate faults automatically (Hardy,
Miller, & Hajek 1992; Hines & Hajek 1995; Hines, Miller, & Hajek 1996).

Instead of using a model of the agent and the domain, MCL uses a model of how agent
fail and then repair themselves as captured in the three ontologies. This should allow MCL

to assist agents even when many aspects of the of the agent and/or domain are not known.

Thttp://mmp.jpl.nasa.gov/ds1/DS1_Extended_Mission.pdf

184

11.5 Multi-agent Metacognition

One approach to handling problems (or perturbations) in multi-agent systems is to
task an agent with monitoring and controlling the other agents (Higg 2000). The sentinel
agents act as a metacognitive control on the collection of task-solving agents (Figure 11.1).
The sentinel monitors the communication between agents. If an agent is acting outside the
model of the application-specific interaction plan, the sentinel can take action to correct the
situation such as killing an agent, or informing other agents to ignore it.

Sentinels can also be part of a general purpose three-phase monitoring scheme (Del-
larocas & Klein 2000). Rather than an application-specific model of the agent interactions,
these sentinels use a knowledge base of error conditions, causes, and responses. Table 11.1

contrasts this approach with the MCL phases and ontologies.

Table 11.1. Monitor and control in MCL and Sentinels

MCL Sentinels
Phase | Ontology Phase KB
Notice | Indications | Instrumentation Failure
Assess Failure Diagnosis Exception
Guide | Response Resolution Resolution

The similarities between metacognition for single agents and sentinels for multi-
agents systems allows the transfer of ideas between the two. This is particularly apparent
when the fault-handling approach is abstracted using ontologies (or knowledge bases) to

hold domain-specific information.

185

Meta-

» Sentinel
cognition

Cognitive Multiple
Agent Agents

FIG. 11.1. Monitoring a multi-agent system with a sentinel is isomorphic to using
metacognition with a single cognitive agent.

Chapter 12

FUTURE WORK

Adding the Metacognitive Loop with temporal knowledge has been shown to improve
the operation of the Mars Rover. However, more can be done at this level of metacogni-
tion as well as developing further enhancements. Also, MCL can be applied to different
domains to show that the improvement in performance for the Mars Rover was not a fluke.

This chapter examines several different areas of exploration.

12.1 Revisiting the Current System

Experimental trials using the Mars Rover simulation were able to show that MCL
Level 3: Temporal is statistically better at assisting the agent during perturbations than
MCL Level 2 : Evaluative. Will this improvement continue to be shown if the experiments
were changed? This section looks at a several changes that could be done within the current

testing framework to expand the breadth and intensity of testing.

Expand the number of perturbations The seven perturbations used were chosen in the
belief that they would exercise both the Rover and MCL. But a different (or larger)
mix of perturbations might show different results than the seven chosen. In Sec-
tion 3.2 many more perturbations were described than those used. Rather than re-

peating the same seven perturbations in each experimental run, a random set of seven

186

187

could be chosen.

Improve the frame comparison functions While most of the frame comparison func-
tions performed better than level 0 and 1 MCL agents, there was no one perfect
function. Given the available frame information, it should be possible to construct
frame comparison functions using decision tables (or other learning technique) that
would perform better than the simple ones that were used. A learned comparison
function could be trained using the seven perturbations used in this dissertation and
then tested against a different set (such as the random perturbation in the previous

paragraph).

Changing the task A triple panoramic tour was chosen as it was easy to explain, had fixed
divisions for changing the perturbations, and forced the Rover to perform actions
multiple times. A triple photographic tour could easily be substituted or a mixed tour
consisting of both panoramic and photo tours. Rather than changing the perturba-
tions at tour boundaries, the perturbations could be switched during the execution
of the tours. Experiments could be run at low and high volatility of switching to
see how well MCL was able to improve performance as a function of the degree of

perturbation.

More repair options A larger MCL ontology with more repair nodes to activate would
give MCL more possible repair suggestions. Having more possible repairs to suggest
could give MCL a greater ability to suggest repairs that improve the Rover’s perfor-
mance. This might allow MCL to improve the agent’s performance across a greater

range of perturbations.

Improve Conditional Probability Tables Many of the nodes in the MCL Ontology have

links whose conditional probabilities are 0.5/0.5. Having more realistic probabilities

188

should improve the MCL repair suggestions. However, at this time, the setting of the

probabilities is more art than science.

Multiple Perturbations An agent with Evaluative MCL was able to recover from all of
the single perturbations. It was unable to complete the tour when two perturbations
were presented serially. An agent with Temporal MCL has been shown to handle
the problem of two serial perturbations, but would it do as well if both perturbations
were presented simultaneously? To make the performance measures comparable to
the experiments in this dissertation, there should be an unperturbed panoramic tour,
a second panoramic tour with both perturbations introduced at the start, and then a

final unperturbed tour.

12.2 Improving the Level 3 System

This section looks at improvements to the Level 3 MCL to make it more usable to the

designer of robotic agents.

12.2.1 Automatic Expectation Generation

The MCL NAG cycle starts when an exception has occurred. It is required that the
designer of the system specify the exception conditions. For many maintenance condi-
tions, these are fairly obvious and easy to create: internal temperature will not exceed 150
degrees, battery power will not drop below 5 percent.

Perhaps a better solution would be to specify a minimal set of absolute expectations
and then have MCL learn and incorporate additional expectations. This has several advan-

tages:

Minimizing human effort Since only a limited set of expectations would have to be given

to MCL, the domain programmer’s task would be limited to specifying that limited

189

set and not a broad range of expectations.

Minimizing the exception-checking overhead A system can have a great many mainte-
nance expectations - most of which will never be violated. Such expectations degrade
the system as they need to be checked against the sensor values just as often as ex-
pectations that may be violated. By generating expectations through learning, only

expectations that have the potential for violation would be created.

Improve problem detection As problems are identified, expectations would be created to
detect them earlier. This could allow identification of a reoccurrence of a problem

early enough to avoid or lessen the consequences.

The automatic generation of expectations would have to be tempered with common-
sense reasoning or other heuristics to prevent generating expectations that do not improve

the efficiency of the host system.

12.2.2 Automatic Ontology Expansion/Linking

The structure (node and linkages) of the MCL ontologies were created based on ex-
perience in the initial problem domains and modified as additional domains and analysis
was undertaken. It is, however, a static model and is certainly not optimal for all situations.
As with the automatic generation of expectations, the automatic generation of ontology
nodes and linkages has the potential to improve the operation of MCL, particularly in new
domains. The same caveat applies that any changes must improve the efficiency of the host

system and may require extensive heuristics to implement.

12.2.3 Application to Multi-agent Systems

All of the problem domains discussed and evaluated in this proposal are with single

agents. MCL can be directly applied to individual agents in a multi-agent system. These

190
agent can be either normal agents or sentinel agents.

When using MCL to monitor and control multiple agents, additional concrete re-
sponses would be needed along with the corresponding augmentations to the Response
ontology. The Failure ontology would need to be expanded to incorporate nodes for agent
communication and coordination failures. Agents can be treated as both sensors and effec-

tors of the sentinel agents.

12.2.4 Transferring Learning with MCL Networks

As MCL works with a host system, the conditional probabilities on the intra-
ontological and inter-ontological links change to reflect the experience of what suggestions
were effective strategies in coping with the failed expectations. Each host system is differ-
ent, with different expectations and available concrete responses, but there should be a way

to apply a tuned set of conditional probabilities from one system to another.

12.2.5 Modeling Dynamic Environments

A basic tenet of this paper is that MCL provides agents with a mechanism for coping
with dynamic environments so that such mechanisms do not need to be crafted into the
agents themselves. What exactly is a dynamic environment and how is it quantified? Is
it possible to create quantitative or predictive models of dynamic environments and how

could these models be used to improve the operation of the NAG cycle within MCL?

12.3 Developing Level 4: Evolving Systems

As in the temporal level, the agent’s metacognitive system evaluates the current excep-
tion(s) as well as any past exceptions and repair attempts when choosing the appropriate

response. Additionally, the metacognitive system adjusts its evaluation procedure/para-

191
maters based on the success and failures of the repairs. While the goal of MCL is to make
the correct suggestion as often as possible, it is also important to make as few bad sugges-
tions as it can. Agents can more easily tolerate getting the second best suggestion than they
can getting the second worst one.

There are several items within MCL that could be changed if a learning mechanism is

in place that would examine the exceptions and the repair actions.

Repair costs The repair costs for the Mars Rover were defined in the repair nodes of the
Response Ontology (see Appendix B). These were set before the experiments were
run. They were loosely based on the energy cost for the Rover to implement them.
MCL could monitor the change in the agent from the time of the suggestion to the
time that the repair is acknowledged and adjust the repair cost accordingly. A sim-
ple learning method would be to have repairs that succeed have their costs adjusted

downward while ones that don’t would be moved upwards.

Revise expectations While it wasn’t used in the Mars Rover ontologies, MCL has a repair
that instructs an agent to “Revise Expectations.” The idea being that the agent may be
giving MCL too low a threshold in the expectation so that exceptions are occurring
where there really isn’t a problem. Expectation thresholds may need to be lowered,
as well, if the exception isn’t signaled until the problem grows large enough that it

might have been better handled at an earlier stage.

Update conditional probabilities The conditional probabilities of the MCL Ontologies
are set from configuration files when MCL is initialized. As MCL makes sugges-
tions and the agent replies that they were successful or not, MCL could adjust the

conditional probabilities tables to favor successful repair.

Update ontology links A more difficult change to the ontologies than adjusting the prob-

192
abilities on existing ontology links is the addition and removal of ontology links.
If, however, experience shows that certain indications are best resolved with a spe-
cific repair, then adding a link to positively reinforce that dependency would improve

MCL’s response to the same problem in the future.

All of the approaches above may benefit from having a meta-MCL monitor and guide
the agent’s MCL as it alters itself to better serve the agent. The meta-MCL could suggest
when a change should be made and what part of MCL (expectations, ontology, or costs)

might be best changed.

12.4 Developing Level 5: Anticipating Systems

MCL reacts when the agent’s expectations are violated. The point at which the excep-
tion occurs may not be the point when the perturbation first caused an unnoticed problem.
If MCL could reason backward from the exception to the time of the initial problem, MCL
could then help the agent avoid the problem.

For example, if, when traveling between two specific points, the Rover always picked
up dust that would later cause a problem with the motors, MCL might be able to examine
the operational traces to determine that the cause of the motor performance exception was
traveling along a certain path and suggest that the agent choose a different path from now
on. Rather than just treating the symptom of the problem (slow motor performance cor-
rectable by blowing away the dust), MCL would be helping the agent avoid the cause of

the problem (a dusty path).

12.5 Alternative Domains

All of the above research can be done within the Mars Rover domain used in this dis-

sertation. Even given the limited locations and actions of the Rover, there is still enough

193
depth that much can be done with it. However, many domains have been used in Al plan-
ning, problem solving, and learning. It would be interesting to apply MCL to those domains

as well.

Chippy The Chippy grid world was used as an example in the beginning of this disser-
tation. It was the subject of much of the early pre-ontology MCL work (Anderson
et al. 2006). Now that a temporal, ontology-based MCL is available, it would be
interesting to revisit Chippy and see if the latest MCL approaches meet or exceed the

earlier ones.

WinBolo A domain used in MCL research as the transition was being made from hard
coded metacognition to ontologies was the game Bolo (Anderson et al. 2007). The
MCL Bolo player used a hierarchical task network (HTN) planner (Ghallab, Nau, &
Traverso 2004; Lekavy & Navrat 2007; Nau ef al. 2003). When MCL detected an
expectation exception, it could use means-end analysis and operator refinement in its

repairs (Gil 1994; Wang 1995).

WinBolo (a Windows implementation of the game) has multiple players (or Als)
driving tanks to explore the landscape and destroy other tanks, individually or in
teams. This domain is much like the Mars Rover domain in that there are multiple
goals in play, planning needs to be done to achieve those goals, and a dynamic envi-
ronment (mainly the other tanks and the building and destruction of buildings, roads,
and stationary defenses.) With team play, WinBolo can be a platform for research in

the use of MCL with multiple agents.

Wumpus The game of “Hunt the Wumpus” has been around since the early days of inter-
active computing. Russell and Norvig (1995) describe simplified variation that on a

rectangular grid. A metacognitive agent call INTRO has already been developed to

194
explore that version (Cox 2005a; 2007). As with the Chippy grid world, the challenge

will be to see how well the latest MCL compares to previous work.

FreeCiv The open source close of Sid Meier’s Civilization™, FreeCiv' has been used for
Al learning by researchers at Georgia Tech (Jones & Goel 2005) and others (Hinrichs
& Forbus 2007). It is a multiplayer game implemented with a server and multiple
clients. It comes bundled with a set of Al players and is supported on a number of
platforms. Unlike the Mars Rover, Chippy, and Wumpus domains where the agent
is directed to move through and react with the environment, FreeCiv casts the agent
in the role of a supervisor who directs many others to build cities, explore, and de-
velop resources, all the while competing with other agents attempting to do the same
things. The task will be to learn and evolve strategies for playing the game with MCL
suggesting when current strategies need revising or when the focus should shift to a

different set of tasks.

freeciv.wikia.com

Chapter 13

CONCLUSIONS

The six-level taxonomy (from Bereft to Anticipating), that I developed to divide
metacognitive systems according to their capabilities, provided me with a way to decon-
struct MCL in order to analyze MCL’s ability to assist agents. In the Mars Rover domain,
the limitations of the Level O0: Bereft, Level 1: Instinctive, and Level 2: Evaluative were
easily demonstratable. A Motivated Mars Rover with no MCL assistance (Level O: Bereft)
was unable to complete its task when either the P1: Partial charging or P7: Block path per-
turbations were present. A Rover with Level 1: Instinctive assistance also failed with either
of those two perturbations. And, while a Rover with Level 2: Evaluative assistance was
able to successfully overcome the P1: Partial charging perturbation, it failed with P2: Re-
duced capacity and P7: Blocked path. It was only when the MCL level was raised to Level
3: Temporal that the Mars Rover was able to complete its task with any single perturbation.

The research presented here focused on identifying a temporal comparison function
that would allow a Level 3: Temporal MCL to successfully assist a Mars Rover in the
face of multiple perturbations presented serially. Instead, four such functions were found.
One function compared domain-specific items directly related to the exceptions while a
second compared the translation of the exception onto the domain-independent Indications

ontology of MCL. A third function combined these two tests. These three functions also

195

196
performed well when there was only a single perturbation. A fourth function randomly
announced that two exceptions were the same or different. This function did not perform
as well with a single perturbation, however, it was the only function that assisted the Mars
Rover to complete all tasks given any combination of two perturbations.

For the Mars Rover simulations with multiple perturbations, MCL Level 1: Instinc-
tive (replanning only) is incapable of completing about 41% of the trials. MCL Level 2:
Evaluative is slightly worse with 43% of the trials failing. This is due to bad advice being
given in some cases and repeated until the end of the experiment. Such problems have been
suggested (Wilson & Schooler 1991) as a reason to avoid too much introspection. MCL
Level 3: Temporal using any one of the several top temporal comparison functions, fails
less than 1% as they only rarely continuously offered the same bad advice. Hopefully, fu-
ture research will determine a temporal comparison function that will always offer good

advice or, at least, never repeats the same bad advice.

197

Appendix A

TABLES WITH EXPERIMENT RESULTS

The Mars Rover experiments were run in two parts of 50 repetitions. The main set was
started on the May 8, 2010 and were completed May 31, 2010. A second set of experiments
using just MCL level 1, that only issued a re-planning suggestion, were started on October
26, 2010 and were completed November 3, 2010. The tables in this appendix and in the
Results chapter were all created directly from all 100 experiment CSV files.

To rerun the experiments and recreate the latex figures and tables issue the command

below. When running on OSX (instead of Linux) change /home to /Users).

MCIL_CONFIG_PATH=/home/dean3/lib/mcl

export MCL_CONFIG_PATH

rm *.CSV

rm *.zip

python Dissertation.py -x -05150 -3 -r50

python Results.py -t current.tex —-s ../current =*.csv

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 145 | 473 157 144 148 153 147 | 458 | 228
Pl | 448 500 | 454 | 440 | 446 | 446 | 446 | 498 | 459
P2 | 154 | 480 159 154 158 163 153 | 493 239
P3| 147 | 454 155 149 149 146 146 | 429 | 221
P4 | 147 | 474 155 148 151 162 147 | 472 | 232
P5 | 155 | 447 158 151 156 156 147 | 458 | 228
P6 | 145 | 433 153 147 147 156 147 | 457 | 223
P7 | 466 | 493 | 465 | 478 | 472 | 454 | 473 500 | 475
Avg | 226.0 | 469.0 | 232.0 | 226.0 | 228.0 | 230.0 | 226.0 | 471.0 | 288.5

Table A.1. Average steps for perturbed Panoramic Tour with MO: Bereft

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 147 | 474 151 147 148 153 146 | 450 227
Pl | 481 495 | 467 | 440 | 479 | 458 | 486 | 500 475
P2 | 155 | 453 163 152 154 158 156 | 492 235
P3| 146 | 467 153 147 145 154 146 | 478 229
P4 | 146 | 459 154 146 145 161 145 | 493 231
P5 | 148 | 466 155 151 154 158 149 | 493 234
P6 | 146 | 446 153 150 146 153 147 | 471 226
P7 | 450 | 493 | 466 | 471 478 | 466 | 471 500 474
Avg | 227.0 | 469.0 | 233.0 | 226.0 | 231.0 | 233.0 | 231.0 | 485.0 | 291.875

Table A.2. Average steps for perturbed Panoramic Tour with M1: Instinctive

172 | PO Pl P2 P3 P4) P6 P7 Avg
PO | 145 159 | 500 | 234 146 153 146 | 457 242
PI | 155 170 | 500 | 244 157 163 160 | 500 256
P2 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 500
P3| 232 | 244 | 500 | 319 | 229 | 238 | 232 | 477 308
P4 | 148 156 | 500 | 237 149 153 146 | 500 248
pP5 | 150 163 | 500 | 240 147 157 151 452 245
P6 | 147 159 | 500 | 237 145 154 147 | 493 247
P7 | 493 | 500 | 500 | 484 | 500 | 473 | 493 | 500 492
Avg | 246.0 | 256.0 | 500.0 | 312.0 | 247.0 | 249.0 | 247.0 | 485.0 | 317.75

Table A.3. Average steps for perturbed Panoramic Tour with M2: Evaluative

198

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 148 159 163 148 149 154 146 158 153
Pl | 156 168 171 158 160 166 156 170 163
P2 | 161 182 177 160 164 170 163 171 168
P3| 151 157 163 147 151 163 147 156 154
P4 | 149 169 161 148 147 158 149 155 154
P5 | 151 160 164 148 152 158 150 162 155
P6 | 148 159 163 145 147 153 148 156 152
P7 | 158 | 423 168 156 160 165 159 157 193
Avg | 153.0 | 197.0 | 166.0 | 151.0 | 154.0 | 161.0 | 152.0 | 161.0 | 161.875

Table A.4. Average steps for perturbed Panoramic Tour with M3: Temporal

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 147 158 160 148 147 156 147 | 316 172
Pl | 156 170 173 158 157 159 156 199 166
P2 | 159 179 177 159 162 169 161 212 172
P3| 149 158 165 148 149 154 149 | 281 169
P4 | 147 164 164 147 145 153 148 | 275 167
P5 | 149 164 168 151 150 156 148 | 281 170
P6 | 146 | 425 155 146 149 156 147 | 465 223
P7 | 309 | 463 | 473 | 332 | 288 | 342 | 257 | 347 351
Avg | 170.0 | 235.0 | 204.0 | 174.0 | 168.0 | 181.0 | 164.0 | 297.0 | 199.125
Table A.5. Average steps for perturbed Panoramic Tour with F1: First
172 | PO Pl P2 P3 P4 PS5 P6 P7 Avg
PO | 147 160 | 500 | 230 148 154 148 | 486 246
Pl | 157 168 | 500 | 241 156 167 157 | 479 253
P2 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 500
P3 | 231 250 | 500 | 326 | 235 | 241 227 | 478 311
P4 | 149 162 | 500 | 243 148 153 144 | 500 249
P5 | 154 163 | 500 | 244 153 161 155 | 485 251
P6 | 147 160 | 500 | 227 149 154 147 | 471 244
P7 | 486 | 474 | 500 | 494 | 493 | 480 | 493 | 500 490
Avg | 246.0 | 255.0 | 500.0 | 313.0 | 248.0 | 251.0 | 246.0 | 487.0 | 318.25

Table A.6. Average steps for perturbed Panoramic Tour with F2: New

199

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 147 164 161 147 148 153 147 166 154
Pl | 164 185 172 161 165 174 160 181 170
P2 | 158 180 168 160 158 164 158 184 166
P3| 147 171 160 149 152 150 148 157 154
P4 | 145 167 159 149 147 153 147 162 153
P5 | 155 171 167 156 150 157 153 164 159
P6 | 146 166 160 146 148 150 147 167 153
P7 | 167 | 224 | 202 172 172 172 169 164 180
Avg | 154.0 | 179.0 | 169.0 | 155.0 | 155.0 | 159.0 | 154.0 | 168.0 | 161.625

Table A.7. Average steps for perturbed Panoramic Tour with F3: Random

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 145 159 161 147 148 153 145 157 151
Pl | 159 170 172 156 158 170 159 166 163
P2 | 160 187 175 162 163 164 160 171 167
P3| 148 158 162 148 147 148 147 159 152
P4 | 147 163 159 147 145 155 149 155 152
P5 | 149 157 163 158 148 160 149 164 156
P6 | 148 160 160 147 146 155 147 157 152
P7 | 157 | 401 167 159 159 167 159 158 190
Avg | 152.0 | 194.0 | 165.0 | 153.0 | 152.0 | 159.0 | 152.0 | 161.0 | 161.0

Table A.8. Average steps for perturbed Panoramic Tour with F4: EVS

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 147 156 157 147 148 155 146 156 151
Pl | 160 172 168 159 155 160 154 168 162
P2 | 157 | 470 163 158 155 163 157 169 199
P3 | 146 160 157 146 147 157 147 158 152
P4 | 148 159 157 148 150 156 146 158 152
P5 | 152 161 160 157 153 158 151 161 156
P6 | 147 156 157 148 148 153 146 155 151
P7 | 157 175 166 156 162 161 158 159 161
Avg | 152.0 | 201.0 | 161.0 | 152.0 | 152.0 | 158.0 | 151.0 | 161.0 | 161.0

Table A.9. Average steps for perturbed Panoramic Tour with F5: IIS

200

201

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 146 164 154 149 147 151 146 159 152
Pl | 157 168 167 156 160 162 156 168 161
P2 | 158 | 455 160 156 155 164 158 166 196
P3| 147 160 156 149 147 153 144 157 151
P4 | 146 162 156 147 148 154 148 159 152
P5 | 154 163 160 150 153 165 153 162 157
P6 | 146 159 156 149 144 147 150 154 150
P7 | 157 170 169 156 159 170 158 157 162
Avg | 151.0 | 200.0 | 160.0 | 152.0 | 152.0 | 158.0 | 152.0 | 160.0 | 160.625

Table A.10. Average steps for perturbed Panoramic Tour with F6: EVS and IIS

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 148 161 162 | 235 147 155 149 | 387 193
Pl | 158 174 177 | 244 157 170 157 177 176
P2 | 160 172 177 | 251 162 169 163 379 204
P3| 232 | 247 | 248 | 320 | 229 | 238 | 230 | 386 266
P4 | 146 155 161 235 150 154 148 | 351 187
P5 | 155 167 168 | 230 153 157 153 370 194
P6 | 146 158 160 151 148 158 146 | 359 178
P7 | 353 | 420 | 358 | 417 | 358 | 356 | 347 | 389 374
Avg | 187.0 | 207.0 | 201.0 | 260.0 | 188.0 | 195.0 | 187.0 | 350.0 | 221.875

Table A.11. Average steps for perturbed Panoramic Tour with F7: EVS but not IIS

172 | PO Pl P2 P3 P4 P5 P6 P7 Avg
PO | 147 156 | 500 | 235 146 150 147 | 479 245
Pl | 158 168 | 500 | 241 158 160 156 | 480 252
P2 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 500
P3| 231 249 | 500 | 317 | 228 | 238 | 225 | 478 308
P4 | 146 156 | 500 | 236 147 153 147 | 450 241
P5 | 147 164 | 500 | 241 153 161 150 | 466 247
P6 | 146 156 | 500 | 231 146 153 146 | 486 245
P7 | 486 | 479 | 500 | 483 | 492 | 493 | 500 | 500 491
Avg | 245.0 | 254.0 | 500.0 | 311.0 | 246.0 | 251.0 | 246.0 | 480.0 | 316.625

Table A.12. Average steps for perturbed Panoramic Tour with F8: IIS but not EVS

202

Appendix B

MCL ONTOLOGY USED FOR EXPERIMENTS

The following two listings comprise the MCL ontologies used for the Mars Rover

simulation. They were created by Matt Schmill of the UMBC/UMCP MCL working group.

They have been slightly modified from the version included with the MCL code. The main

changes are in the cost model which reflect the cost of implementing the repairs by the

Mars Rover.
Listing B.1. Basic MCL Ontology
BASIC.ONT basic MCL ontology description file
modified for mars rover simulation
node types:
#
hostProp — host properties
genlnd — general purpose indication node
conclnd — concrete (fringe) indication directly activatable by~
MCL
iCore — indication core node
HII — Host Initiated Indication
failure — general purpose failure node
genResponse — general purpose response node
interactive — boolean interactive response node
concResponse — concrete (implementable) response node

link types:

203

> intraontological
link abstraction(src=,dst=)
— from specific (src) node to more general (dst)
link IFC(src=,dst=)
— Indication Fringe to Core
link specification(src=,dst=)
— from abstract to specific (response ontology base type)

> interontological
link diagnostic(src=,dst=)
— link from indication to failure
link inhibitory(src=,dst=)
— link from indication to response (inhibiting response)
link support(src=,dst=)
— link from indication to response (supporting response)

HHoFH R W T O OH OH P FH W H K H R

include CORE_indicationFringe
ontology indications (

much of this ontology is currently in CORE_iF
if it is in dynamiclLinks, it should be in iF

node iCore (name=resourceUnchanged,
doc="a_,resource_level_apparently_did_not_change.")
node iCore (name=stuck ,
doc="a_,spatial_sensor/expectation_indicates_an_
expected _movement_did_not_occur.")

node HII (name=sensorVerifiedBroken ,
doc="the_host_is_verifying _,that_a_sensor_appears_.
nonfunctional .")
node HII(name=sensorVerifiedWorking,
doc="the_host,_is_verifying _that_a_sensor_of_interest
appears_to_be_working.")

ontology failures (
node failure (name=failure ,
doc="the_,class_of_all_failures.")
node failure (name=knowledgeError,

node

node

node

node

node

node

node

node

node

node

204

doc="class_,of failures_pertaining_to_internal
knowledge _and_representations.")

failure (name=plantError ,
doc="class_of ,failures_pertaining_to_the_physicals\
agent.")
failure (name=modelError,
doc="class_of_failures_pertaining_to_internal_~
representations.")
failure (name=predictiveModelError ,
doc="class_of _failures _in_which_inaccurate -
predictions _made_by_models_are_causing -
anomalies.")
failure (name=proceduralModelError ,
doc="class_of_failures_in_which_inadequacies_in_a-\
_procedural_model_is_,causing_anomalies.")
failure (name=effectorError ,
doc="class_,of failures_in_which_an_effector is
not_operating _to_spec.")
failure (name=sensorError ,
doc="class_of ,failures_in_which_a_sensor_is_not_:
operating _to_spec.")
failure (name=sensorNoise ,
doc="anomaly_,is_,caused_by_noise_outside_of_~
specified _,parameters.")
failure (name=sensorMiscalibrated ,
doc="anomaly_,is_,caused_by misconfiguration_or_x
calibration_of_a_sensor.")
failure (name=sensorMalfunction ,
doc="anomaly_,is_,caused_by_sensor_fault_other_than-
_hoise.")
failure (name=sensorStuck ,
doc="anomaly_ is, ,caused _by_a_sensor_that_is_no_x
longer_,changing_according_to_specification.")

ontology responses (
node genResponse (name=response ,

doc="root_of_all_responses.")

node genResponse (name=internalResponse ,

doc="response_taken_internally_to_the_host.")

node

node

node

node

node

node

node

node

node

node

node

node

node

genResponse (name=externalResponse ,

doc="response _taken_with_external_help.")

genResponse (name=plantResponse ,

doc="response_pertaining _to_the_physical_-

agent.")

genResponse (name=systemResponse ,
doc="response_pertaining _to_the_soft_agent.")
genResponse (name=runDiagnostic ,

doc="perform_a_diagnostic_of_the_agent -~

aparatus.")

genResponse (name=amendKnowledgeBase ,

doc="general _,changes_to_the _host’s _KB.")

genResponse (name=amendPredictiveModels ,
doc="modify/revise_predictive_models.")
genResponse (name=amendProceduralModels ,
doc="modify/revise_,procedural_models.")

interactive (name=runSensorDiagnostic ,

cost=

100,

205

doc="instructs _,the_agent_to_check_for_sensor_-

faults . ",

code=crc_sensor_diag ,

runOnce=true ,

yes=sensorVerifiedBroken ,
no=sensorVerifiedWorking)
concResponse (name=resetSensor , cost=100,
code=crc_sensor_reset ,
doc="physical _restart_of_sensor.")

concResponse (name=runEffectorDiagnostic ,
doc="instructs _,the_agent_to_check_ for
nonfunctional effectors.",

code=crc_effector_diag)
concResponse (name=resetEffector , cost=100,

doc="physical_restart_of_an_effector/~\

effector _group.",
code=crc_ecffector_reset)
concResponse (name=rebuildPredictiveModels ,

doc="rerun_batch—mode_predictive_model_~
generators . '

'
’

code=crc_rebuild_models)

concResponse (name=tryAgain ,

cost=5,

cost=100,

cost=50,

)

206

doc="instruct_the_host _to_retry_the_ failed_ -

activity .",
code=crc_try_again)

linkage all (

I—>F I links

link IFC(src=resource ,dst=resourceUnchanged)

link IFC(src=missed—unchanged ,dst=resourceUnchanged)
link IFC(src=spatial ,dst=stuck)

link IFC(src=missed—unchanged, dst=stuck)

intra F links

link
link
link
link
link
link
link
link
link
link
link

abstraction (src=knowledgeError ,dst=failure)
abstraction (src=plantError ,dst=failure)

abstraction (src=modelError ,dst=knowledgeError)
abstraction (src=predictiveModelError ,dst=modelError)
abstraction (src=proceduralModelError ,dst=modelError)
abstraction (src=sensorError ,dst=plantError)
abstraction (src=sensorNoise ,dst=sensorError)
abstraction (src=sensorStuck ,dst=sensorError)
abstraction (src=sensorMiscalibrated ,dst=sensorError)
abstraction (src=sensorMalfunction ,dst=sensorError)
abstraction (src=effectorError ,dst=plantError)

intra R links

link
link
link
link
link
link
link
link

)
link
link

specification (src=response ,dst=internalResponse)
specification (src=internalResponse ,dst=plantResponse)
specification (src=internalResponse ,dst=systemResponse)
specification (src=plantResponse ,dst=runDiagnostic)
specification (src=plantResponse ,dst=resetEffector)
specification (src=plantResponse ,dst=resetSensor)

specification (sre=runDiagnostic ,dst=runSensorDiagnostic)

specification (srec=runDiagnostic ,dst=runEffectorDiagnostic~

specification (src=systemResponse , dst=amendKnowledgeBase)

specification (src=amendKnowledgeBase , dst=-

amendPredictiveModels)

207

link specification (src=amendKnowledgeBase , dst=\
amendProceduralModels)

link specification (src=amendKnowledgeBase , dst=\
rebuildPredictiveModels)

link specification (src=response ,dst=externalResponse)

link specification (src=systemResponse ,dst=tryAgain)

inter links

link diagnostic(src=indication ,dst=failure)

link diagnostic (sre=sensorsCanFail ,dst=sensorMalfunction)

link inhibitory (srec=sensorVerifiedBroken , dst=-
runSensorDiagnostic)

link inhibitory (sre=sensorVerifiedWorking ,dst=\
runSensorDiagnostic)

link support(src=sensorVerifiedBroken ,dst=fixSensor)

link inhibitory(src=sensorVerifiedWorking , dst=fixSensor)

link diagnostic (srec=resourceUnchanged ,dst=predictiveModelError-,
)

link diagnostic (src=stuck ,dst=sensorStuck)

link diagnostic (sre=stuck ,dst=effectorError)

link prescriptive (src=sensorMalfunction , dst=\
runSensorDiagnostic)

link prescriptive (sre=predictiveModelError ,dst=-
amendPredictiveModels)

Listing B.2. Core MCL Ontology
CORE.ONT MCL ontology fringeless description file
node types:
hostProp — host properties
genlnd — general purpose indication node
conclnd — concrete (fringe) indication directly activatable by~
MCL
iCore — indication core node

HIlI — Host Initiated Indication
failure — general purpose failure node

W H

HHoFH OH T T O OH W P R R OH WK K E W™

208

genResponse — general purpose response node
interactive — boolean interactive response node
concResponse — concrete (implementable) response node
link types:

> intraontological
link abstraction(src=,dst=)
— from specific (src) node to more general (dst)
link IFC(src=,dst=)
— Indication Fringe to Core
link specification(src=,dst=)
— from abstract to specific (response ontology base type)

> interontological
link diagnostic(src=,dst=)
— link from indication to failure
link inhibitory(src=,dst=)
— link from indication to response (inhibiting response)
link support(src=,dst=)
— link from indication to response (supporting response)

ontology indications (

host properties ...

node hostProp (name=sensorsCanFail ,
prop=pci_sensors_can_fail)
node hostProp (name=effectorsCanFail ,
prop=pci_effectors_can_fail)
node hostProp (name=actionInPlay ,
prop=pci_action_in_play)
node genlnd (name=hostProp,
doc="supernode_for _host_properties _to_ensure_full_~
linkage . ")

provenance (what the sensor is attached to)
node conclnd (name=provenance:object)
node conclnd(name=provenance: self)

sensor classes

node conclnd (name=state)
node conclInd (name=control)

209

node conclnd (name=spatial)

node conclnd (name=temporal)

node conclnd (name=resource)

node conclnd (name=reward)

node conclnd (name=ambient)

node conclnd (name=objectprop)
node conclnd (name=message)

node conclInd (name=counter)

node conclnd (name=unspecified_sc)

node iCore (name=observable)

node iCore (name=indication ,
doc="root_indication_for_temporarily_orphaned -
fringe_nodes.")

violation type

node genlnd (name=divergence ,
doc="observable_did_not_do_what_was_expected_(this-
L1is_,general)")
node genlnd (name=aberration ,
doc="observable_,changed_when_it_was_not_supposed
to.")
node genlnd (name=breakout—low,
doc="observable _fell_through_a_floor_expectation."\
)
node genlnd (name=breakout—high,
doc="observable _,exceeded_a_ceiling_,expectation.")
node genlnd (name=missed—target ,
doc="observable_,was_supposed_to_change but_missed -
the target.")
node genlnd (name=short—of—target,
doc="observable_lower_than_expected_target.")
node genlnd(name=long—of—target ,
doc="observable _higher_than_expected _target.")
node genlnd (name=missed—unchanged,
doc="was_supposed, to_change_to_target_but_didn’t_~
change _at_all.")

node conclnd (name=outOfRange,
doc="value_out_of_specified_range_of_acceptable -
values.")

)

210

node conclInd (name=notInSet ,
doc="value_not_in_specified_set_of_jacceptable
values.")

node conclnd (name=illegalValue ,
doc="value_was_not_in_the_specified_legal _range/~
set.")

node conclInd(name=unreachableMCLstate ,
doc="a_supposedly_unreachable MCL state_was_
reached.")

linkage all (

intra I links

link abstraction(src=state ,dst=observable)

link abstraction(src=control ,dst=observable)
link abstraction (src=spatial ,dst=observable)
link abstraction (src=temporal ,dst=observable)
link abstraction(src=resource ,dst=observable)
link abstraction (src=reward ,dst=observable)
link abstraction (src=ambient ,dst=observable)
link abstraction (src=objectprop ,dst=observable)
link abstraction (src=message ,dst=observable)
link abstraction(src=counter ,dst=observable)
link abstraction (src=unspecified_sc ,dst=observable)

link abstraction(src=observable ,dst=indication)
link abstraction (src=divergence ,dst=indication)
link abstraction (src=hostProp ,dst=indication)

link abstraction (src=sensorsCanFail ,dst=hostProp)
link abstraction (src=effectorsCanFail ,dst=hostProp)
link abstraction (src=actionlnPlay ,dst=hostProp)

link abstraction(src=aberration ,dst=divergence)
link abstraction (src=breakout—low,dst=aberration)
link abstraction (src=breakout—high,dst=aberration)

link abstraction (src=missed—target ,dst=divergence)
link abstraction (src=missed—unchanged ,dst=missed—target)

211

link abstraction (src=short—of—target ,dst=missed—target)
link abstraction (sre=long—of—target ,dst=missed—target)

212

Appendix C

MCL TEMPORAL COMPARISON FUNCTIONS

The two listings in this appendix contain the major pieces of the C++ code I wrote
to implement the MCL Temporal comparison functions for the experiments. They are the

header file (DWtestREB.h) and the implementation file (DWtestREB.cc).

213

Listing C.1. Header File for MCL Frame Comparison Functions
#ifndef MCL_DW_TEST REB_H
#define MCL_DW_TEST REB_H

#include "reentrancy.h"
namespace metacog {
using namespace std;

VEXS
Multiple REBs being tested by Dean Wright for PhD ~
dissertaion
x/
class DWtestREB : public SelectBestREB {
public:
DWtestREB () : SelectBestREB () {method_number = 0;};
DWtestREB(int num) : SelectBestREB () {method_number = num;};
virtual bool selectFramesForReEntry (mclFrameEntryVector& fev
frameVec& allFrames ,
frameVec& selectonVector-,
)
virtual bool selectCandidateFramesForReEntry (\
mclFrameEntryVector& fev,
frameVec& allFrames ,
frameVec& selectonVector

bool single);
virtual bool selectForSuccess(mclFrameEntryVector& fev , -
mclFramex frame ,
doublex score);
virtual bool selectForFailure (mclFrameEntryVector& fev ,\
mclFramex+ frame ,
doublex score);
virtual string describe ()
virtual string name() ;
private:
int method number;
int random_frame (mclFrameEntryVector& fev ,
frameVec& candidates ,
bool addNone=false) ;
int first_frame (mclFrameEntryVector& fev,

214

frameVec& candidates);

Listing C.2. Implementation File for MCL Frame Comparison Functions
/* 3k 3k sk >k sk sk sk >k skosk sk sk ok skoskosk sk ok sk skok sk ok sk skok ok

Fall 2010

I S SR R

Implement Renetrant Behavior for Dissertation

Dean Earl Wright

>k 3k sk >k 3kosk sk sk sk sk 3k sk sk sk sk sk 3k sk sk >k sk sk sk sk sk skosk sk skosk >k skosk sk skosk >k skosk >k sk sk sk sk sk sk skosk ok ok

FO: No MCL (Passive)
Fl: Always the same frame
F2: Always use a new frame

F3: Random
F4: reuse frame
F5: 1IS equal

if EVS equal

F6: both IIS and EVS equal

F7: EVS equal but IIS different

FS§:
F9:

I11S equal but EVS different
Current algorithm (Passive)

ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok kR ok Kok Kok sk kok Kok sk kok Kok kok ok ok ok /

#include "reentrancy.h"
#include "mclFrame.h"
#include "DWtestREB.h"
#include "stdlib.h"

#include "mclLogging.h"
#include "umbc/text_utils .h"

using namespace std;
using namespace umbc;
using namespace metacog;

bool DWtestREB ::

selectFramesForReEntry (mclFrameEntryVector& fev,
frameVec& allFrames ,

215

frameVec& selectionVectors,

) A

// 1. Start with no frame selected for reentry
mclFramex bestFrame = NULL;

frameVec candidates;

frameVec:: iterator fvi;

int i;

// 2. Log the request
#ifndef NO_DEBUG

// 2a. Output header with method number

char char_num|[31];

//snprintf(char_num, 30, "%d", method_number);

uLog:: annotate (ULAT_ NORMAL, "[DWtestREB]:: selectFramesForRetry (~
"+describe ()+")");

// 2b. Output Frame Entry Vectory
string desc_fev = fev.describe ();
uLog:: annotate (ULAT NORMAL, "[DWtestREB]:: "+desc_fev);

// 2c¢. Output number of frames in allFrames

snprintf (char_num, 30, "%d", (int)allFrames.size());

uLog:: annotate (ULAT_ NORMAL, "[DWtestREB]:: allFrames ("+((string)~
char_num)+")");

// 2d. Loop for all of the Frames

for (fvi = allFrames.begin();
fvi != allFrames.end() ;
fvi++) {

// 2e. QOutput the frame

string desc_frame = (xfvi)—>describe ()
uLog:: annotate (ULAT NORMAL, "[DWtestREB]:: "+desc_frame) ;
} // end for

#endif

// 3. Select canidate frames

bool single = false;

if (method_number == Il method_number == 9) single = true;

selectCandidateFramesForReEntry (fev, allFrames , candidates , -
single);

// 4. Select frame (if any) based on behavior
switch (method_number) ({

// FO: No MCL (Passive)
// F9: Current algorithm (Passive)
case O:

case 9:
for (fvi = candidates.begin();
fvi != candidates.end();
fvi++) {

selectionVector.push_back(xfvi);
} // end for
return selectionVector.empty () ;

// Fl: Always the same frame
case 1:
if (!candidates.empty())
bestFrame=candidates [0];
break ;

// F2: Always use a new frame
case 2:

break ;

// F3: Random frame

case 3:
1 = random_frame (fev, candidates , true);
if (1 >= 0)
bestFrame = candidates|[1i];
break;

// F4: reuse frame if EVS equal

case 4:
1 = random_frame (fev, candidates);
if (i >= 0)
bestFrame = candidates|[1i];
break ;

// F5: IIS equal

case 5:
1 = random_frame (fev, candidates);
if (i >= 0)

216

bestFrame = candidates|[1i];
break ;

// F6: both IIS and EVS equal

case 6:
1 = random_frame (fev, candidates);
if (1 >= 0)
bestFrame = candidates|[1i];
break;

// F7: EVS equal but IIS different

case 7:
1 = random_frame (fev, candidates);
if (i >= 0)
bestFrame = candidates|[i];
break ;

// F8: IIS equal but EVS different

case 8:
1 = random_frame (fev, candidates);
if (i >= 0)
bestFrame = candidates|[i];
break ;

default: //Invalid method _number
break ;

} // end switch

// 5. Return the frame and true if we found one
if (bestFrame) {
selectionVector.push_back(bestFrame);
#ifndef NO_DEBUG
string desc_frame = bestFrame —>describe () ;

uLog:: annotate (ULAT_NORMAL, "[DWtestREB]:: selected "+

desc_frame) ;
#endif
return true;

}

// 6. Return False if no frame for re—entry
#ifndef NO_DEBUG

uLog:: annotate (ULAT_NORMAL, " [DWtestREB |:: selected, none");

217

218

#endif
return false;

}

bool DWtestREB :: selectCandidateFramesForReEntry (-~
mclFrameEntryVector& fev,
frameVec& ~
allFrames ,
frameVec& ~
selectionVector

bool single) {
// 1. Start with no best canidate
double best_score = —1;
mclFrame*x bestFrame = NULL;

// 2. Determine if we are look for success or failure frames
bool success = fev.isSuccessfulEntry ();

// 3. Loop for all of the frames

for (frameVec::iterator afi = allFrames.begin();
afi != allFrames.end();
afi++) {

// 4. Get the score for this frame
double current = —1;

bool possible ;

if (success) {

possible = selectForSuccess (fev,(x afi),¤t);
} else {
possible = selectForFailure (fev,(x afi),¤t);

}
if (possible) {
if (single) {
if (current > best_score) {
best_score=current;
bestFrame=(xafi);
}
} else {
selectionVector.push_back(xafi);
} // end else if (single)
} // end if (possible)

219

if (single && bestFrame) {
selectionVector.push_back(bestFrame) ;

}

return !selectionVector.empty();

bool DWtestREB :: selectForSuccess (mclFrameEntryVector& fev,
mclFramex frame,
doublex score) {

ulLog:: annotate (ULAT_NORMAL, "DWtestREB :: selectForSuccess ("+
textFunctions :: num2string (method_number)+")") ;

// 1. An referent match is always acceptable

if (frame—>matchesReferent(fev.vRef)) {
if (score) xscore=1.0;
uLog:: annotate (ULAT NORMAL, "referent_match");
return true;

}

// 2. Defermine acceptability based on behavior
switch (method_number) {

// FO: No MCL — flag for FrameRover.py
// F9: Current algorithm (Passive)
case O:
case 9:
if ((fev.vEG == frame—>get_vegKey()) &&
(frame —>isMostRecentFrame ()) &&
(frame —>in_advice_state ())) {
if (score) xscore=1.0;
uLog:: annotate (ULAT NORMAL, "passive_match");
return true;

}
break ;

// Fl: Always the same frame
// F2: Always use a new frame
// F3: Random

// F4: Reuse frame if EVS equal
// F5: IIS equal

// F6: both IIS and EVS equal

220

// F7: EVS equal but IIS different
// F8: IIS equal but EVS different
case 1:
case
case
case
case
case
case
case 8:
if ((fev.vEG == frame-—>get_vegKey()) &&
(frame —>isMostRecentFrame ()) &&
(frame —>in_advice_state ())) {
if (score) xscore=1.0;
uLog:: annotate (ULAT NORMAL, "reb_match") ;
return true;

0 ON N kW

}
break ;

default:
uLog:: annotate (ULAT NORMAL, "invalid_number");
break;
}

// 3. Didn’t like this frame
uLog:: annotate (ULAT NORMAL, "no_match");
return false;

}

bool DWtestREB:: selectForFailure (mclFrameEntryVector& fev ,\
mclFramex frame,
doublex score) {

uLog:: annotate (ULAT NORMAL, "DWtestREB :: selectForFailure ("+
textFunctions :: num2string (method_number)+")") ;

// 1. An referent match is always acceptable

if (frame—>matchesReferent(fev.vRef)) {
if (score) xscore=1.0;
uLog:: annotate (ULAT NORMAL, "referent_match");
return true;

221

// 2. Defermine acceptability based on behavior
switch (method_number) ({

// FO: No MCL — flag for FrameRover.py
// F9: Current algorithm (Passive)
case O:
case 9:
if ((fev.vEG == frame—>get_vegKey()) &&
(frame—>evSignatureExists (fev.vEVS))) {
if (score) xscore=1.0;
fev .vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT NORMAL, "passive _match");
return true;

}
break ;

// Fl: Always the same frame
case 1:
if (score) xscore=1.0;
fev.vECode = REENTRY_ RECURRENCE;
uLog:: annotate (ULAT_ NORMAL, "always,_match");
return true;

// F2: Always use a new frame

case 2:
uLog:: annotate (ULAT NORMAL, "never_match");
return false;

// F3: Random
case 3:
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT NORMAL, "should_be_random_but_always_
matches") ;
return true;

// F4: reuse frame if EVS equal
case 4:
if (frame-—>evSignatureExists(fev.vEVS)) {
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT_NORMAL, "EVS_match") ;

222

return true;

}
break ;

// F5: IIS equal
case 5:
if (frame—>isSignatureExists(fev.string_iis ())) {
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT_NORMAL, "IIS _ match");
return true;

}
break ;

// F6: both IIS and EVS equal
case 6:
if ((frame—>isSignatureExists (fev.string_iis ())) &&
(frame—>evSignatureExists (fev.vEVS))) {
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT_NORMAL, "IIS and_EVS_match");
return true;

}
break ;

// F7: EVS equal but IIS different
case 7:
if ((!frame—>isSignatureExists(fev.string_iis())) &&
(frame—>evSignatureExists (fev.vEVS))) {
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT_NORMAL, " ! IIS ,and_EVS_match") ;
return true;

}
break ;

// F8: IIS equal but EVS different
case §:
if ((frame—>isSignatureExists (fev.string_iis ())) &&
(!frame—>evSignatureExists (fev.vEVS))) {
if (score) xscore=1.0;
fev.vECode = REENTRY_RECURRENCE;
uLog:: annotate (ULAT_NORMAL, " ! IIS _,and_!EVS_match");

223

return true;

}
break ;

default: //Invalid method _number
uLog:: annotate (ULAT NORMAL, "invalid_number");
break ;
} // end switch(method_number)
// 3. Didn’t like this frame

ulLog:: annotate (ULAT_NORMAL, "not_a_match") ;
return false;

/7~

// Algorithms to select the best frame from a set of canidates -
or not.
VZARN

int DWtestREB :: random_frame (mclFrameEntryVector& fev,
frameVec& candidates ,
bool addNone) {

// 1. No canidates, return new frame
if (candidates.empty()) {
return —1;

}

// 2. Get method_number of choices (size maybe plus one)
long size = candidates.size ();

long choices = size;

if (addNone) ++choices;

// 3. Get random choice
Idiv_t m = ldiv (random (), choices);

// 4. Return new frame if not selecting a frame
if ((unsigned int)m.rem >= candidates.size ())

224

return —1;

// 5. Return method_number of canidate frame to use
return m.rem;

}

int DWtestREB :: first_frame (mclFrameEntryVector& fev,
frameVec& candidates) {
// 1. No canidates , return new frame
if (candidates.empty()) {
return —1;

}

// 2. Else return the first frame
return O;

string DWtestREB :: describe () {

string what = "???7";
switch (method_number) {
case 0: what = "0:_Passive"; break;
case 1: what = "1:_First"; break;
case 2: what = "2: New"; break;
case 3: what = "3: Random"; break;
case 4: what = "4:_EVS"; break;
case 5: what = "5:_ IIS"; break;
case 6: what = "6:_EVS_and_IIS"; break;
case 7: what = "7:_EVS_but_not_IIS"; break;
case 8: what = "8:_IIS_but_not EVS"; break;
case 9: what = "9:_Passive"; break;
default: what ="?:_Invalid_method_number"; break;
}
return "DW_REB=" + what;

}

string DWtestREB :: name () {
switch (method_number) ({

case (O: return "zero";
case 1: return "one";
case 2: return "two";
case 3: return "three";
case 4: return "four";

case
case
case
case
case

return

return
return
return
return
return

O 00 3 O\ W

" ???u ;

"five";
"six "

"seven";
"eight";
"nine";

225

226

Appendix D

PYTHON CODE USED IN EXPERIMENTS

I wrote the Mars Rover domain, experiment scaffolding, and various utilities in

Python.! There are four sets of python files.

Mars Rover Agent The files in Table D.1 implement a series of Mars Rovers. Each one
builds on the one before to implement additional features. RO, R1, and R2 imple-
ment the basic hardware of the Mars Rover. R3 and R4 add perturbations. RS adds
the STRIPS planner creating a Level 0: Bereft agent with no metacognitive supervi-
sion. R6 and R7 implement the multi-level, goal-oriented, motivated Rover acting as
a Level 1: Instinctive metacognitive agent. R8 and R9 provide scripting to allow for
complicated experiments. RA provides a visualization of the Rover. RB interfaces
with MCL to get a Level 2: Evaluative Rover and RC, with selectable frame compar-
ison functions, provides a Level 3: Temporal Rover. Finally, RD implements a Rover

dedicated to running the triple panoramic tour used in the dissertation experiments.

Mars Rover Agent Utility Files These files are used by the Mars Rover agent. This set
(Table D.2) includes files that just enumerate constants as well as those that imple-

ment important sub-systems.

'www.python.org

227

File Lines | Description

BasicRover.py 972 | RO: Implements the Coddington commands and en-
vironment

ExtendedRover.py 681 | R1: Adds additional commands

SensorRover.py 345 | R2: Provides sensor for use in motivations and ex-
pectations

NoisyRover.py 827 | R3: Allow sensors to be less than perfect

PerturbRover.py 602 | R4: Adds many possible perturbations to the Rover
and the environment

PlanRover.py 1062 | R5: Adds STRIPS planner

MultiLevelRover.py 862 | R6: Provides multi-level goals

MotivateRover.py 583 | R7: Adds selectable sets of motivations (stimulus —>
response)

ScriptRover.py 1243 | R8: Experiment setup and takedown

ChapterRover.py 564 | R9: And then support for multiple scripts

VisualRover.py 1058 | RA: GUI display and interface

MCLRover.py 1056 | RB: Communicates to MCL via sockets

FrameRover.py 559 | RC: Allows selecting frame comparison function to
use for experiment

DisseminationRover.py | 774 | RD: Runs triple panoramic tour experiment for dis-
sertation

Table D.1. Mars Rover Domain Experiments Python Files

Dissertation Related Programs The files listed in Table D.3 are not part of the Mars
Rover. They relate to running experiments, generating content for the dissertation,

and backing up the experiment and dissertation files.

Chippy Demonstration Programs The files in Table D.4 are for the Chippy grid world

used to demonstrate the metacognition levels in Chapter?2.

Figure D.1 shows the import relationships between the Python code files for the Mars

Rover simulation. And Figure D.2 for the Python files for the Chippy demonstration.

228

File Lines | Description

Levels.py 32 | Multilevel Rover goal hierarchy

MCLLevels 82 | Metacognitive levels

MCLResponse.py 265 | Decode and encapsulate suggestions from MCL

MCLServer.py 554 | Manages socket connection to MCL

Motivation.py 166 | Generic motivation: sensor, test, urgency and action

RoverAction.py 548 | Describes a single Rover action

RoverMotivation.py | 400 | Rover motivation groups

RoverScript.py 1095 | Implements mini-language to define Rover experi-
ments

Sensors.py 135 | Defines single and multiple sensors

perturbations.py 468 | Creates anomalies in Rover or environment

rstrips.py 1024 | STRIPS planner

tokenizer.py 222 | Simple parser for action scrips

Table D.2. Mars Rover Agent Utility Python Files

File Lines | Description

ApproachTables.py | 726 | Generate IXTEX tables for static evaluation of frame
comparison functions

Backupumbc.py 100 | Tar, ZIP, and copy files from laptop to dated directo-
ries on network file server

Dissertation.py 805 | Master script to run one or multiple sets of experi-
ments

Results.py 3179 | Read experiment CSV files and generate IAEX tables
for results chapter

csv2tex.py 345 | Create a ISTEX table from an experiment CSV file

trace2tex.py 149 | Convert Rover to MCL communication trace to a

IATEX tabular figure

Table D.3. Dissertation Related Python Programs

File Lines | Description

Dissertation.py 150 | Executes experiments for dissertation
Experiments.py | 158 | Executes 22 Chippy experiments with a single runner
Experiment.py 134 | Executes a single Chippy experiment

Runners.py 205 | Run routines for Metacognition 0, 1, 2, and 3
Runner.py 124 | Abstract Q-Learner that invokes metacognition
QLearner.py 213 | A grid world walker that learns

Walker.py 168 | Agent that walks a grid world

Grid.py 276 | A x/y collection of Squares

Square.py 255 | A single square of the grid

Constants.py 151 | A *“.h” file for the Chippy python files

Results.py 1001 | Creates latex tables from Chippy experiment csv file

Table D.4. Chippy Demonstration Python Programs

229

231

@

FI1G. D.2. Dependency graph for Python implementation of the Chippy Q-Learner with
multiple metacognition levels.

REFERENCES

[1] Aamodt, A., and Plaza, E. 1994. Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. Al Communications 7(1):39-59.

[2] Allen, J. E.; Schubert, L. K.; Ferguson, G.; Heeman, P.; Hwang, C. H.; Kato, T.; Light,
M.; Martin, N. G.; Miller, B. W.; Poesio, M.; and Traum, D. R. 1994. The trains project:
A case study in defining a conversational planning agent. Technical report, University
of Rochester, Rochester, NY, USA.

[3] Allen, J. E; Miller, B. W.; Ringger, E. K.; and Sikorski, T. 1996. Robust understanding
in a dialogue system. In Proceedings of the 1996 Annual Meeting of the Association for
Computational Linguistics (ACL’96), 62-70.

[4] Anderson, M. L., and Oates, T. 2007. A review of recent research in metareasoning
and metalearning. Al Magazine 28(1):7-16.

[5] Anderson, M., and Perlis, D. 2005. Logic, Self-Awareness, and Self-Improvement:
The Metacognitive Loop and the Problem of Brittleness. Journal of Logic and Compu-
tation 15(1):21-40.

[6] Anderson, J., and Pirolli, P. 1984. Spread of activation. Journal of Experimental
Psychology: Learning, Memory, and Cognition 10(4):791.

[7] Anderson, M. L.; Okamoto, Y. A.; Josyula, D.; and Perlis, D. 2002. The use-mention
distinction and its importance to hci. In TheProceesings of the Sixth Workshop on the
Semantics and Pragmatics of Dialog, 21-28.

[8] Anderson, M. L.; Josyula, D.; Perlis, D.; and Purang, K. 2004. Active logic for more
effective human-computer interaction and other commonsense applications. In Proceed-
ings of the Workshop Empirically Successful First-Order Reasoning, International Joint
Conference on Automated Reasoning.

[9] Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D. 2006. The Metacognitive
Loop I: Enhancing reinforcement learning with metacognitive monitoring and control

for improved perturbation tolerance. Journal of Experimental and Theoretical Artificial
Intelligence 18(3):387—411.

[10] Anderson, M. L.; Schmill, M.; Oates, T.; Perlis, D.; Josyula, D.; Wright, D.; and Wil-
son, S. 2007. Toward domain-neutral human-level metacognition. In 8th International
Symposium on Logical Formalizations of Commonsense Reasoning, 1-6.

232

233

[11] Anderson, M. L.; Fults, S.; Josyula, D. P.; Oates, T.; Perlis, D.; Schmill, M. D.;
Wilson, S.; and Wright, D. 2008. A self-help guide for autonomous systems. Al
Magazine 29(2):67-76.

[12] Anderson, J. R. 1983. A spreading activation theory of memory. Journal of Verbal
Learning and Verbal Behavior 22:261-295.

[13] Bento, C., and Costa, E. 1994. A similarity metric for retrieval of cases imperfectly
explained. In Wess, S.; Althoff, K.; and Richter, M., eds., Topics in Case-Based Rea-
soning. Berlin: Springer Verlag. 92—-105.

[14] Brachman, R. J. 2002. Systems that know what they’re doing. IEEE Intelligent
Systems 17(6):67-71.

[15] Brachman, R. J. 2006. (AA)AI, More Than the Sum of its Parts. Al Magazine
27(4):AAAI Presidential Address.

[16] Coddington, A. 2006. Motivations for MADbot: a motivated and goal directed robot.
In Proceedings of the 25th Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSIG2006), 39-46.

[17] Coddington, A. 2007a. Motivations as a meta-level component for constraining goal
generation. In Proceedings of the First International Workshop on Metareasoning in
Agent-Based Systems, 16-30.

[18] Coddington, A. 2007b. Integrating motivations with planning. In AAMAS ‘07: Pro-
ceedings of the 6th international joint conference on autonomous agents and multi-agent
systems, 855—857. Honolulu, Hawaii: ACM. 978-81-904262-7-5.

[19] Cohen, P, and Kjeldsen, R. 1987. Information retrieval by constrained spreading
activation in semantic networks. Information processing & management 23(4):255-268.

[20] Cox, M. T., and Raja, A. 2007. Metareasoning: A manifesto. Technical Report BBN
TM-2028, BBN Technologies.

[21] Cox, M., and Raja, A. 2011. Metareasoning: Thinking about thinking. The MIT
Press.

[22] Cox, M. T. 2005a. Perpetual self-aware cognitive agents. In Anderson, M., and Oates,
T., eds., Metacognition in Computation: Papers from 2005 AAAI Spring Symposium.
Menlo Park, CA: AAAI Press. 42—-48. Technical Report SS-05-04.

[23] Cox, M. T. 2005b. Metacognition in computation: A selected research review. Artifi-
cial Intelligence 169(2):104—141.

234
[24] Cox, M. 2007. Perpetual self-aware cognitive agents. Al Magazine 28(1):32.

[25] Dearden, R.; Wileke, T.; Simmons, R.; Verma, V.; Hunter, F.; and Thrun, S. 2004.
Real-time Fault Detection and Situational Awareness for Rovers: Report on the Mars

Technology Program Task. In In Proceedings of IEEE Aerospace Conference, 826—840.
IEEE Press.

[26] Dellarocas, C., and Klein, M. 2000. An experimental evaluation of domain-
independent fault handing services in open multi-agent systems. In Proceedings of the
International Conference on Multi-agent Systems (ICMAS).

[27] Druzdzel, M. 1999. SMILE: Structural Modeling, Inference, and Learning Engine
and GeNle: a development environment for graphical decision-theoretic models. In Pro-
ceedings of the national conference on artificial intelligence, 902-903. JOHN WILEY
& SONS LTD.

[28] Elgot-Drapkin, J., and Perlis, D. 1990. Reasoning situated in time I: Basic concepts.
Journal of Experimental and Theoretical Artificial Intelligence 2:75-98.

[29] Elgot-drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and Perlis, D. 1993. Active
logics: A unified formal approach to episodic reasoning. Technical Report UMIACS
TR # 99-65m CS-TR # 4072, University of Maryland, UMIACS and CSC.

[30] Elgot-Drapkin, J. J. 1988. Step-logic: reasoning situated in time. Ph.D. Dissertation,
Department of Computer Science, University of Maryland, College Park, MD.

[31] Estlin, T.; Gaines, D.; Chouinard, C.; Castano, R.; Bornstein, B.; Judd, M.; Nes-
nas, [.; and Anderson, R. 2007. Increased Mars Rover Autonomy using Al Planning,
Scheduling and Execution. In 2007 IEEE International Conference on Robotics and

Automation, International Conference on Robotics and Automation, 4911-4918. Rome,
Italy: IEEE.

[32] Ferguson, G.; Allen, J.; and Miller, B. 1996. Trains-95: Towards a mixed-initiative
planning assistant. In Proceedings of the Third Conference on Artificial Intelligence
Planning Systems (AIPS-96), 70-77.

[33] Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2:189-208.

[34] Fikes, R., and Nilsson, N. 1994. Strips, a retrospective. Artificial intelligence in
perspective 227.

[35] Fikes, R. 1971. Monitored execution of robot plans produced by strips. Technical
Report Technical Report 55, Al Center, SRI International, Menlo Park, CA.

235

[36] Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning; Theory and
Practice. San Francisco, CA: Morgan Kaufmann.

[37] Gil, Y. 1994. Learning by experimentation: Incremental refinement of incomplete
planning domains. In Proceedings of the Eleventh International Conference on Machine
Learning, 87-95.

[38] Higg, S. 2000. A sentinel approach to fault handling in multi-agent systems. In
Proceedings of the 2nd Australian Workshop on Distributed Al.

[39] Hammond, K. J. 1986. Learning to anticipate and avoid planning problems through
the explanation of failures. In Proceedings of the Fifth National Conference on Artificial
Intelligence, 556-560. Menlo Park, CA: AAAI Press.

[40] Hammond, K. J. 1989. Case-based planning: Viewing planning as a memory task. In
Perspectives in Artificial Intelligence, volume 1. San Diego, CA: Academic Press.

[41] Hammond, K. J. 1990. Explaining and repairing plans that fail. Artificial Intelligence
45:173-228.

[42] Hardy, C. R.; Miller, D. W.; and Hajek, B. K. 1992. A model-based approach to
malfunction isolation in interacting systems. In Proceedings of the 8th Power Plant
Control & Testing Symposium, 37.1-37.13.

[43] Hennacy, K.; Swamy, N.; and Perlis, D. 2003. RGL study in a hybrid real-time
system. In Proceedings of the IASTED NCI.

[44] Hines, J. W., and Hajek, D. W. M. B. K. 1995. Fault detection and isolation: A hybrid
approach. In Proceedings of the Topical Meeting on Computer-Based Human Support

Systems: Technology, Methods, and Future, Philadelphia, Pennsylvania, June 25-29,
1995.

[45] Hines, J. W.; Miller, D. W.; and Hajek, B. K. 1996. Hybrid approach for detecting
and isolating faults in nuclear power plant interacting systems. Nuclear technology
115(3):342-358.

[46] Hinrichs, T., and Forbus, K. 2007. Analogical learning in a turn-based strategy game.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence,

853-8358.

[47] Hooper, J. 2004. Darpa’s debacle in the desert an inside look at what went wrong
at the grand challenge. plus: Who’s ready for next year’s race? POPULAR SCIENCE
264(6):84-93.

236

[48] Jones, J., and Goel, A. 2005. Knowledge organization and structural credit assign-
ment. IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer
Games.

[49] Josyula, D.; Anderson, M. L.; and Perlis, D. 2003. Towards domain-independent,
task-oriented, conversational adequacy. In Proceedings of the Eighteenth international
Joint Conference on Artificial Intelligence (IJCAI-03), 1637-8.

[50] Josyula, D. P. 2005. A Unified Theory of Acting and Agency for a Universal In-
terfacing Agent. Ph.D. Dissertation, Department of Computer Science, University of
Maryland, College Park.

[51] Judd, C.; McClelland, G.; and Ryan, C. 2009. Data analysis: A model comparison
approach (2nd ed.). New York, NY, US: Routledge/Taylor & Francis Group.

[52] Kolodner, J. L. 1993. Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann
Publishers.

[53] Leake, D.; Kinley, A.; and Wilson, D. 1997. Case-based similarity assessment:
Estimating adaptability from experience. In Proceedings of the national conference on
artificial intelligence, 674—679.

[54] Leake, D. 1992. Evaluating Explanations: A Contect Theory. Hillsdale, NJ:
Lawrence Erlbaum Associates.

[55] Leake, D. 1995. Adaptive similarity assessment for case-based explanation. Interna-
tional Journal of Expert Systems 8(2):165-194.

[56] Leake, D. B. 1996a. Experience, introspection, and expertise: Learning to refine
the case-based reasoning process. Journal of Experimental and Theoretical Artificial
Intelligence 8(3-4):319-339.

[57] Leake, D. B. 1996b. CBR in context: The present and future. In Leake, D. B., ed.,
Case-based Reasoning: Experiences, Lessons, and Future Directions. AAAI Press / The
MIT Press. chapter 1, 3-30.

[58] Lekavy, M., and Navrat, P. 2007. Expressivity of strips-like and htn-like planning.
Agent and Multi-Agent Systems: Technologies and Applications 121-130.

[59] Miller, M. 1993. A view of one’s past and other aspects of reasoned change in belief.
Ph.D. Dissertation, University of Maryland, College Park, Maryland.

[60] Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping: Reinforcement learn-
ing with less data and less time. Machine Learning 13:103-130.

237

[61] Nau, D.; Au, T.; llghami, O.; Kuter, U.; Murdock, J.; Wu, D.; and Yaman, F. 2003.
Shop2: An htn planning system. Journal of Artificial Intelligence Research 20(1):379—
404.

[62] NIST/SEMATECH. 2003. e-handbook of statistical methods.
http://www.itl.nist.gov/div898/handbook/prc/section4/prc43.htm, May 2011.

[63] Perlis, D.; Purang, K.; and Andersen, C. 1998. Conversational adequacy: mistakes
are the essence. Int. J. Human-Computer Studies 48:553-575.

[64] Purang, K. 2001. Systems that Detect and Repair Their Own Mistakes. Ph.D. Disser-
tation, Dept. of Computer Science, University of Maryland, College Park, MD.

[65] Rummery, G. A., and Niranjan, M. 1994. On-line g-learning using connectionist sys-
tems. Technical Report CUED/F-INGENG/TR 166, Cambridge University Engineering
Department.

[66] Russell, S., and Norvig, P. 1995. Artificial intelligence: a modern approach. Prentice
Hall Englewood Cliffs, NJ.

[67] Russell, S. J., and Wefald, E. 1991. Principles of metareasoning. Artificial Intelligence
49(1-3):361-395.

[68] Saka, P. 1998. Quotation and the use-mention distinction. Mind 107(425):113.

[69] Schank, R. C., and Leake, D. B. 1989. Creativity and learning in a case-based
explainer. Artificial Intelligence 40(1-3):353-385.

[70] Schank, R. 1990. Tell me a story: A new look at real and artificial memory. Charles
Scribner’s Sons.

[71] Schmill, M.; Josyula, D.; Anderson, M. L.; Wilson, S.; Oates, T.; Perlis, D.; Wright,
D.; and Fults, S. 2007. Ontologies for reasoning about failures in Al systems. In
Workshop on Metareasoning in Agent-Based Systems.

[72] Schmill, M.; Oates, T.; Anderson, M.; Fults, S.; Josyula, D.; Perlis, D.; and Wilson,
S. 2008. The role of metacognition in robust Al systems. In AAAI-08 Workshop on
Metareasoning,(Chicago, IL).

[73] Schmill, M.; Anderson, M.; Fults, S.; Josyula, D.; Oates, T.; Perlis, D.; Shahri, H.;
Wilson, S.; and Wright, D. 2011. The metacognitive loop and reasoning about anoma-
lies. In Cox, M. T., and Raja, A., eds., Metareasoning: Thinking about thinking. The
MIT Press. chapter 12, 183—-198.

[74] Schmill, M. 2009. Overview of the MCL API. Included with MCL2.

238

[75] Stephenson, A. 1999. Mars climate orbiter: Mishap investigation board report. NASA,
November 10.

[76] Stroulia, E., and Goel, A. K. 1995. Functional representation and reasoning for re-
flective systems. Journal of Applied Intelligence Special Issue on Functional Reasoning
9(1):101-124.

[77] Stroulia, E., and Goel, A. K. 1996. A model-based approach to blame assignment:
Revising the reasoning steps of problem solvers. In Thirteenth Annual Conference on
Artificial Intelligence, 959-965. Portland, Oregon: AAAI Press.

[78] Stroulia, E. 1994. Failure-Driven Learning as Model-Based Self-Redesign. Ph.D.
dissertation, College of Computing, Georgia Institute of Technology, Atlanta.

[79] Sutton, R. S., and Barto, A. G. 1995. Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press.

[80] Tinds, R., and Terra, M. H. 2002. Fault detection and isolation for multiple manipu-
lators. In the Proceedings of the 2002 IFAC Work Congress (IFAC 2002).

[81] Tinés, R.; Terra, M. H.; and Bergerman, M. 2002. Fault tolerance in cooperative
manipulators. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Interna-
tional Conference on, volume 1, 470-475. 1EEE.

[82] Traum, D. R.; Andersen, C. F.; Chong, W.; Josyula, D.; Okamoto, Y.; Purang, K.;
O’Donovan-Anderson, M.; and Perlis, D. 1999. Representations of dialogue state for

domain and task independent meta-dialogue. Electronic Transactions on Artificial In-
telligence 3:125-152.

[83] Ulam, P.; Goel, A.; Jones, J.; and Murdock, W. 2005. Using model-based reflection
to guide reinforcement learning. In IJCAI Workshop on Reasoning, Representation, and
Learning in Computer Games.

[84] Ulam, P.; Goel, A.; and Jones, J. 2004. Reflection in action: Model-based self-
adaptation in game playing agents. In AAAI Challenges in Game Al Workshop.

[85] Veloso, M., and Carbonell, J. G. 1994. Case-based reasoning in PRODIGY. In
Michalski, R. S., and Tecuci, G., eds., Machine Learning IV: A Multistrategy Approach.
San Francisco: Morgan Kaufmann. 523-548.

[86] Wang, X. 1995. Learning by observation and practice: An incremental approach for
planning operator acquisition. In Proceedings of the Twelfth International Conference
on Machine Learning.

[87] Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Machine Learning 8:279-292.

239

[88] Watkins, C. 1989. Learning from delayed rewards. Ph.D. Dissertation, King’s Col-
lege, Cambridge University, Cambridge, England.

[89] Williams, B. C., and Nayak, P. P. 1996. A model-based approach to reactive self-
configuring systems. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, 971-978.

[90] Williams, B., and Nyak, P. P. 1999. A model-based approach to reactive self-
configuring systems. In Minker, J., ed., Workshop on Logic-Basid Artificial Intelligence
(LBAI). College Park, Maryland: Americian Science Foundation and AAAI

[91] Wilson, T. D., and Schooler, J. W. 1991. Thinking too much: Introspection can reduce

the quality of preferences and decisions. Journal of Personality and Social Psychology
60(2):181-192.

