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Abstract

Making mistakes is an inescapable aspect of everyday life. We constantly make mistakes, recognize them and try
to correct them. Mistakes are inevitable because of the incompleteness of our knowledge of the world, its inherent
uncertainty and its being in a constant state of change. We can never know for sure that what we know is true and the
actions that we take based on these beliefs can therefore be misguided. Sooner or later we act based on some false
belief or the world changes in an unexpected way and we fail to achieve our goal. But the fact that we can recognize
and repair these errors mitigates their effects. Software systems face the same problems. The difference is that they
do not ususally have as robust a capability as we have to detect and respond to their mistakes. This is part of what
makes them seem brittle and user-unfriendly. This problem is not likely to get any better as the systems exhibit more
complex behaviors in more realistic domains.

Our work begins to address that problem by focusing on the computational capabilities required of software systems
for them to be able to autonomously recognize and respond to their own mistakes. We study in particular, mistaken
beliefs, intentions and actions in agents that have some goals to achieve. Intuitively enough, the basic capabilities
required are an ability to inspect their past behavior and computations and the past states of the world and to use that
to determine their future behavior. These abilities are not typically available in software systems.

We have implemented a general logical framework in which one can specify the behavior of an agent that supports
this kind of representation and computation . We have implemented agents that detect and respond appropriately to
their mistakes in some aspects of language processing. We have also implemented a system that handles its mistaken
beliefs in any domain that can be described using the language of non-monotonic logic. This system was tested on a
test suite that we compiled from examples of non-monotonic reasoning in the literature. We finally provide a design
of the representations and algorithms for handling mistakes in an agent that acts in the world and has mistaken beliefs,
intentions and actions. Implementing such an agent is the next step in this work.
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Chapter 1

Mistakes

Pooh always liked a little something at eleven o’clock in the morning, and he was very glad to see Rabbit
getting out the plates and mugs; and when Rabbit said, "Honey or condensed milk with your bread?’” he
was so excited that he said, ’Both’ and then, so as not to seem greedy, he added, *But don’t bother about
the bread, please.

As soon as he said “Both”, Pooh [127] realized that saying that made him seem greedy and that was a mistake. So he
immediately tried to correct the mistake as best he could with comical effect.

Mistakes are made by highly trained people in more dramatic circumstances too as this newspaper excerpt [147]
shows:

A National tower controller cleared a Piper PA-27 to land on Runway 4, then mistakenly gave a US
Airways Boeing 737 clearance to take off on Runway 1, which intersects with Runway 4, less than 1,000
feet from the Piper’s touchdown point.

Nineteen seconds later, the controller caught the error and realized the two planes could meet at the
intersection. The controller ordered the Piper pilot to abort his landing.

But the pilot, Ronald W. Zborowski of Eighty Four, Pa., said in an interview that the controller was using
the wrong call sign for his plane and he did not realize at first that the controller was talking to him.

Instead, Zborowski said, he saw the US Airways plane beginning his takeoff roll nearby to his right, and
”stood on the brakes” to come to a stop. "Had I proceeded with a normal landing, there was a danger of a
collision,” he said.

The Piper stopped 200 feet short of the intersection as the jet roared past.

If it had been a software system that had put the planes on a collision course, would it have realized its mistake? And
would it have attempted to correct it? What would it take for software systems to have that ability?

Al systems are notoriously fragile, breaking completely once they get outside their design specifications. Two ap-
proaches to this problem are (1) to design and build the systems so that they accurately and completely model all the
circumstances they can find themselves in; (2) to accept that there is always the possibility of failures and to recognize
and correct them when they occur. A mixture of the two seems to be required for more flexible Al: we need to more
precisely model the world, but we also need to handle failures of the system when they occur. In this work we inves-
tigate the second approach—how to design resource-limited agents that operate in non-trivial worlds so that they can
themselves detect and respond to the inevitable mistakes that they make.



We do not propose to design and build a system that would act like the controller mentioned above. This would
be a long range undertaking involving many aspects of Al. Instead, we focus on the design of the mechanisms for
error detection and correction that such a system would need. We illustrate that this is a viable approach with a few
implemented systems that have been tested on simpler examples of mistake than the above near-collision.

There has not been, to our knowledge, any previous work that specifically addresses the issues involved in detecting
and handling mistakes across a large range of domains in the unified way we propose. Work in conditional planning
and plan execution with failure address similar issues as far as agents devising and executing plans are concerned.
Non-monotonic logics and belief revision systems address issues related to those of agents making mistakes in their
beliefs. Mistakes in dialog and language have been addressed in some work on miscommunication. Each of these
approaches involves specific techniques that are effective in their domains and for their purposes. However, none of
them presents a unified and practical view of agents detecting and handling their mistakes as is our goal.

This unified approach is based on active logic [48]. We designed, implemented and tested Alma/Carne, a general
implementation of active logic (See chapter 2). Previous work on active logic required a new logic to be built to solve
the specific problem of concern. Alma/Carne is a basis on which active logic applications can be built. This facilitates
the development of new applications and allows for reuse of parts of solutions across domains. Alma/Carne is time-
situated and provides an extensive set of meta-logical predicates and operators. It has been tested on a large number
of test problems during development and is being used in some projects. Several formalisms, for example[164, 122,
44,39, 13, 90, 6, 15, 11, 99, 166], have one or more of the distinctive properties of Alma/Carne but not all of them.
As will be seen in the rest of this work, these capabilities are essential for our goals.

Conditional planning, architectures for plan execution with failures and related systems [139, 186, 68, 62, 81, 80, 85,
7,192, 192, 191] consider the problem of an agent planning and executing plans in circumstances where there may
be mistakes. Some shortcomings that we see, in general, with these systems are: (1) all possible mistakes have to be
predefined in the plan; (2) the methods of detecting these mistakes are fixed and have to be defined in the plan; (3)
this results in large plans that are cumbersome to derive and execute. Further, these systems do not explicitly consider
mistaken beliefs and the relations between mistaken beliefs, intentions and action and therefore miss opportunities to
detect and also prevent mistakes by the agent. Our approach presented in chapter 10, addresses these issues.

Non-monotonic reasoning and belief revision systems [110, 108, 157, 130, 116, 173, 43, 162, 40, 41, 149, 170, 25,
65] address problems related to mistaken beliefs. We see the following problems with non-monotonic reasoning
formalisms in general: (1) they do not allow for change in the knowledge base; (2) they are not time-situated; (3)
they are not computable; (4) they do not allow meta-reasoning; (5) they do not tolerate contradictions. Belief revision
systems allow dynamic change of their databases unlike non-monotonic systems, but still have the other problems. Our
approach to mistaken beliefs uses the language of non-monotonic logics but addresses these problems. (See chapters
7 and 8). This has been tested on a large number of problems collected from the literature (see chapter 9). These are
problems put forward to illustrate non-monotonic logics or to contrast logics according to the problems one and not
the other could solve. Of 96 problems collected, 46 were solved by our system, 23 were similar to the 46 and could be
solved but were not attempted and 24 (25%) could not be solved.

Work in miscommunications in natural language dialog [120, 82, 185] is another area where mistakes are considered
in the literature. We applied our approach to two specific cases of mistakes in language processing: presupposition
projection [78] (see chapter 4) and implicature cancellation [74] (see chapter 5). In the implicature cancellation case,
our approach better models the evolution of the knowledge base with time than alternative approaches do. In the
presupposition projection case, our modification of a widely accepted algorithm [78] to reason about mistakes in a
class of dialogs resulted in more intuitive performance of that algorithm.

A point that bears emphasis is that our approach to mistakes and the logic that we implemented for that provide a
uniform basis on which one can build specific instances of mistake detection and handling in different domains. This
has been demonstrated in each of the domains mentioned above and is detailed in the rest of this document. This
provides evidence that the methods to detect and handle mistakes we develop here are domain-independent.



1.1 Scope of thiswork

Note that we focus on agents detecting, on their own, that they have made a mistake, and repairing these. There are
related perspectives that we do not adopt: 1. that of the designer of the agent determining whether or not the agent
performs according to the designer’s intentions; 2. that of a user of the agent who determines that the agent does not
satisfy the user’s needs. These perspectives are all related—ideally each perspective will generate identical mistake sets.
Then, the desired response of the user, the designed response and the actual response of the system coincide for all
situations. However, the designer of the system might not know what a user of the system will expect and the system
itself may be built so that it cannot detect and respond to some of the situations it finds itself in.

We take a rather wide view of what counts as an agent by including any artifact that can be said to have beliefs and
intentions and is capable of acting in some way, even if it is only to modify its internal structure. We also take a liberal
view of what counts as an agent having beliefs, goals, and intentions by adopting the intentional stance [42, 111]. As
long as we can coherently attribute beliefs and intentions to an agent, we take the agent as having these mental states.
There also have to be internal states or processes that we can identify to which these mental states could be attributed.

This helps us have a general account of mistakes for a wide range of systems. The complexity of the design of the
agent as well as the environment the agent operates in varies widely in complexity. So do the kinds of mistake that the
agent can commit and the appropriate response to these mistakes.

The following examples can help clarify the scope of our investigations:

¢ A vending machine rgecting a genuine dollar bill. This is surely a mistake of the machine from the point of
view of the user, and perhaps from the point of view of the designer, but it does not seem to be a mistake from
the point of view of the machine because it does not seem to recognize that it has made a mistake in rejecting a
genuine bill and does nothing to recover from that mistake. This is not the sort of behavior we are concerned in

e A CD player that mutes on playing back a CD. A CD player has to read data off the disk. However, things
can go wrong: the data may not be readable, or it may fail integrity tests. On failure, CD players typically try
to interpolate the missing samples, or mute the output for these samples. From the intentional stance, the CD
player expects good data to be coming off the disk, but when that assumption is falsified it realizes there is a
problem. Its first response is to try to recreate the data by interpolation. In this case the interpolation fails and
the player then resorts to muting the output for the missing samples. On realizing that there is a mistake, whether
on its part or because the CD being played is out of specifications, the player tries to repair the error before it
gets to the output. The repair is not always perfect but this response seems more adapted to failures than the
vending machine’s.

e A computer game monster that runs away fromthe player but when cornered, attacks. Here the belief one could
attribute to the monster is that it has an escape route, and given that, it runs away. If the path is blocked, it
seems to recognize that and changes its behavior. In this case, it seems clearer that the monster recognizes that
something unexpected has happened and responds to that event by changing its behavior. This could be seen as
recognition by the monster that it had made a mistake and a response to the consequence of that mistake—that it
has put itself in great danger. This is different from the previous case where the basic behavior of the CD player
did not change in interesting ways. The monster seems more responsive to its failures than the CD player.

o In the near crash above, something like the following presumaby happened. The controller intially gave landing
and take-off instructions to the two planes believing there was no conflict. He then found that a possible conse-
quence of his (or her) instructions was a collision. This involved reasoning about his past action and their effects
on the world. He recognized a collision as being undesirable and searched for a way to avoid that. He could not
undo his past actions but tried to do that by asking the Piper not to land. It seems though that he did not know
that it was already on the ground and this response was mistaken. He was doubly mistaken when he used the
wrong call sign for the Piper.



These examples illustrate that there is a variety of agents to which we can at least attribute some form of mistake, and
there is a wide range of responses we would judge appropriate, although we would not always associate agenthood or
mistakes to these artifacts. It does seem appropriate for the CD player to interpolate data and mute the ouput when
data is missing rather than rejecting it on the first error. We would think the monster to be particularly stupid if it tried
to run through the wall (if it did not have special wall-penetration capabilities), but attacking when cornered seems to
be a good response. The traffic controller’s response to the original response was mistaken: he should have verified
the position of the Piper and he should have known the call sign. This was perhaps the result of working under the
threat of an imminent disaster. This response, though flawed, seems like the right kind of thing we would expect.

Another aspect of dealing with mistakes that we investigate then is the range of types of possible responses to mistakes.
Not all agents need to have the greatest degree of flexibility to deal with mistakes and that apparent limitation can be
very helpful given the limited resources of real agents.

As agents and software systems in general get more complex, the range of errors they could face will increase even
faster. It will not be practical for the system to have precomputed and hardwired responses to the mistakes as with the
simpler systems we have seen above. The CD player does not have many behaviors and does not have to respond to
many unexpected events, so it can use a simple chip-based controller (for example the SAA7335 [146]). An increase
in the complexity of the system requires a different kind of reaction to mistakes rather than more of the same kind of
action though. The response has to be flexible and handle any situation the agent finds itself in, or at least a wide range
of such situations. Computer game monsters have a wider range of behaviors and find themselves in more kinds of
situations than CD players and have to respond to these appropriately if the game is to be successful. A Half-Life (a
popular series of computer games) monster typically has a range of plans available and it executes just one at any one
time. It has one current behavior and one response plan to deal with any failure in its current behavior [34]. This gives
the monster more flexibility that the CD player but this is not sufficient for more complex agents in more complex
situations. When the planes are about to collide, we want to have a variety of responses available where the choice of
the response can involve complex but fast computations. The flexibility can be achieved if the system detects, identifies
and reasons about the mistakes it makes.

Having agents diagnose and repair their own mistakes is especially important because as systems get more complex, it
is harder for their designers to understand them and predict their mistakes in their interaction with the more complex
environments that these systems will operate in (it’s hard enough to predict the behavior in normal circumstances).
It is therefore not going to be possible to have all the responses to mistakes precomputed and ready to be used. In
fact, the recognition and classification of the mistake itself is likely to be much more complex so that even if we had a
response for every mistake, it would be hard to respond appropriately. The solution we propose is to give the system
the basic tools to deal with mistakes and let it devise its response to mistakes as they occur.

In the rest of this chapter, we first discuss the inevitability of mistakes and the importance of handling mistakes. We
then define mistakes and describe some of their properties. Our discussion is meant to result in a practical set of tools
for generating the behaviors described above and should not be seen as a philosophical analysis of mistakes. We next
consider how an agent could detect and respond to mistakes and the representations needed for that. We then sketch
out the rest of the dissertation.

1.2 Mistakes areinevitable and haveto be handled

Mistakes are pervasive. We can almost say that if a system cannot make mistakes, it is not doing anything very
interesting. Several factors contribute to making mistakes inevitable in an agent that operates in a non-toy domain:

e Incompletenesst is unlikely that one can represent all of the facts and relations relevant to the behavior of an
agent in its KB. Not doing so can cause errors: if we don’t know that there is a tiger behind the door, we might
open it which would be a grave mistake.



e Uncertainty Even if that information that is represented in the agent, there is likely to be a degree of uncertainty
associated with it. It is not the case that all birds fly, but typically birds fly. If all the agent knows is that Joe is a
bird, and that birds typically fly, the best conclusion it can come to is that Joe flies. But Joe might be one of the
exceptions and not fly. Believing that Joe flies is then a mistake.

¢ Change As time goes by, events occur that are controlled by other agents and the information that the agent has
which that was true in the past can become false without the agent being aware of it. Even if the change is a
result of the agent’s actions it may still be unaware of it because of incompleteness in its knowledge or because
of its resource limitations. The traffic lights may be green, and the agent correctly believes it to be green. If the
lights then change to red but the agent does not notice it, that belief becomes mistaken and the agent may cross
the street.

¢ Resource limitationsThe agent is likely to have a large amount of information and a limited processing capa-
bility. A large amount of information can be computed from the information that the agent already has. A real
agent will consume resources (including time) in computing that new information. There may not be sufficient
resources to compute some relevant piece of information in the time available. The rules of chess are finite and
well-defined so that there are no problems of incompleteness or uncertainty. The games are of finite length and
the changes to the board are known to the agent, but an agent will not in general be able compute the best move
to make for lack of computational resources.

e Time Related to the above is the time that the agent has available to respond to changed situations. It might
have to take actions before it has had the time to process all relevant information and that can lead to mistakes.
The agent may be able to compute a very good chess move, if not the optimal move, given enough time, but if
it does not have time, it is possible for it to make a mistake.

Each of these factors can cause the agent to make a mistake. It does not seem likely that the possibility of mistakes
can be eliminated unless we retreat to the simplest of toy domains, or the agent refuses to take any action or represent
anything. Making mistakes seems to be an inherent aspect of the behavior of agents in interesting enough domains.

1.2.1 Handling mistakes

It is obvious that an agent should respond appropriately to errors, even if the response may occasionally be itself
mistaken. If it does not do so, it is not likely to accomplish its goals and may cause further problems in the world.

Apart from the effectiveness of the agent, the absence of failure responses that are appropriate to the behavior of the
system can lead to frustrating experiences for users of those systems. A vending machine refusing to accept the only
dollar bills you have is not a pleasant experience.

A related factor is that the perceived intelligence of a system seems linked to its ability to deal with errors. The
more flexibly a system adapts to new circumstances, including those where it made mistakes, the more intelligent it
is perceived to be. Vending machines are not perceived to be particularly intelligent. Game monsters, however, do
sometimes at least, succeed in outwitting us.

People make mistakes all the time, yet can generally function well enough not to be overwhelmed by them. People
even use mistakes to their advantage: we recognize that we have made a mistake, we might repair it and we might
learn from that mistake and try not to repeat it. We need not be aware of all the mistakes we make or never commit the
same mistake twice, but we are not oblivious to mistakes either. The mistakes we make help us build a better model of
the world and that allows us to better operate in it. Similarly, intelligent agents should have the capability to recognize
and respond effectively to mistakes even though they might not always be able to do so.



1.3 What isa mistake

We start by making more precise what we mean by the term “mistake”. The sense of mistake that we are after is one
that will be useful for an agent that needs to react to mistakes it encounters, rather than dissecting the meaning of the
term. We ultimately want a notion of mistake that can be easily computed by the agent even though it may not always
be accurate (it is then itself mistaken).

1.3.1 Dictionary definition

The definitions in Webster’s Third New International Unabridged Dictionary [189] for “mistake” are:

mistake
n 1 : a misunderstanding of the meaning or implication of something

itis a mistake to think that the supreme or legislative power of a commonwealth can do what it will —John
Locke it is a great mistake to think that the bare scientific idea is the required invention —A.N.Whitehead

2 : a wrong action or statement proceeding from faulty judgment, inadequate knowledge, or inattention :
an unintentional error

it would be a mistake , however, to drain all bogs —Boy Scout Handbook gave him a ten-dollar bill in
mistake for a one

3 law : an erroneous belief : a state of mind not in accordance with the facts
syn see ERROR
— and no mistake : SURELY, UNDOUBTEDLY he’s the one I saw, and no mistake

“Error” in turn is defined as:

error
n-S

[ME errour, fr. OF error, errour, fr. L error, fr. errare to err] 1 a : an act or condition of often ignorant
or imprudent deviation from a code of behavior : violation of ritual holiness, moral rectitude, or social
convention : SIN

entice with licentious passions of the flesh men who have barely escaped from [.....] error —2 Pet 2:18
(RSV) : OFFENSE, FAULT the official’s errors of nepotism and acceptance of large gifts from lobbyists

b : an act involving an unintentional deviation from truth or accuracy : a mistake in perception, reasoning,
recollection, or expression

made an error in adding up the bill gunnery errors

¢ : an act that through ignorance, deficiency, or accident departs from or fails to achieve what should be
done

got lost when he made the error of turning left at the fork an error of judgment the error of writing last
year’s date early in January

3 : something (as a misstatement or misprint) produced by mistake

a typographical error



specif : a postage stamp released for use that shows flaw in its manufacture (as in differing in color or
paper from others of its issue and denomination)

6 : a deficiency or imperfection in structure or function : DEFECT

an error in vision may cause headaches

syn

MISTAKE, BLUNDER, SLIP, LAPSE, FAUX PAS, BULL, HOWLER, BONER: ERROR indicates a
deviation from correct, sanctioned, approved belief, procedure, practice, or course

... MISTAKE suggests a misunderstanding, wrong decision, or inadvertent wrong action; it may apply to
the unimportant or momentary but does not always do so a mistake in reading the road map a mistake in
admitting these students a mistake in copying the list

The main points of interest to us are that:

1. Mistakes or errors can involve beliefs, meanings, actions, perception, and reasoning. We are also interested in
intentions as intentions mediate between the beliefs of the agent and its actions.

2. Mistakes are caused by inadequate knowledge, faulty judgment or by accident. We equate inadequate knowledge
to incomplete knowledge; faulty judgment to making a decision before enough information has been taken into
account; accident to unpredicted changes in the world.

3. Mistaken beliefs are beliefs not in accordance with the facts and mistaken actions are actions that fail to achieve
their goal.

We can see generally that a mistake occurs when there is a mismatch between an object on the part of the agent and
what it is meant to accomplish:

o A belief is mistaken when there is a mismatch between the belief and the corresponding fact in the world.

e An action is mistaken when there is a mismatch between the goal the action was intended to accomplish and the
effects of the action.

e An intention is mistaken if there is a mismatch between the consequences of executing the plan intended and
the goal of the agent.

1.3.2 A preliminary view

An aspect not explicit from the definitions is time. A belief is a mistake if at the time the belief was held, it was false.
The same belief (we do not consider “eternal beliefs” [153]) can be mistaken at some times and not at others. If the
agent believes that it is not raining, for instance, and a rain shower passes though, the fact that it is not raining changes
truth value over time so that whether the belief that it is not raining is mistaken also varies. The same phenomenon
holds for intentions and actions.

The picture that emerges is that a mental object or an action is mistaken at some time if there is a mismatch between
what that object is meant to accomplish and whether that is accomplished at that time. This mismatch is caused by a
deficiency in the knowledge or computations of the agent or by an unexpected event in the world.

We will therefore consider the following kinds of mistake:



1. Mistaken beliefs A belief the agent holds at time ¢; is mistaken if the belief is not true at #;.

2. Mistaken intentions An intention held by the agent at some time ¢; to execute a plan at some time ¢; is mistaken
if the execution of the plan at ¢; does (or will or did) not result in the goal desired.

3. Mistaken action executions An action or plan being executed at some time is mistaken if the execution at that
time does not result in the expected outcome.

Note that if the agent represents that it has committed a mistake, then that belief itself is subject to being mistaken
which allows the possibility of iterated mistakes. Also, the mistakes are centered on the agent. We consider only
mistakes done by the agent doing the reasoning. However, these definitions require the agent to know what is true or
whether execution of an action or plan will succeed. This requires an external omniscient view of the agent and of its
domain to compute, and cannot be done by the agent itself.

1.3.3 A computable agent-centered definition

In keeping with our desire to have a notion of mistake that is from the agent’s perspective and computable by the agent,
we have to modify these definitions. The intuition is that the beliefs of the agent can change over time. This change in
beliefs may imply that the old belief was mistaken. If the agent believed that Tweety could fly and later realizes that
Tweety is a penguin and therefore cannot fly, its belief at that time, that Tweety could fly, was mistaken. A change in
mind does not always imply a mistake, for instance, a change in the traffic lights may lead the agent to now believe
that the light is green whereas it previously believed it to be red. This change in belief tracks a change in the world
and so the initial belief that the light was red was not mistaken. The same applies to intentions and actions done by the
agent.

So, for an agent, recognizing a mistake involves looking back in time and comparing its beliefs, intentions, and actions
then to the situation it later believes to have been the case. We modify the above to have the following kinds of
mistakes from the perspective of the agent. Note that we call these mistakes recognized to emphasize that they are to
be computed by the agent making the mistake itself rather than from an external point of view.

1. Recognized mistaken beliefs An agent recognizes that a belief ¢ it held at time ¢; was mistaken if at a later
time ¢;, it believes that ¢ was not the case at ¢;.

2. Recognized mistaken intentions An agent recognizes that an intention it held at ¢; to execute a plan at ¢; is
mistaken if, at some time ?j, (t; > ¢;) the agent concludes that it is not the case that the execution of the plan at
t; will result or has resulted in the goal desired.

3. Recognized mistaken action executions An action or plan being executed at ¢; is recognized to be mistaken if
at some later time ¢;, the agent believes that it is not the case that the execution at ¢; will result or has resulted
in the desired outcome.

We will refer to the recognized mistaken beliefs, intentions and actions simply as mistaken beliefs, intentions and
actions from now on.

Note that recognizing that a belief, intention or action execution is mistaken does not require the agent to explicitly
represent that it was mistaken. The agent can simply notice this mismatch between the previous and current beliefs
and react to it without explicitly represent that fact. The CD player example above would be such a case.

1.34 Example

To illustrate the above, consider the following example about an agent Alma (we will use this name to refer to a generic
agent throughout).
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1. Alma has the goal of getting to town at 8:00 am this Sunday.

2. She believes that the metro usually starts running at 5:00 am.

3. So, she believes that the metro will start running at 5:00 am this Sunday.
4. This leads to the adoption of the following plan:

(a) Get to the metro station at 7:00 am on Sunday.
(b) Go up on the platform.

(c) Catch the first train going towards town.

Here are three alternatives in the execution of the plan:

Alternative O

When Alma tries to get to the metro station, she finds that the gates are locked. So step 4b fails. This leads to the
failure of the intention adopting plan 4. Alma may later realize that the metro starts running on 8:00 am on Sundays,
so belief 3 is mistaken. Sundays are an exception to the general rule 2.

Note that the mistaken belief 3 led to the mistaken intention 4 and to the mistaken action 4b.

Alternative 1

This time, on Saturday Alma realizes that the metro starts running late on Sunday, so Alma realizes that belief 3 is
mistaken and the adoption of 4 is mistaken too so that intention should be dropped. This should then lead Alma to
replan for the goal.

Alternative 2

Let’s say now that instead of intending to get to town at 8:00 am, Alma needs to get there at 10:00 am and so decides
to get to the metro station at 9:00 am since it opens, she believes at 5:00. The reasoning is now as follows:

1. Alma has the goal of getting to town at 10:00 am this Sunday.

2. She believes that the metro usually starts running at 5:00 am.

3. So, she believes that the metro will start running at 5:00 am this Sunday.

4. This leads to the adoption of the following plan:

(a) Get to the metro station at 9:00 am on Sunday.
(b) Go up on the platform.

(c) Catch the first train going towards town.

After adopting the plan 4 she then realizes that the station does not open at 5:00 am on Sunday so that belief 3 is
mistaken. The intention is not mistaken this time since the plan to get to the metro station at 9:00 am and to get the
train will succeed.

In this case, the mistaken belief does not lead to a mistaken intention.
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1.4 Responsesto mistakes

Having defined the mistakes we are interested in studying, we now turn to the appropriateness of an agent’s response
to mistakes. Agents should follow the general guidelines for appropriate responses to be effective in dealing with
mistakes.

The first issue to consider is how to define the mistakes we want to use to study the responses of the agent. We could
use the recognized mistakes described earlier, however, that would imply that an agent that does not recognize any
mistake and therefore does not respond to any mistake is appropriate. This is not desirable. A more appropriate view of
mistakes now is the omniscient view presented in 1.3.2. Intuitively, we would like the agent to respond to all mistakes
it makes. If it does not even recognize some mistake, then it is particularly unskilled at responding to that mistake.

An appropriate response to a mistake should be one that “fixes” the mistake as soon as possible. We would like the
mistake to be fixed as soon as possible so that its effects are minimized. However, it might be that the best solution to
a mistake is not to take any actions immediately, but to wait a while. This sort of behavior has to be taken into account
when deciding the appropriateness of the response.

The other factor is the question of fixing the mistake. We view this in terms of the goals of the agent. The actions
the agent takes should be such that its goals are not affected by the mistake. The goals could be very broad ones, for
example, keeping an accurate model of the world. They could also be quite narrow, like maintaining the temperature in
the room between 65 and 75 degrees say. If that thermostat agent mistakenly believes that Tweety is a pig (when Tweety
is a bird), and this has no effect on its ability to maintain the room temperature, then this view of the appropriateness
of responses would imply that not responding to that mistake is appropriate. On the other hand, the agent with the very
broad notion of its goals cannot ignore that mistake. This does seem appropriate. Agents are typically designed with
specific goals in mind and these are all that matter.

A mistake will typically have many consequences. A mistaken belief can cause other mistaken belief, the adoption
of mistaken plans and the execution of mistaken actions. These actions can have many other effects in the world.
A response to the mistake should take into account the consequences of the mistake also so that the response is
appropriate if it entails an appropriate response to the consequences of the mistake too.

Whereas beliefs can be repaired by changing the beliefs and intentions by giving up the commitment to the plan,
actions cannot be as easily repaired. The exact way to repair an action or even if the action can be repaired will be
highly dependent on the domain and on the goals of the agent. Actions may not be reversible so that the response to
mistakes involving these actions can only minimize the cost of the mistake to the agent. Further actions may need to
be taken to mitigate the effects of that mistake on other possible goals of the agent. Assume that the goal of the agent
is to cross the street and it mistakenly thinks the light is green when it is red and starts crossing. Then a repair of the
action can simply be to step back on the curb. If however, before it does so, it gets hit by a truck, repairing that action
is likely to he harder. It might interfere with the goal of the agent to remain in good repair and so in that case, part of
the repair would be to get to the workshop for some real repairs.

Intuitively, there can be a range of appropriateness of responses to mistakes. This suggests that we have a method to
quantify the appropriateness to mistakes of an agent. This will allow us to better judge the performance of agents.
One approach to quantifying the repairs is to compute the cost of the mistake. A repair is good to the extent that it
minimizes this cost. The cost of the mistake can include the time that the mistake was not repaired and will ensure that
agents that react faster will be judged better. These costs have to be provided by the domain, and can even be used by
agents to decide which mistakes to attend to in priority. We do not however explore this further in this work.

From the above we can derive the following definitions of appropriateness of responses to mistakes.
1. Response to mistaken beliefs If the agent holds belief ¢ at ¢; and —¢ is the case at ¢;, the agent responds

appropriately to this mistake if 1. if it is a goal of the agent to believe the truth about ¢ it believes that —=¢ is true
at £; and 2. it responds appropriately to all the consequences of the mistake.
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2. Response to mistaken intentions If the agent has at time ¢; an intention to execute some plan at time ¢; and
this execution does (or will or did) not result in the goal of the agent in intending to do the plan, then it responds
appropriately to this failure if 1. it finds an alternative way to satisfy the goal 2. it responds appropriately to the
consequences of the mistake.

3. Responseto mistaken actionsIf the agent executes an action or a plan and that does not result in the expected
outcome, then the agent responds appropriately to this mistake if it 1. finds an alternative way to satisfy the goal
2. takes further action to minimize the effect of that action on the agents goals.

‘We note that the appropriateness of each kind of response depends on the response to the particular mistake in question
as well as the response to the consequences of the mistake. This is not going to be circular and the recursion will bottom
out since these consequences are part of causal chains and causal chains are assumed not to be circular.

1.5 Some propertiesof mistakes

We now turn to some properties of mistakes that are relevant to this work. We would like to find general domain-
independent properties rather than more specific ones. These will therefore be quite general and not quite as effective
as domain dependent properties of mistakes can be.

One of the first constraints we have is that an agent cannot believe a fact and simultaneously believe it is mistaken.
Then we consider propagating mistakes. In alternative 1 above, we note that the realization that a belief was mistaken
enabled Alma to infer that the intention was mistaken too and saved her from going to the metro station while it was
closed. There seem to be some useful relations between mistakes that an agent should be able to compute. Without
these, the agent might make avoidable mistakes. The ability to predict and therefore to preempt mistakes based on
some other information is a very useful ability to have.

151 Consstency

It is inconsistent for an agent to believe at time ¢; both that ¢ is true at ¢; and that ¢ is mistaken at ¢;. It is however
consistent for the agent to believe at ; that it believed ¢ at ¢; and that ¢ was mistaken at ¢;.

In alternative 1 above, on Saturday Alma believes 1. that the metro starts running late on Sunday 2. that her belief that
it starts at 5:00 am on Sunday is mistaken and 3. that she did believe in the past that the metro starts running at 5:00
am on Sunday.

We assume that the agents we consider have perfect memories so that their record of a past belief cannot be false. An
agent might believe at ¢; that it believed ¢ and —¢ at ¢;. Those beliefs did cause an inconsistency at ¢; but the beliefs
that the agent had these inconsistent beliefs are not themselves inconsistent.

There has to be a distinction between what the agent now believes was true in the past and what the agent believed to
be true in the past. This is especially important if the agent is to explicitly represent mistakes and its past beliefs. We
consider that issue in more detail later.

15.2 Propagating mistakesto consequences

Assume that an agent holds beliefs ¢ and v at time ¢; and that it would not have held ¢ had it not been for ¢, that is, the
sole cause for the agent believing v is ¢. If it turns out that ¢ is mistaken, we want to know whether v is necessarily
mistaken too. The same question holds for intentions and actions.
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In alternative 1 above, Alma reasons that part of the reason she came up with the plan to go to the metro was that the
metro starts at 5:00 am on Sunday. If she had not believed that, then she would not have come up with that plan. So,
when it turns out that that belief was mistaken, she concludes that the intention was mistaken too.

Alternative 2, however, shows that this is not always the case: Alma adopts the intention because of the belief that the
metro starts running at 5:00am on Sunday, but it turns out that there are other reasons for adopting that plan—all that is
required is to know that the metro starts running before 9:00 am, which is true. So, the intention is not mistaken even
though it depends on a belief that is.

The ability to propagate mistakes seems an important one since it allows the agent to infer that other beliefs, intentions
and actions are mistaken. We have seem that this is not necessary though. The solution to this is perhaps to have
the agent reason further about the kind of dependency between the beliefs and determine whether it should propagate
the mistake. The information required is likely to be domain-dependent meta-information and the reasoning might be
long and complex. It seems prudent to propagate the mistakes by default and to use the more complex reasoning to
conclude that the propagation was mistaken whenever it is. Another way to find out that the propagation was mistaken
is if the same belief, intention or action is the result of a different line of reasoning that does not involve the mistaken
belief.

The conclusion then is to propagate mistakes to the consequences of the mistaken belief, intention or action by default.
‘We however keep in mind that this is only a general rule of thumb and can be proven false by other information.

15.3 Propagating mistakesto reasons

Just as it seems typically reasonable to propagate mistakes to the objects (beliefs, intentions or actions) that depend on
the mistaken object, it may seem reasonable to propagate mistakes in the opposite direction. This constitutes a rather
primitive diagnosis of the mistake. If the agent believes ¢ and also finds that ¢ is mistaken at ¢;, and if ¢ non-defeasibly
depends on ¢ and @, it seems reasonable to then assert that one or both of ¢ and ¢ are mistaken too. For instance if
the agent believes that Tweety weighs one pound and that Fred weighs 10, and later finds out that Fred is lighter than
Tweety, then it has to be that Tweety does not weigh one pound or that Fred does not weigh ten pounds or both are
true. It is not possible to narrow the choice further using domain-independent knowledge.

If on the other hand that was a defeasible inference, then it is not clear that either ¢ or  is mistaken. It could simply
be that this is a case of an exception to the rule and the mistake should not be propagated to ¢ or §. Say the agent
believes that Tweety is a bird and that birds usually fly, but then discovers that Tweety does not fly. It can’t, on this
basis alone, determine that either Tweety is not a bird or that it is not true that birds usually fly. This could simply be
a case of an exception to the rule.

It seems harder to make a case for propagating mistakes to the reasons for the mistaken beliefs, intentions or actions.
A diagnostic approach would provide valuable information for this kind of propagation, but a default rule for this kind
of propagation does not seem warranted.

154 Propagating from actionsto intentions

Similarly, is an action is mistaken, it seems reasonable that the intention that led to the execution of the action was
mistaken too. When the agent finds that it cannot get into the Metro station so that its action fails, that means that its
intention to use that plan to get to town fails too. If it cannot get to the Metro station, it cannot take the train to town.

This is sound provided that the failure of the action implies the failure of the whole plan. If the plan can succeed even
if parts of it fail, then this is not a good inference to make. Assuming that most plans do not have that property, we do
propagate mistakes from actions to intentions.
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155 Mistaken mistakes

We saw that if the fact that a belief is mistaken is represented in the agent, that belief can itself be mistaken. So we
have first ¢, then that ¢ is mistaken, then that it is mistaken to believe that ¢ is mistaken. Mistakes can be iterated in
this way for several levels.

If ¢ is found to be mistaken, and the determination that ¢ is a mistake is the found to be mistaken, this does not imply
that the agent can simply ignore the mistakes and treat them as a double negation—a mistake of a mistake is no mistake.
There might be actions taken as a result of the determination that ¢ was mistaken that can’t be ignored, so we can’t as
a general rule cancel mistakes of mistakes.

1.6 Detecting mistakes

‘We now turn to the tasks an agent has to take to detect mistakes and the capabilities they imply for the agent. Recall that
we are considering a wide range of agents with a wide range of capabilities. So, the capabilities and representations
mentioned here are not all required for all agents. The degree to which these are present in agents is generally linked to
the appropriateness of these agents to deal with mistakes. A number of the points mentioned here have been discussed
above in the definition of mistakes and their properties. The emphasis now is on the capabilities that an agent should
have to respond appropriately to its mistakes given that it does not have an omniscient perspective on the world.

The first step in handling mistakes is detecting them. Given the definitions above, we consider how an agent could
detect that and which computational properties an agent can have which would facilitate that. Once again, we focus on
domain independent factors. Recall also that there is a wide range of capabilities for agents. Some agents may have all
these properties and others have but few of them. This puts the agent in different places of the range of responsiveness
to mistakes.

Mistaken beliefs
The definition of mistaken belief that we have adopted is:

An agent recognizes that a belief ¢ it held at time ¢; was mistaken if at a later time ¢;, it believes that ¢
was not the case at ;.

Comparing beliefs The first capability the agent needs is to be able to compare its belief as to some state of affairs at
two different times. This requires an ability to compare the internal structures that stand for its beliefs, and some way
to consider at the same time the new and the old belief.

These need not be sophisticated capabilities. It could simply be a comparison of two bits, alternatively, the two beliefs
could be a currently derived belief and an old one that is stored in the state of the agent. The mistake is then detected
as a change in the state of the agent. Even more simply, the old belief could be implicit in the algorithm of the agent,
and the detection of the mistake could be a test done by the algorithm

Choosing between beliefs Related to this, the agent has to have a way to adjudicate between incompatible states.
When there is a belief at ¢; that ¢ and at ¢;, there is the belief that —¢ at ¢;, the agent has to choose between these two.
One of them at least has to be mistaken, but the agent may not know which it is in which case it may be prudent to
consider both to be possibly mistaken.

Changesin theworld To decide that ¢ was mistaken at ¢;, it is not sufficient for the agent to believe —¢ at ¢;. It has
to verify whether the world changed in the interval. If that were so, it could very well be that the truth of ¢ changed
between #; and ¢; and that the agent was not mistaken about ¢ at #;.
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This behavior is common for preconditions of actions: at ¢;, before the trigger is pulled, the gun is loaded, but at ¢;
after it has been pulled, the gun is unloaded. At ¢; the agent believes that the gun is unloaded but that does not mean
that it was a mistake to believe that it was loaded at ¢;,—the action of shooting which has as precondition that the gun
was loaded made the loaded gun unloaded.

Continuing with the above example, if at ¢; the agent believed that the bird the gun was aiming at could not fly, then as
the shot was fired at ¢; the bird flew away, the agent should reason that it was likely to have been mistaken in believing
that the bird could not fly at ¢; because typically, non-flying birds do not suddenly become flying birds. The agent
needs to know generally what facts can change and at what rate: in general, non-flying birds do not become flying
birds. This too is a default: if the non-flying bird was tied to a chair and so was considered non-flying, and shooting
the gun caused the rope to break, the bird can fly away and is now a flying bird. So in this case, it was not a mistake to
think that the bird was non-flying.

Propagation In addition, the agent needs to be able to propagate mistakes as mentioned above.

Summary The list of capabilities for recognizing mistakes includes:

e Recording past beliefs.

The ability to compare beliefs.
e Choosing between beliefs that are incompatible.

o Being aware of the way the world changes.

Propagating mistakes.

Mistaken intention

‘We now turn to mistaken intentions. These were described as:

An agent recognizes that an intention it held at #; to execute a plan at Z; is mistaken if, at some time
tr, (tr > t;) the agent concludes that it is not the case that the execution of the plan at ; will result or has
resulted in the goal desired.

The agent will need additional capabilities to deal with mistaken intentions.

Propagating mistaken beliefs One way of detecting a mistaken intention is to propagate a mistake from a belief to
the intention. This gives the agent the possibility to realize that a plan is going to fail before it even attempts it. If the
beliefs an intention depends on are false, then it is likely, but not guaranteed, that execution of the plan will not give
the desired consequences. Therefore the intention to execute the plan is mistaken. For instance, in the above example,
assume the agent has the plan to get to the metro station at 7:00 am and to take the train, and before it starts the plan,
it realizes that the metro station will only open at 8:00 am before it starts the plan. Then it can infer that the plan is
going to fail and therefore will avoid going to the metro station at 7:00 am.

Propagating mistaken actions Another way of detecting that an intention is mistaken is to have an action of that plan
fail. If we propagate this failure, we can infer that the intention was mistaken. This too is not necessarily the case but
is likely to be typically true.

This in turn assumes that the agent has the ability to observe mistaken actions.

Summary In addition to the capabilities mentioned above, the agent will need to

o Propagate mistaken beliefs to intentions.
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e Propagate mistaken actions to intentions.

Mistaken action

An action is mistaken if the execution of the action fails. This requires the agent to observe that the action failed. This
can be directly observed, or it could have to be inferred by observing some other fact in the world. If the bird flies
away once it is shot at, the action of killing the bird failed because dead birds don’t fly.

Capabilitiesneeded for detecting mistakes:

Therefore the capabilities required of the agent to detect mistakes are:

Recording past beliefs.

Comparing beliefs.

Choosing between beliefs that are incompatible.

o Being aware of the way the world changes.

Propagating mistaken beliefs to other beliefs and intentions and propagating mistaken actions to intentions.

Observing events in the world, including the effects of its own actions.

1.7 Representation

Dealing with mistakes requires the agent to have a flexible representation. This flexibility includes changing the KB
with new information that is observed, withdrawing beliefs and reasoning about its own past beliefs and intentions.
This requires that the agent have the ability to reflect its reasoning process. The more complete this reflection, the
more flexible the reasoning of the agent is likely to be.

We list some representational properties that are desirable for the agent to respond appropriately to mistakes. The
agent’s representation need not have all of these properties. The properties the agent does have will influence the
appropriateness of the responses of the agent to mistakes.

o Timesituatedness allows for the following capabilities:

— Keeping track of time as it passes. This is important in cases that the world changes. The agent needs to
maintain its KB in step with the world and infer which beliefs were mistaken based on when they were
held and when the world changed.

— Accepting input from the world in time. Observations can be an important means for detecting mistakes
and this depends on new inputs coming into the KB as soon as they are detected. If the agent ignores or
does not pay enough attention to some observations that indicate a mistake, it will not deal appropriately
with that mistake.

— Knowing that it believed ¢ at time ¢;. The agent needs to maintain a history of its beliefs for it to be able
to realize that it was mistaken in the past.
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— Knowing the state of the world at any time in the past. This is not to be confused with the history of the
beliefs of the agent. The true state of the world is from an external omniscient point of view and the agent
can only approximate that through its beliefs. The past state of the world becomes different from its past
beliefs when the agent takes these past beliefs to be mistaken. While the agent cannot be mistaken about
its past beliefs, it may never know what the state of the world was and may be mistaken about that.

¢ Inconsistency tolerance and meta-reasoning allows for the following:

— Tolerating ¢ and —¢ and adjudicating between them. A first order system can derive all formulas from the
presence of such a direct contradiction. It is then not possible to continue reasoning usefully. The agent
should refrain from doing that and have a way to decide between the contradictands if possible.

— Inspecting its reasoning to see whether there are other beliefs that were obtained from some belief. This
reflects the past reasoning of the agent and is crucial for propagating mistakes.

— Diagnosing its own reasoning. This is needed to find the cause of a mistake. This can be done by the agent
reasoning about its own reasoning which it can inspect from the above.

— Removing beliefs from its KB. First order systems do not remove formulas from the KB. This is necessary
here in case of contradictions or mistakes.

¢ Reasoning about actions and plans. This is needed to the extent that the agent plans and acts in the world. It
then has to reason about the consequences of actions and plans and the effect of mistakes on these.

As we have seen above, not all systems need to have the same degree of appropriateness in reacting to mistakes.

For instance, fairly appropriate systems can be produced through conditional planning [139, 45, 191, 85]. This enables
the system to react with some flexibility to failures of its actions or failures of its expectations. Conditional planning
requires the agent to make specific observations about the world. The future actions that the agent takes depends on
these observations. The observations can be made to reduce the uncertainty in the world or to verify that the previous
action of the agent succeeded. If there has been a mistake, a different path is taken in the computations. In this case
the beliefs of the system are implicitly represented in the plan and the determination that there has been a mistake is
made at the observation and immediately direct the system to a behavior that is intended to correct that mistake.

The conditional planning approach is economical and may be all that is needed in many cases. A problem with this
approach is that the more comprehensive we try to be in detecting and responding to errors, the more complex the
plans get so that it is hard to build, understand and execute them [135, 45]. One option then is not to deal with the
possible failures that are judged to be relatively infrequent[134]. If the system can tolerate these occasional failures,
the solution is adequate.

L ogic as safety net

However, this may not be adequate if we need the agent to be autonomous and to deal with a wide range of problems,
no matter their frequency. And even if all the errors considered in the planning stage are incorporated in the plan, there
is always the possibility of being surprised by the world. There can be an event in the world that was never foreseen
by the planner. These will cause the agent to fail.

A solution then is to use logic as a safety net. The more common failures and foreseeable problems can be compiled
into a procedural approach, but for problems that the procedures cannot handle because they were not foreseen by the
planner or because they were judged to be too infrequent to deserve resources spent on them for every execution of
the plan, logic can be a good solution.

The behavior of such a system then would be that it can execute the normal behavior and deal with common problems
fast. When it comes to odder problems for which there are no ready made solutions, the logic can come into play and



18

the system will then find a solution to the problems but more slowly. This sort of behavior does not seem objectionable
in people. We tend to solve routine problems fast, but more complex or infrequent problems take more time. This
seems an acceptable behavior in autonomous agents also.

In the planning example above, if there are problems that are frequent and regular enough that we can predict their
occurrence and have ready-made responses to them, then conditional planning seems to be a good way to deal with
these failures. However when it comes to the odder and less probable errors, logic can be used to reason with and
respond to them. So, despite the problems of logic, its flexibility and the possibility to describe a wide range of
behaviors through logic make it a valuable component in an agent that has to respond to a wide range of mistakes.

This mixed use of logic and procedures requires these two sorts of reasoning to work together well and share informa-
tion and coordinate their actions. The division between tasks done by the procedures and the logic is also an interesting
problem. It need not be a fixed line for a particular agent but may change as some problems become more common
and a faster response is needed. The system needs to learn how to solve these problems faster. An approach as that of
[164], for instance, where logical specifications can be compiled into procedures can be useful. However this is well
beyond the scope of the current work. We limit ourselves to considering logical agents and the capabilities that they
will need to handle mistakes in realistic settings.

The logical approach we discuss is based in active logic. Active logic allows the kinds of representations we need:
time-situatedness, meta-reasoning, inconsistency tolerance and reflection of the reasoning in the logic.

1.8 Experiments

In the next chapter we describe active logic and our implementation of it on which our experiments were based. We
have built systems that detect and respond to mistakes along the lines presented above. These systems illustrate a
variety of approaches to the problem of mistakes with more or less of the features mentioned included in the solutions,
putting these solutions at various points in the efficiency/flexibility space.

The second part of this work concerns mistakes in dialog. Dialog is a fertile ground for work on mistakes since
mistakes of various kinds abound in dialog. People are very good at detecting and repairing these mistakes before
dialogs degenerate into parallel monologs. There is a need for such systems since dialog systems that are insensitive
to their mistakes and to miscommunications tend to be very hard and frustrating to use. We describe some work that
has been done and some work that is currently being pursued.

The third part concerns mistakes in agents. We give a preliminary account of non-monotonic reasoning seen as
reasoning with mistakes in the context of our approach to mistakes. That reasoner was implemented in active logic
and we discuss this implementation in some detail. A suite of test examples was gathered from the literature and these
were used to test the logic. We next present the design of an agent that acts in the world and detects and repairs its own
mistakes. The design takes into account the agent’s mistaken beliefs, intentions and actions and attempts to represent
a flexible mistake handling mechanism.



Chapter 2

Activelogic and Alma/Carne

We saw earlier that being time-situated, tolerant of inconsistency, and facilitating meta-reasoning enables a system
to handle mistakes in a flexible way. The system also needs to reason about actions and plans, but that can be done
through the appropriate description of actions and planning and is not an inherent property of the underlying reasoning
system. We need to have a system that has all three of these properties and is implementable to experiment with
mistakes and build robust systems.

There are systems that do reason in each of the required ways. Situated systems are discussed, for instance in [164,
122, 44], managing inconsistencies is described in [?, 13, 90, 6, 15] and meta-reasoning is discussed in [11, 99,
166]. None of these systems seems to have all these properties, although some could be modified to have them. For
instance, [164] discusses a situated agent and addresses some issues with time-situatedness, however, the logic and
the situated automaton compiled from it do not seem to be able to access facts that were believed in the past. To do
that, the automaton would have to be able to access arbitrary amounts of memory and would no longer be a simple
automaton. [90] presents an interesting approach to inconsistency, however, the proposed logic does not support meta-
reasoning. [11] describes a meta-reasoning executable temporal logic which gets close to what we want but does not
tolerate inconsistencies. Inconsistency tolerance is hard to incorporate in a logic after it has been designed and is
likely to drastically change the properties of the logic. Active logic [48], however is a logic that was designed with
inconsistencies in mind and which has all three properties and has been implemented. It is therefore well-suited for
reasoning about mistakes. All the implementations presented here have been based on active logic.

In this chapter we give an account of active logic and Alma/Carne which is our implementation of active logic. We
first sketch the formalism of active logic and some of its properties and applications. We next discuss the design of
Alma/Carne. Then we consider how mistakes are detected and handled in Alma/Carne. Following that we describe
the main aspects of the implementation of Alma/Carne and illustrate that with some samples of its behavior.

2.1 Activelogic

Active logic [48] was developed as a means of combining the best of two worlds — inference and reactivity — without
giving up much of either. This requires a special evolving-during-inference model of time. The motivations for this
were twofold: all physically realizable agents must deal with resource limitations the world presents, including time
limitations; and people in particular have limited memories [8] and processing speeds, so that inference goes step by
step rather than instantaneously as in many theoretical models of rationality. A consequence of such a resource-limited
approach is that agents are not (even weakly) omniscient: there is no one moment at which an agent has acquired all
(even all its own possible) logical consequences of its beliefs. This not only must be so for real agents (and hence for
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humans) but it also is an advantage when the agent has contradictory beliefs. In this case, an omniscient and logically
complete reasoner is by definition swamped with all sentences of its language as beliefs, with no way to distinguish
safe subsets to work with. By contrast, active logics, like human reasoners, have at any time only a finite belief set,
and can reason about their present and past beliefs, forming new beliefs (and possibly giving up old ones) as they do
so; and this occurs even when their beliefs may be inconsistent. (See [124] for details.)

Active logics can be seen either as formalisms per se, or as inference engines that implement formalisms. This double-
role aspect is not accidental: it is inherent to the conception of an active logic that it have a behavior, i.e., the notion of
theoremhood depends directly on two things that are not part of traditional logics: (i) what is in the current evolving
belief set, and (ii) what the current evolving time is.

211 Formalism

Just as there are several first order logics depending on the set of predicate, constant and function symbols, so there are
several active logics. The formal changes to a first order logic required here are, in some respects, quite modest. The
language can be that of a first-order logic, perhaps augmented with names for expressions to facilitate meta-reasoning. '

The principal change is that inference rules become time-sensitive. The most obvious case is that of reasoning about
time itself, as in the rule

i +1: Now( i +1)

The above indicates that from the belief (at time 1) that the current time is in fact z, one concludes that it NnOW is the
later time 2 + 1. That is, time does not stand still as one reasons.

add inheritancet+ ?

Temporal logics [3, 114, 163] also have a notion of past, present and future, but these do not change as theorems are
derived. These are specification logics external to the reasoner. This contrasts strongly with the agent-based on board
character of active logic. Executable temporal logics do have a sense of time, see 2.6.1.

Technically, an active logic consists of a first-order language, a set of time-sensitive inference rules, and an observation-
function that specifies an environment in which the logic “runs”. Thus an active logic is not pure formalism but is a
hybrid of formal system and embedded inference engine, where the formal behavior is tied to the environment via the
observations and the internal monitoring of time-passage (see [48] for a detailed description). Further formal details
are shown below.

All rules of inference in the active logic are applied to all the formulas in the knowledgebase (KB) at every step to
generate the formulas for the next step. Therefore an active logic is a forward chaining reasoner which gradually
derives (ideally) all the consequences of the initial set of formulas in the KB.

2.1.2 Propertiesof activelogic

Active logics are able to react to incoming information while reasoning is ongoing, blending new inputs into its
inferences without having to start up a new theorem-proving effort. So external observations of actions or events can

I Time-sensitive meta-reasoning is the key to deadline-planning, contradiction-repair, and most of the features distinguishing active logics from
other logics. (This meshes well with work in human metacognition; see for instance [131].) Collaborative systems must reason not only about their
own beliefs and actions but also about the beliefs and actions of their partners. This is a yet more involved kind of meta-reasoning, studied both in
traditional formalisms and in active logics.
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be made during the reasoning process and also factored into that process.

Thus the notion of theorem for active logics is a bit different from that of more traditional logics, in several respects:

1. Timesensitivity. Theorems come and go; that is, a wff once proved remains proved but only in the sense of its
being a historical fact that was once proved. That historical fact is recorded for potential use, but the wif itself
need not continue to be available for use in future inferences; it might not even be reprovable, if the “axioms”
(belief) set has changed sufficiently. As a trivial example, suppose Now(noon) — Lunchtime is an axiom.
At time t=noon, Now(noon) will be inferred from the rule given earlier, and Lunchtime will be inferred a step
later. But then Now(noon+1) is inferred, and Lunchtime is no longer inferable since its premise Now(noon) is
no longer in the belief set. Lunchtime will remain in the belief set until it is no longer “inherited”; the rules for
inheritance are themselves inference rules. One such involves contradiction; see next item.

2. Contradictions. If a direct contradiction (P and —P) occurs in the belief set at time t, that fact is noted at time
t+1 by means of the inference rule

t+1: Contra(t+1,P, "P)

See [125] for details on handling contradictions.

Truth maintenance systems [43] also tolerate contradictions and resolve them typically using justification in-
formation. This happens in a separate process which runs while the reasoning engine is waiting. Although
justification information is important for dealing with contradictions and their consequences, we do not think
that this will work in general. The reasoning needed to resolve the contradiction will depend, typically, on the
very information that generated it. Resolution of contradictions is itself a reasoning process much like any other
and cannot be isolated from the logic that generated the contradiction.

3. Metareasoning

In active logic, there is a single stream of reasoning, which can monitor itself by looking backwards at one
moment to see what it has been doing in the past, including the very recent past. All of this is carried out in the
same inferential process, without the need for level upon level of meta-reasoners. This is not to say that there
is no metareasoning here, but rather that it is “in-line” metareasoning, all at one level. The advantages of this
are (1) simplicity of design, (ii) no infinite regress, and (iii) no reasoning time at higher levels unaccounted for
at lower levels. A potential disadvantage is the possibility of vicious self-reference. This matter is a topic of
current investigation. However the contradiction handling capability should be a powerful tool even there.

2.1.3 Applicationsof activelogic

Active logic has been applied to solve a wide range of problems. In all of these examples, active logic has been used
to model the behavior of an agent. Executing the logic generates the behavior desired in real-time.

Thethree wise men

In [47] active logic was used to solve the three wise men problem [107]. Elgot-Drapkin describes the problem as
follows:

A king wishes to know whether his three advisors are as wise as they claim to be. Three chairs are lined
up, all facing the same direction, with one behind the other. The wise men are instructed to sit down. The
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wise man in the back (wise man #3) can see the backs of the other two men. The man in the middle (wise
man #2) can only see the one wise man in front of him (wise man #1); and the wise man in front (wise
man #1) can see neither wise man #3 nor wise man #2. The king informs the wise men that he has three
cards, all of which are either black or white, at least one of which is white. He places one card, face up,
behind each of the three wise men, explaining that each wise man must determine the color of his own
card. Each wise man must announce the color of his own card as soon as he knows what it is. (The first
to correctly announce the color of his own card will be aptly rewarded.) All know that this will happen.
The room is silent; then, after several minutes, wise man #1 says “My card is white!”.

The problem was to reproduce the reasoning of wise man # 1. To solve the problem, wise man #1 needs to reason
about the reasoning of the other wise men over time. He needs to infer that since the wise men are wise, if one of
them had the white card, they would have deduced it in some short interval. Since they don’t say anything within that
interval, it has to be that wise man #1 himself who has the white cars. The solution requires the logic, simulating the
reasoning of wise man #1, to represent the reasoning of the other wise men, and to represent that enough time had
passed for the other wise men to have discovered the solution if they could.

Nell and Dudley

In [133] active logic was used to model an agent planning and executing a plan to achieve a goal by a deadline while
time is passing. The problem to be solved is the Nell and Dudley problem [112]: Nell is tied to the rails and a train is
bearing down on her. How can Dudley save her? The logic is meant to model the reasoning of Dudley. Dudley must
form a plan to save Nell. But he can’t take too long to do so or she will be killed. He can’t wait to complete the plan
before he starts to act otherwise it will be too late. He has to interleave planning and acting while keeping an eye on
the time left. Nirkhe et al specify an active logic that implements this reasoning.

Natural language processing

In [76, 141] active logic has been used to solve some problems in language understanding caused by false presupposi-
tions and implicatures. The tolerance for contradiction and meta-reasoning of active logic were essential for that work.
In [184], active logic is used to implement a dialog manager in a conversational system. Active logic facilitated the
dialog processing in case of the system misunderstanding the intentions of the user. More detail on these is provided
later.

2.2 Implementation choicesand features

One can implement an active logic for each problem one wishes to solve. This is how active logic had been used
for the problems mentioned above. However, implementing a new logic for each application is not effective. While
individual problems may require some special representations and procedures, all of the active logic solutions share a
common set of characteristics.

Alma/Carne is our implementation of active logic meant to provide the common core representational and reasoning
services for active logic applications. Alma (Active Logic MAchine) is the logical reasoning engine while Carne is a
separate process used to run procedures and to provide an interface to external processes.

An active logic system is specified by making assertions into Alma in the Alma language and by optionally providing
specialized representations and procedures in Alma and in Carne. This specialized knowledge allows the active logic
to be tailored to the specific needs of the problem to be solved. For example, in [76] we needed representations of
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context that are not conveniently expressed in the Alma language. The procedures can be used to do reasoning that is
not best done logically.

In this section we describe the Alma language and the choices made in designing Alma/Carne. A later section gives
more detail about the implementation and execution of Alma/Carne.

221 TheAlmalanguage

The Alma language is similar to a first order language with a number of reserved predicates and the rules for constants,
variables and formulas are reminiscent of Prolog. The details are available in the Alma/Carne manual in Appendix
XXX. A brief account of the language and of some of the reserved predicated is given below.

Predicate constants are represented by strings that start with a lowercase letter. Variables start with an uppercase
letter. Logical operations are represented in prefix form and each sentence is followed by a period. Unless explicitly
quantified, variables are taken to be universally quantified.

The following examples of Alma formulas and the corresponding first order logic representations can give an idea of
the language:

p(a). P(4)
p(X) - Va P(z)
Hf(p(X), a(X)). Ve P(z) — Q(x)

forall (X if(p(X), a(X)). VaP(z)— Q)
if(and(p(X), a(X)), r(X)). VzP()AQz)— R(z)

2.2.2 Reasoningissues

The main reasoning issues to be decided relate to the choice of inference system for Alma and the implementation of
inheritance of formulas from one step to the next.

Resolution based

The main rule of inference used in Alma is resolution. While this does not result in a complete reasoner in forward
chaining, Alma allows backward chaining formulas which gives completeness for first order logic. The advantage of
resolution is that there is no need to choose which rule of inference to apply, the disadvantage, conversely, is that there
is less control than if one used natural deduction rules, for instance. This also implies that the formulas in the Alma
language are represented in Alma in conjunctive normal form. They are however not limited to Horn clauses.

Inheritance

The formulas in the KB are assumed to be inherited from one step to the next by default. The result is that there is no
need to explicitly infer that the formulas are inherited from step to step as the reasoning proceeds. However, one needs
to explicitly delete a formula that should not be present in subsequent steps. Since the number of formulas inherited is
usually more than the number deleted at each step, this improves the efficiency of the system.
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Backward search

In addition to the forward chaining proofs, Alma can also prove formulas by contradiction in a backward chaining way.
A backward search for ¢ is initiated by asserting —¢ in the KB in a special context and doing the usual forward chaining
proof until a contradiction is derived. The special context results in the contradiction being handled differently from
the other contradictions in the logic which results in ¢ being asserted in the KB.

2.2.3 Control issues

Logic typically brings flexibility but at the cost of efficiency. Since active logic is meant to be the on-board reasoner
for an agent, the control of reasoning is an important aspect of the design. We give an account of the control algorithms
currently implemented in Alma. There is however scope for much further work in this aspect of the system.

Top-level control

As with active logic, Alma runs in “steps” that are sequentially numbered. The step number is used as the time value
for Alma. In each step, the rules of inference are applied to extend the derivations by at most one inference rule
application. The inferences in one step are considered to occur atomically. This roughly results in an incremental
breadth first forward chaining proof procedure. The KB changes with the steps with some formulas added and some
deleted. A formula that is deleted at each step is the now( t ) formula. At step n, the KB contains Now( n) , and this
is deleted and now( n1)+ is added for the next step, step n+1.

New formulasonly

The description of active logic implies that all inference rules are applied to all formulas at each step. This is likely to
be inefficient, especially since the majority of the formulas are inherited from one step to the next. Alma ensures that
each rule of inference applied involves at least one newly derived formula so that we do not repeat inferences that have
already been done. This is also helpful when we want to delete a formula from the KB and don’t want the formula to
be rederived in a future step. Since the formulas the deleted formula had been derived from are not new, they will not
produce the deleted formula later on.

This heuristic causes problems with formulas with negative introspection (see later for details). Negative introspection
of ¢ is satisfied if ¢ is not present in the KB. Therefore removing ¢ may make it possible for formulas that depend on
negative introspection of ¢ to participate in an inference. This is not available if we strictly follow the strategy above.
The (not very efficient) solution used is to verify that these formulas can be used at each step.

Different implications

A reasoning and control issue is that there are three kinds of implication operations instead of the usual one. f i f is like
the usual material conditional except that it only asserts its consequent in a step when all the conjoined antecedents
are satisfied at that step. The result is that f i f formulas cannot combine with other implications to give various
combinations of implications and that the f i f formulas cannot be contraposed. They can only be used to assert their
consequents.

bi f also specifies an implication, but one that is only used in backward chaining contexts. These are therefore only
used in proofs by contradiction and will not affect the usual forward chaining procedure.

i f are the usual material conditionals that can be used both in forward and backward reasoning.
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For example, if there are the following formulas in the logic:

if(and(p, t), s).
fif(and(p, q), r).
bif(p, u)

If p is added, we geti f (t, s) butnotunorfif(q, r).Ifwe thenaddq so thatboth p and q are in the KB, we
will get r . u will only be obtained if we start a backward search for it.

The agenda

Sets of formulas that can potentially be used in an inference rule are put on an agenda and then the rules are executed
on these formulas. Alma allows the number of inferences considered at each step to be limited either by specifying
the maximum number, or by specifying the time allowed for each step. In the latter case, the inferences are halted as
soon as the time limit is exceeded.

The agenda is sorted at each step, before the inferences are attempted. The sorting algorithm is specifiable by the user.
This allows for a finer degree of control that can vary according to the domain of reasoning. The sorting algorithm
can be written so as to depend on the contents of the KB as well as on other properties of the KB and the formulas.
This gives the user the flexibility to specify complex control procedures. Alma also allows the sorting formula to be
influenced by the logic. This allows the logic to reason about and modify its own execution.

224 Meta-reasoning

Meta-reasoning is a distinguishing factor of active logic. Alma has an extensive range of predicates and procedures
that give access to information about formulas and the reasoning process. These can be used in the Alma formulas and
allow the reasoner to reason about its own reasoning. We describe some of these tools here.

Time

As mentioned above, time is associated to step numbers. This is available for reasoning though the predicate now( T) .
There is just one instance of NOW( T) in the KB at any time and this changes with the step number. The simplest use
of this is to do an action, for instance asserting a formula in the KB at some time (step number).

History

Alma records the changes in the KB at each step of the computation. From this list of added and deleted formulas
which represents the history, Alma can compute whether some formula was in the KB at some time in the past, or
which formulas were in the KB at some step. One way to access this information is through pos_i nt (F, T).
pos_i nt/ 2 represents the relation between formulas and the times at which they were in the KB for times earlier
than the current time. As computation proceeds, the domain of pos_i nt grows.

If F was in the KB at time T, this is true.
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I ntrospection

Alma can introspect in its KB to verify whether a formula is present at the current time. An interesting application
of the positive introspection is to do negative introspection. The negative introspection can be used as a time-situated
approximation for non-provability. Instead of finding “is it the case that ¢ is not provable”, Alma computes “is it the
case that ¢ has not been derived until now”. The answer to negative introspection can change with time if ¢ is derived.
Negative introspection can be used as a basis for non-monotonic reasoning and is a source of mistakes. If formula F
is in the KB now, pos_i nt ( F) is true. Note that this version of pos_i nt has just one argument. To do negative
introspection, we only need to negate the positive introspection.

Names

To refer to and assert properties of the formulas in its KB, all formulas in Alma have names. Names can be assigned by

the user, and in this case, the user can assert properties of formulas as part of the description of the domain, for instance,

that a formula is a default and that that default is preferred to another. The names can be parameterized by variables

appearing in the formula which makes it easy to refer to specific instances of universally quantified formulas. Formulas

are named by naned. An example of naming a formulaisnanmed(i f (bi rd(X), animal (X), birdsAreAni mal s(X))).
The name of this formula is bi r dsAr eAni mal s( X) . If we instantiate this formula with Joe, the resulting name is

bi r dsAr eAni mal s_Joe).

Properties of formulas

In addition to the properties of formulas asserted by the user, Alma records various properties of the formulas during
execution. These are available to the user for meta-logical computations. Some of the properties that Alma stores or
computes when requested by the user are:

e The time (step) at which the formula was first derived, usingnane_t o_ti ne.
o The formulas from which it was derived, using nanme_t o_par ents.

e The formulas derived from it, using nane_t o_chi |l dr en.

e The derivation of the formula, using name_t o_deri v.

2.25 Contradiction detection and handling

An inference rule detects direct contradictions, i.e. the presence of ¢ and —¢ in the KB at the same time, where ¢ is a lit-
eral. This results in the contradictands and their consequences being distrustedand a formulacont ra( N1, N2, T)
being added to the KB. N1 and N2 are the names of the contradictands and 7 is the time at which the contradiction
was found. When a formula is distrusted, it cannot be used in any further inference. However, it can be inspected
and reasoned about. The cont ra( N1, N2, T) assertion can be used to start reasoning about the contradiction and
how the logic can resolve it.

A distrusted formula can be reinstated by the r ei nst at e reserved predicate. This adds a new instance of the
formula to the KB. It can be used in the contradiction resolution axioms when the contradiction has been resolved.
Once reinstated, a formula can be used in inferences whereas the formula not reinstated remains unavailable.
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2.2.6 Procedures

The ability to specify new representations and procedures conveniently facilitates the use of Alma for many problems.
It is not always easy or desirable to represent complex structures as first order formulas or to represent procedures
as sequences of axioms. This is especially useful if these computations do not need to be reasoned about. Alma
provides facilities to represent and use special representations and procedures in both Alma and Carne. For instance,
we typically are not interested in parsing natural language sentences in the logic but parsing is one of the tasks Alma
may have when it is used for natural language processing, so the ability to call a parser to parse the inputs is very
useful. Similarly, there may be other forms of reasoning that we may want to do but not logically. For instance, we
may want to reason probabilistically about part of the domain, in this case, Alma can make use of a Bayesian net to
do that computation.

Alma user-defined procedures

The user can specify new procedures and representations in Alma. Alma formulas can then access these procedures
using the predicate eval _bound. This allows any procedure to be run in the Alma process. A number of the
reserved predicates for meta-reasoning are invoked in this way. The procedures run in Alma are meant to be short
quick procedures that do not unduly delay a step. If special representations are to be used, procedures to access and
modify these should be provided and these can be used in the Alma formulas.

227 Carne

Carneis a process separate from Alma that communicates with it and runs procedures that would take too long to run
in the Alma process. There are special predicates available in Alma that can be used to request that Carne procedures
be run. The results of the computation are asserted in the Alma KB by Carne whenever they become available. Alma
does not have to wait for the procedure to terminate before going on with its reasoning. A procedure started at some
step in Alma may only return several steps later.

The ability of Carne to assert formulas in Alma and its independence of the Alma process allow it to be used as an
interface between Alma and external systems. In this way, Alma can be embedded into complex systems as the Trains-
96/Alma/Carne system (see later). Messages from the rest of the system to Alma are sent to Carne which translates
them from the inter-process communication language to a form suitable for Alma and asserts those formulas in the
Alma KB. Alma can send output to or query the rest of the system by sending messages to Carne which then converts
them to the appropriate form and sends then to the other modules in the system.

The Carnealgorithm

On startup Carne reads Prolog files that specify the computations that Alma can request and connects to Alma through
sockets. It then loops waiting for inputs either from Alma on the sockets or from the outside world on its standard
input. In the first case, it calls the program specified by the Alma code and updates Alma as to the progress of the
program (see below). In the second case, Carne processes the input message and adds the resulting formulas to the
Alma database. Carne currently has a KQML parser which converts KQML messages at the input to Alma sentences.

There are two reserved predicates that Carne provides to procedures:

e af (P) asserts P into the Alma database.

o df (P) deletes P from the Alma database.
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These are used by procedures called by Ala to modify the Alma KB. They are also used by Carne to assert inputs from
the outside world into Alma.

2.2.8 TheAlma—Carneinterface
The following predicates are available in Alma for communication with Carne:

e do(P, 1), when asserted in the Alma KB triggers an inference rule that sends a message to Carne to start
procedure P, | is an identifier for that call.

e doi ng(P, 1) isasserted in the Alma KB when Carne starts executing P. This and the next two formulas are
asserted as a result of messages sent to Alma from Carne.

e done( P, 1) isasserted and doi ng( P, ) isdeleted when the procedure terminates successfully.

e error (P, 1) replaces doi ng( P, 1) if the procedure fails.

The doi ng, done and er r or predicates are useful for Alma to keep track of the status of actions it has started. An
err or predicate, in particular, signals that an action has failed. This is useful in detecting actions that fail.

2.3 Mistake handling in active logic

In this section we consider how the active logic system handles mistakes. Since this is a general logic that can reason
about a wide range of domains, the mistake detection and handling capabilities are equally general and non-specific.
More detailed strategies have to be provided by the domain one is reasoning about. Examples of this are given later.
We intend these strategies in Alma to be general procedures that are specialized by statements in the logic provided
when axiomatizing the domains of interest. This is similar to the approach to control taken in [66] but it is not clear
whether this will prove to be effective. [128] provides a counterexample to that domain independent approach to
control.

2.3.1 Detecting mistakes

Mistakes are detected as direct contradictions between formulas in the KB. This does not identify what the mistake
is, but merely asserts that there has been a mistake. The contradictands are the immediate causes of the contradiction
and one of them at least has to be mistaken. This is represented in the KB by the assertion cont ra( N1, N2, t)
for a contradiction between a formula named N1 and one named N2 detected at time t . The reasoning for deciding
which of the contradictands is mistaken and whether there are any other causes of the mistake has to be specified in
the domain axiomatization. The meta-reasoning predicates in the logic, especially those relating to the derivation of
formulas can be useful.

The above detects mistaken beliefs. The same mechanism can be used to detect mistaken actions through contra-
dictions between the expected outcome of the action and observations or other reasoning that imply that the action
failed. If we know that an action A has a consequence ¢ and after the action we notice that —¢, we can conclude that
the action failed. The expectations and the subsequent facts have to be of the form ¢, not(¢) for the mistake to be
detected. We discuss in a later chapter how that could be arranged. If the axiomatization is such that the prediction of
¢ is simply represented as ¢ in the KB at the appropriate time, and the observation that —¢ is similarly represented,
then the contradiction detection mechanism will detect a problem between these two beliefs. Once the contradiction
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is resolved (through domain specific axioms) the mistake can be possibly propagated to the action (see the previous
chapter).

Similarly, propagation is used to detect mistaken intentions. These can be detected by propagation from beliefs that
gave rise to the intention or by the failure of actions that are part of the intended plan.

2.3.2 Handling mistakes

Since Alma does not identify the mistakes, the handling of the mistakes is very general. Oncecont ra( N1, N2, T)
has been asserted signaling a mistake in either N1 or in N2, Alma distrusts the possible mistakes in the KB. These
consist of the contradictands and their consequences. While there might be other mistakes related to this contradic-
tion, particularly formulas from which the contradictands are derived, the logic does not have enough information to
determine which these are. Distrusting formulas prevents them from being used in further inferences—the logic cannot
reason with them, but allows then to be reasoned about. This gives an opportunity for domain specific axioms to infer
the identity of the mistaken formula.

Notice that both contradictands and their consequences are distrusted. Since one of the contradictands is true, it is a
mistake to distrust that one and its consequences. The r ei nst at e reserved predicate reinstates a distrusted formula.
This can be used by the mistake handling axioms in Alma to correct that mistake when the cause of the mistake is
identified. Of course, this can be mistaken too.

2.3.3 Representing mistakes

Active logic only uses the di St r ust predicate to represent possible mistakes. Other more precise representations of
mistakes have to be provided by the domain axiomatization. The exact form of this representation and when it is used
determines the flexibility of the system as we will see later.

2.4 Alma/Carneimplementation

The reasoning system described above has been implemented and is used in a number of applications. In this sec-
tion we give some details of these programs. More information can be obtained from the Alma/Carne manual (see
Appendix XXX) and from [150].

241 Alma

Alma has been implemented in Quintus Prolog [174]. It can run either in stand-alone mode, or embedded in a larger
system with Carne as interface to the rest of the system. Alma reads files in the Alma language that specify its behavior
as well as Prolog programs that the user specifies for specialized representations and computations.

When embedded in a system, Alma is usually set to loop continuously, at each iteration computing a step. A lower
bound on the delay between two steps can be set. In stand-alone mode, Alma is usually stepped through a step at a
time under the control of the user, although it can be allowed to loop too. Stand-alone mode is more convenient for
interactive use and development of domain axiomatizations. This is very useful since the interactions of formulas over
time can sometimes be surprising.

In either case, Alma can write history and debugging information to files. The history can be used to examine the
reasoning episode or to recreate it later(see below). There are several levels of debugging information available that
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provide more or less detail about the reasoning process. These are mainly used to debug the internal procedures of
Alma.

242 Carne

Carne is also written in Quintus Prolog and is run connected to Alma through sockets. While Alma can be run
without Carne, the converse is not possible. It also receives inputs from external programs. The inputs to Carne are
specifications of procedures that are to be called from Alma and procedures that implement translations from external
languages to the Alma language. Carne waits for inputs from either Alma or the external interface. If Alma requests a
program to be run, Carne does so and asserts formulas in the Alma KB representing the status of the execution. The
procedure called has predicates available that allow it to assert and delete formulas in Alma. In case input from the
outside are sent to Carne, these inputs are translated and the resulting Alma formulas are asserted in the Alma KB.

243 Interface

Alma has an graphical interface written in Java that allows the user to interact with Alma more conveniently than
through text input. With that interface the user can control the running of Alma, view the evolution of the KB in real
time, skip back through time to see previous steps of the computation, and examine individual formulas in greater
detail. These facilities make it much easier to develop domain axiomatizations and debug the behavior of Alma.

The interface can also be run from a history file of a prior reasoning episode. This is useful if one wants to carefully
re-examine the behavior of Alma in a prior reasoning episode. It is also useful in illustrating the behavior of Alma.
Since the behavior is defined by the history file and does not change, one can give an account of the reasoning in each
step to illustrate the behavior of the logic and the details of a domain axiomatization.

2.5 Examplesof behavior

In this section we illustrate basic behaviors of Alma. In each case, we show the state of the KB initially, and the state of
the KB at later times to show the result of the computations. The initial state of the KB consists of the Alma formulas
describing the domain together with the initial step number which is asserted by Alma. We show the additions and
deletions to the KB at interesting steps instead of repeating the contents of the KB at each step. The non-monotonic
reasoning section has several examples of the behavior of Alma when used together with a theory that specifies its
behavior as a non-monotonic reasoner.

251 Modusponens

The axioms entered into Alma are:

HE(p(X), a(x)) .
Hf(a(x), r(x).

p(a).
a(b).
not (r(c)).
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These formulas (whose meanings are intuitive) are added to the KB at step 1 and as the logic is subsequently run we
Step Event
2 Add now 2)

2 Addnot (g(c))

2 Addr (b)

2 Addq(a)

2 Addif(p(X), r(X))

2 Delete now( 1)
get:

3 Add now 3)

3 Addnot (p(c))

3 Addr (a)

3 Delete now( 2)

4 Add now 4)

4 Delete now( 3)
Note that

e At each step the new now formula is added and the old one deleted. Since the operations in one step are
considered to occur atomically, we do not have in any step, both now( t ) and now(t 1)+.

Alma does all one-step derivations in each step.

After one step, at step 3, the logic derives not (q(c)),r (b) and q(a) by applying resolution to the appro-
priate formulas at step 1.

Inference is done on all axioms so that at step 2 we get i f (p(X), r(X)) fromif(p(X), q(X)) and
FfCa(x), r(x).

At step 3, we get the formulas which need 2 steps to be derived from the initial KB: r (a) and p(c) .

e So, those formulas that are derived after 2 steps (r (&), not (p(c)) are derived at step 3 and those that need
just one step are derived at step 2.

After step 4, the only events that occur are the times changing by deletion of the previous now and addition of
the next one.

252 Time stuatedness

We illustrate a very simple example of time-situatedness. The formulas in the KB simply assert a formula in the KB
at the right time.

fif(and(setTime(T), nowmT)),
concl usion(alarm(T))).

set Ti me(10).

We use the now predicate to tell when the time we are interested in has been reached. At that time we simply
assert al ar m Note the use of fi f here. If we had not done so, and used i f instead, then for each time step,
we would get an instance of an application of modus ponens so that at step 4 say, with now( 4) we would derive
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i f(setTinme(4), alarn(4)). Most of the formulas are not useful for our purposes and would just clutter the
KB.

When we run the logic, as before the formulas are added to the KB at step 1 and from then on the only formulas
that change are the time until we get to step 10. Recall that fi f will only result in a new formula when all of its
antecedents are in the KB. This happens here only when now( 10) is in the KB.

Step Event

1 Addnow( 1)

1 Addset Ti ne(10)

1 Addfif(and(setTime(X), nowm( X)), alarn(X))

2 Add now 2)
2 Delete now( 1)

10 Add now 10)
10 Delete now( 9)

11 Addnow( 11)
11 Add al ar n{ 10)
11 Delete now( 10)

Note that the al ar mformula is not added at time 10 but rather at time 11. At time 10, the logic notices that it is time
10. It uses this in an inference then, but the result of the inference is only added to the KB at the next step. This gives
the strange effect of al ar n{ 10) being added at time 11.

25.3 Negativeintrospection

Negative introspection is a quite powerful tool and can be used to implement non-monotonic reasoning as we illustrate
here: if something is a bird and we don’t know that it does not fly, then it does. We have two candidate birds: Tweety
and Fred. We know that Fred does not fly, but have no information about Tweety.

Note that the negative introspection succeeds if positive introspection fails. This is a predicate that is computed
on demand which is why it is enclosed in the eval _bound predicate (see the manual for details of that). Each
time an inference rule is applied to a formula containing an eval _bound with negative introspection, that negative
introspection is recomputes so that if the formula was added or deleted from the KB in the interval, that will be taken
into account.

i f(and(bird(X), eval bound(\+ pos_int(not(flies(X))), [X])), flies(X)).

bird(tweety).

bird(fred).

not (flies(fred)).

‘We omit the initial database and time formulas and show the relevant formulas only.

Step Event
3 Addflies(tweety)

4 Addnot (\+pos_int(not(flies(fred))))

Note that the fact that Tweety flies is derived as usual but that Fred flies is not derived because of of the denial of that
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fact in the KB. This denial does not however stop us from deriving that Tweety flies. Note also that as a side effect of
computing the eval _bound, its failure is asserted in the KB at step 4. The formula says that it is not the case that
the logic negatively introspects that Fred does not fly, or that the logic introspected that Fred does fly.

25.4 Contradiction detection

We repeat the axioms in the previous example, but leave the negative introspection out. We expect then to derive a
contradiction between the assertion that Fred does not fly and the derivation that Fred does fly.

if(bird(X), flies(X)).

bird(tweety).
bird(fred).
not (flies(fred)).

Step Event

2 Add11: not (bird(fred))
2 Add10:flies(fred)

2 Addflies(tweety)

Addcontra(11l, 6, 2)
Adddi strusted(11, 2)
Adddi strusted(6, 2)
Adddi strusted(10, 2)

W W W W

Note here that 11: not (bi rd(fred)) expresses that the name of the formula not (bi rd(fred)) is 11, and
similarly for formula 10. We show the formula names here because it is needed to understand the subsequent formulas,
but keep in mind that all formulas are named.

In this case, at step 2 the logic derives that Fred is not a bird from the facts that Fred does not fly and that birds fly. It
also derives that Fred flies since it is a bird. These are formulas 11 and 10 respectively. At the next step, Alma finds
that there is a contradiction between 11 (Fred is not a bird) and 6 (Fred is a bird) which was in the KB in the beginning.
Then, both these formulas and their consequences are distrusted. This includes the fact that Fred flies (10) since that
was derived from 6 (Fred is a bird). So there are three formulas distrusted: 11, 6 and 10. Since 10 is already distrusted,
it does not produce a contradiction with the fact that Fred does not fly. This could have worked out differently if the
contradiction between Fred flying and not flying had been found first. The same formulas would have been distrusted,
but there would have been a different contradiction. Once these formulas are distrusted, no consequence can be derived
from them. The KB does not subsequently change.

Note that the fact that Tweety flies is not affected by any of the reasoning about Fred. We do not, for instance, distrust
the consequences of the default that birds usually fly even though one instance of this fails.

2.6 Related Work

The main feature of active logic is time-situatedness and this makes possible the other features of meta-reasoning,
and contradiction tolerance. We consider three formalisms that have a notion of time situatedness that approaches
that of active logic: Executable temporal logic, Sneps, and Golog. Neither of these have the same facility as active
logic to reason with and about the current time, although executable temporal logics get the closest. Neither of these
formalisms however, allow contradictions to appear and reason about them as active logic does. MML, the executable
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temporal logic that we consider does allow meta-reasoning but a contradictory situation is seen as a failure of the
building of a model for the formulas of the logic.

While the other formalisms have some of the features of active logic, it does seem that active logic has a unique
combination of features that allow it to be used in a variety of ways the other formalisms can’t be used. In particular,
we need the features of active logics to handle mistakes flexibly.

2.6.1 Executabletemporal logic

Temporal logics [3, 14] are used to reason about changing worlds and are used for specifying and verifying dynamic
systems. Executable temporal logics attempt to build models of temporal logic formulas by executing the temporal
formulas.

We focus in discrete temporal logics where the formulas can refer to individual steps in the execution, and in particular
to the Metatem system [57]. The approach is to see formulas as expressing what the future should be, given the past
[59]. The slogan being “Declarative past and imperative future”. Any formula can be rewritten in the form Condition
about past — Condition about the present and future so that executing a formula requires the interpreter to verify that
the antecedent was true in the past and to then constrain the future based on the consequent of the formula. The logic
is monotonic in that if previous steps constrain a future state to make some formula true, there cannot be a later state
that makes that false. For instance, if ¢ is asserted to be false from ¢ = 10 on, we cannot assert ¢ at ¢t = 15. The
interpreter may have to make choices in the execution that lead it to the impossibility to satisfy some formulas. If ¢ is
asserted to be true for ever some time after ¢ = 25 and the interpreter chooses to make it true at ¢ = 29 but later finds
that there is an assertion that ¢ be false at ¢ = 35, the choice to make 1 true at ¢ = 35 needs to be undone. In that
case, the system backtracks and makes alternate choices.

This approach is close to the active logic point of view in terms of the agent being situated in time. A fundamental
difference is that while active logic simply produces the behavior specified, executable temporal logics attempt to build
a model of the system specified by searching for histories that satisfy the constraints described. This is why we have
backtracking in cases that the logic picks the wrong history to expand. The backtracking of the program in the case of
failure cannot happen in active logic—we cannot undo a choice made earlier but have to move on from there. Another
difference is that the monotonicity of Metatem contrasts with the nonmonotonicity of active logic.

In [11], Metatem is extended to MML and includes meta-reasoning. The domain of the logic in this case includes
names of the object level formulas. Variables are divided into two sorts: the object and the meta variables. This logic
allows one to use MML for meta-interpreters, and for control of inference for example.

This extension of Metatem allows the logic to refer to its own formulas but it is not clear that there are facilities to
reason about the derivation or other properties of these formulas that have proved to be useful in active logic.

2.6.2 SNePS

Redo thisIn [86] the Sneps semantic net [172, 171] reasoning system is extended to reason in time. The approach
is to use NOW as a deictic pointer to the current time. NOW is a meta-logical variable and is not a term in the
language. The value that NOW takes is denoted by * NOW and that varies with time. * N OW denotes the current
time and cannot refer to the past or the future. The time changes only when the agent acts, and actions can only be
done * NOW.

A distinction is made between “eternal states” which represent facts that are always true and temporary states which
represents facts true at some particular time. The latter are associated to time through a formula Holds(s, t).

The authors identify two problems with their representation:
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e There is a problem in specifying formulas of the form whenpdogq where p and ¢ are temporary states and ¢
denotes an action to be done. * NOW cannot be used in specifying that action because it is not a term in the
language. The solution is to eliminate references to time in such formulas and allow the inference procedure to
add the appropriate value of * N OW when the rule is used.

e The second problem relates to the time that it takes to verify p in the above. If the agent has to take some action
to do so, time will advance and p will be verified at a time different from the time inserted by the inference rule
in the solution to the first problem above. The result is that the action is never done even though the condition
is true. The solution proposed to this is to consider NOW to take values not of a time * NOW but of a set of
intervals of different granularities. In the example then, N OW initially represents a coarse-granularity * NOW,
but when the action is performed to verify p, a finer granularity is used which is still within the coarse NOW so
that the condition is true at that coarser granularity and the action can be performed. The details of that solution
are not presented.

Active logic contrasts with this approach in that Now is a predicate in the language, and the arguments of Now are
integers that represent time. Now and its values can be used in the language. This gives greater expressivity than the
Sneps approach. We can easily state that an action is to be done 5 time steps after the conditions are true, for example,
because we can compute with the times (steps) in the language itself. Once the condition is true, we know the current
time and compute the time 5 time steps from there and assert that the action is to be done when that time comes along.
The representation of NOW as a meta-term outside of the language seems to restrict the extent to which the logic can
reason about its own time.

Another difference between our approach and the Sneps approach is that time in Sneps is linked to the actions the
agent does. In active logic, by contrast, time is taken to increment independently of what the agent does. This seems to
better situate the active logic in the real world even though we do not have at this point, a guaranteed correspondence
between steps and clock time.

As far as the problems mentioned above, there is no need in active logic to specify a temporal argument for formulas
as the above since the antecedents are evaluated and the consequents asserted at the same step. If the antecedent is
a complex formula that needs to be evaluated at the same time, the fif form can be used. Since we do not have to
instantiate the formula with the time at which it is evaluated, the problems with the Sneps approach do not come into
the picture.

2.6.3 Golog

Golog [102] is alogic programming language meant for high-level programming of agents and is based on the situation
calculus [109]. The primitive actions are described in terms of their preconditions and their effects. The frame problem
[109] is solved [159] assuming that all the ways a predicate fluent can change are given in the action description and
that there are no state constraints; that is there are no indirect actions. Given a description of the primitive actions
and a program, the Golog interpreter uses theorem proving to determine whether there is a series of primitive actions
satisfying that program.

Time is introduced in an extension of Golog [160]. The system is not situated in time but can reason about temporal
constraints in the programs. In that sense it is different from active logic. However, if the sequence of actions is to
be executed, then the robot doing so needs to obtain the current value of time before deciding what to do next. The
robot is supposed to monitor the environment and recompute the rest of the schedule based on the time. Although the
actions of the robot in this case depend on the time at which it is trying to execute the program, this does not have the
flexibility of an active logic agent that can reason in and with time.
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2.7 Futurework

Alma/Carne can currently be used in a range of experiments in knowledge representation and reasoning. The frame-
work of Alma provides flexibility for those kinds of experiments. We discuss some additional features that can make
it more usable. Alma is also not very practical for non-toy applications because of efficiency concerns. This can be
addressed by better control of the reasoning.

2.7.1 Other systems of inferencerules

Alma uses resolution (see [28] for instance) as inference rule. This is convenient as resolution is the only rule needed
and this saves us from having to choose which rule of inference to apply. However, resolution is not complete in
forward chaining which is the main mode of reasoning in active logic. Although we do not want to derive all possible
formulas, it would be useful to have the possibility to do so and explicitly control which inferences to make. This
could be done with a different set of inference rules.

Another advantage of having an alternate set of rules is that there can be heuristic information in how people encode
axioms. Although p — ¢ and ~¢ — —p are logically equivalent, intuitively, we would state the first form if we expect
to see p more often than to see —¢. This heuristic information is lost in resolution where both are expressed in the
same form. This information can be used for controlling the reasoning: in the first case we would use the axiom in the
presence of p and in the second in the presence of —¢, for instance.

A possible alternative set of rules to be implemented in Alma is the natural deduction rules [101]. These are complete
rules, are intuitive and can provide good heuristics for controlling the reasoning. The Oscar system [148], for example,
is based on natural deduction. It should be possible to replace the resolution module of Alma by a natural deduction
module while keeping its time-sensitivity and meta-reasoning components intact.

2.7.2 Built-in non-monotonic reasoning

Non-monotonic reasoning is essential for commonsense agents and a number of applications of active logic use this
meta-reasoning feature to implement non-monotonic reasoning. It is not effective to re-implement different non-
monotonic reasoning schemes in each active logic application, just as it is not efficient to re-implement an active logic
for each problem we want to solve. In a later chapter we describe a non-monotonic reasoning scheme implemented in
Alma. This is meant to be a general non-monotonic reasoner and is intended for any application that needs this kind
of reasoning. This reasoner is implemented as an application of Alma rather than as a primitive feature. The result is
that it is rather awkward to use the non-monotonic logic. Integrating this into Alma would make it more usable.

2.7.3 Improved interface

The GUI currently available with Alma is provides basic functionality. We can view the KB as it evolves, and at any
state in the past and can inspect individual formulas and can to a certain extent control the logic from the GUI. Other
features that need to be added are a more extensive set of control for Alma, a view of derivations, a way to modify the
database by directly manipulating formulas in the GUI and making it possible to run the interface over the internet.
The latter would make it possible to have an Alma server in one location and clients anywhere on the web.
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2.7.4 Control of inference

Alma, by default, computes its derivations in a forward chaining breadth-first way. If left to itself, such a policy
can result in larger and larger numbers of inferences at each step, though that also depends on the formulas in the
KB and on the inputs. In the Trains-96/Alma/Carne application, the logic is run for thousands of steps without this
sort of explosion in the number of inferences. The rapid increase in possible inferences can slow down the reasoner
considerably. And it is likely that a majority of the inferences made are either irrelevant to the computation we are
interested in or are different derivations for the same result. This is a major bottleneck in using Alma in larger, more
interesting domains when the axioms may not be as carefully written as in the Trains-96/Alma/Carne application.

There are two approaches to this problem currently implemented: the possibility of backward search and the possibility
to control the inferences done. Backward search is very useful if we know exactly what we want to prove. In many
instances though, we depend on the logic to derive formulas that will be relevant to our interests, without having a
good idea about the formulas initially. This sort of reasoning is well suited for forward chaining as Alma currently
does.

The control framework provided in Alma seems adequate: we can reorder the list of inferences that are potentially
going to succeed, and we can limit the number of inferences done in each step. The problem is to find strategies that
will help make the logic more effective without ruling out making some inferences. There are a number of known
techniques for choosing clauses for resolution, for instance unit preference, set of support and so on [165]. These
should be implemented as in Alma and the user given a choice to apply them, and additionally, we ought to find more
heuristics that may be better suited for our computations.

Several approaches to controlling inference have been proposed and can be useful in this case. First of all there is
the question as to whether it is worth to have control knowledge [10, 61] and whether control knowledge should be
domain independent or specific [66, 128, 187]. Approaches include meta-reasoning [21, 31, 36, 190, 77, 20], decision
theory [37, 175, 83] and relevance reasoning [12, 180, 181, 103, 178]. Some of this work could be adapted to Alma
and implemented as logical axioms that Alma would use to control its own reasoning.
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Chapter 3

Mistakes in dialog—an introduction

Natural language communication makes miscommunication inevitable. Miscommunication can be seen as a mistake
in the conversation process and in dialog, this typically has to be detected and repaired promptly for the dialog not to
degenerate into separate monologs. In this part, we discuss some experiments in detecting and repairing mistakes in
dialog processing.

We start with a discussion of the conversational adequacy hypothesis which states that an agent is conversationally
adequate iff it can handle miscommunications in a reasonable way even if it has a minimum knowledge of the language
in which the dialog is being conducted. This implies that dealing with miscommunications and mistakes in general, is
a central part of natural language understanding.

We next describe the ongoing Trains/Alma/Carne project which aims to enhance the conversational adequacy of the
Trains-95 system by replacing the dialog manager in that system with one based on Alma/Carne and which can
therefore reason in time and with contradictions. The result is that some errors that are not handled in the original
system can now be handled appropriately.

In the other chapters in this part, we discuss work done on mistakes in presupposition and implicature processing.
Implicatures and presuppositions are crucial components of natural language processing and dealing with errors in
these is therefore essential for conversations to proceed smoothly. Our work there focuses on aspects of deriving
the meaning of utterances, oriented more towards pragmatics of language than towards the semantics or syntax. We
assume that basic logical forms for the utterances are available. In our work, we simulated that by entering the
appropriate logical sentences for the algorithms to work on. In a complete system, these would be generated by a
parser and semantic processing module. In both cases, our work relates the utterance we consider to the larger context
of the conversation. In the presupposition case it is to resolve conflicts between the context and the presuppositions
of the utterance, and in the implicature case, is is to resolve conflicts between implicatures of the utterance and the
context.

3.1 The pervasiveness of miscommunication

Human dialog is riddled with miscommunication. We continually make mistakes in conversation or even in reading
text. These are detected either on our own or with the help of the conversational participant. The mistake can then be
corrected and the dialog proceeds. In this section we provide some evidence for the pervasiveness of miscommunica-
tion and some approaches to it.

39
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3.1.1 Young children

Very young children seem to have the ability to deal with mistakes even before they have a good grasp of a language.
In fact the ability to detect mistakes seems to help them learn the language. Clark [32] discusses some behaviors in
young children that fall into that category.

Monitoring on€'s ongoing utterance An example of this was seen in a 2 year, 6 month child practicing parts of
speech (in this case its pronunciation of “berries”) on its own:

Back please / berries / not barries / barries, barries / not barries / berries / ba ba.

Here the child, even though it is not proficient in language is nonetheless able to monitor its own performance
and notice that it has made mistakes. The mistakes of interest are mispronunciations. Once it detects a mistake,
it corrects itself and continues practicing. Detecting and responding to mistakes, at least in this simple way,
seems prior to language processing being fully developed.

Checking theresult of an utterance Children at least as young as 5 years, 4 months comment on and correct the
utterances of others. They also verify that the listener has understood their utterances and attempt a repair
otherwise.

This active search for possible miscommunications and the effort to correct them seems to require a rather
sophisticated model of the communication process which is available to quite young children.

Predicting the consequences of using inflections, words, phrases or sentences, includingjudging the politeness of
utterances, which is exhibited by children aged four and a half. Children can also correct word order in sentences
judged “silly”. Clark cites instances of this being done by two-year olds.

Here too, there is a facility to detect mistakes and respond to them early in the child’s development.

3.1.2 Map-task corpus

The map-task is an experimental setting where two people each have a map that represents the same place, but where
neither of the maps are complete and the maps are not identical to each other. The map of one of the participants
might have a feature that the other map does not and neither person knows what the other’s map looks like. One of
the participants is the giver and has a path on his map. The giver gives instructions to the follower so that the follower
reproduces the path on his map. The instructions have to be given orally and are made difficult by the lack of a shares
view of the map. The participants have to build that common view of the map from their statements as they solve the
problem. We are now only interested in the miscommunications which occur very frequently in this task, for instance
the giver might refer to some feature on his map that the follower does not have, A more complex situation is when the
giver has a rock say, on his map and refer to that and the follower too has a rock on his map, but these are in different
locations. The error need not be immediately noticed and has to be discovered later. We illustrate this process with a
few samples of conversation from the corpus.

This somewhat artificial scenario is replete with miscommunications. We present a few examples of them here.

Examplel

[G] So, fg—eh, go to the left two inches.
[F] fg—Ebh, right, okay.
[G] No, left.

Here the giver (G) needs the follower to go left and the follower says “right”, maybe to acknowledge the request. This
is interpreted by the giver as the follower moving right and therefore as a mistake—the giver intended for the follower to
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move left but concludes (perhaps mistakenly) that the follower moves right instead. The giver then attempts to correct
the follower. This miscommunication is resolved later in the conversation over several exchanges.

Example2

[G] You’ll ... You’ll go north ... and then you’ll turn west,
onto the bridge.

[F] Okay.

[G] Or, east. Correction.

[F] Okay.

In this case, the giver seems to initially believe that the follower should go west. But there is then an apparent change
in mind and the giver decides that the follower should go east instead. So the belief of the giver that the follower
should go west is mistaken. A consequence of that belief of the giver was to tell the follower to go west in the first
utterance. This is mistaken too and has to be repaired. This is done in the third utterance where the giver emphasizes
that “west” was a mistake.

In these cases, it is apparent that there is a mistake committed, the mistake is noticed and a repair is done. If any of
these steps does not occur, it is unlikely that the participants will succeed in the task which they do. If there had not
been the possibility of detecting and repairing mistakes, it seem that this task would have been hard to accomplish.

3.1.3 Strategic competence

We now turn to a more theoretical view of miscommunication. Canale and Swain [26, 27] distinguished several
competences that make up communication competence in addition to the linguistic competence identified by Chomsky
[30]. Of interest to us is strategic competence.

Strategic competence is the set of strategies that are put to use when communication fails. These are of two main
types: grammatical strategies that are used when grammatical competence fails, and socio-linguistic strategies that are
used in situations when the socio-linguistic competence is inadequate. Some of the strategies mentioned in [182] are:
approximation, circumlocution, repetition, emphasis, asking for help, miming, avoiding the problematic concepts, and
abandoning an utterance already initiated.

These existence of these strategies is very interesting. First of all, it suggests that communication failure is common
enough for people to have developed strategies to cope with them. Second, these failures have to be detected in the
course of communication. Third, the identification of strategies to repair these failures implies that there are enough
of these failures that fit into a small number of categories to make general strategies useful.

Strategic competence is useful in various circumstances like in the early stages of second language learning [26].
Savignon [169] notes that communicative competence can be present in the absence of grammatical or discourse
competence. But when strategic and socio-linguistic competence are present, one can indeed communicate (non-
verbally) provided there is a cooperative interlocutor. She further points out that

The inclusion of strategic competence as a component of communicative competence at all levels is im-
portant because it demonstrates that regardless of experience and level of proficiency one never knows all
a language.

If one never knows all the language, one is bound to commit errors in communication and therefore the need for
strategies to detect and repair the errors.

An example of the use of strategic competence from [169] is shown in Figure 3.1. In this example, breakdown in
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In a crowded New York deli a visiting Frenchman has ordered a Swiss cheese sandwich.

Waitress: What kind of bread do you want for your sandwich, white, whole wheat or rye?
Frenchman: (Wh)ye.
Waitress: White?
Frenchman: (Wh)ye.
Waitress: White?

Frenchman: Whole wheat.

Figure 3.1: A linguistic deficiency resulting in message abandonment.

T1  Mother: Do you know who’s going to that meeting?

T2  Russ: Who?
T3  Mother:  Idon’tknow.
T4  Russ: Oh. Probably Mrs. McOwen and probably Mrs. Cadry and some of the teachers.

Figure 3.2: Russ notices an inconsistency at T3 and makes a repair at T4

communication is caused by differences in pronunciation. The Frenchman detects the problem and tries to solve it
using repetition, then emphasis, and finally by abandoning the message altogether. This also illustrates the negotiation
of meaning involved in the use of strategic competence as noted in [182].

Tarone also includes as a necessary criterion for the use of strategic competence the requirement that the speaker be
aware that the linguistic structure needed to convey his meaning is not available to him or to the hearer. This leads to
the use of the strategies to help get the meaning across. We note that this requires the speaker to recognize and reason
about its own limitations and capabilities and its adequacy for various tasks. This is a sort of meta-reasoning that the
speaker needs to undertake.

This suggests that the speaker has a model of the communication process and is aware of the shortcomings of his
own or the hearer’s linguistic computations. This is analogous to our notion of a reasoner having a model of his own
reasoning. If we look at the problem of getting one’s meaning across as some sort of reasoning problem that needs to
be solved, then the speaker needs to have a model of the reasoning process in general and to know what capabilities
are available to the speaker or to the hearer, and to reason whether these are adequate.

3.1.4 Failed expectations

McRoy and Hirst [118, 120] consider misunderstanding and repairs in dialog. In their model of conversation, mis-
understanding is signaled by an inconsistency between the expectations of a dialog participant and an utterance. The
agent must then reason about and explain this inconsistency. This can lead to a change in the interpretation of previ-
ous parts of the dialog and trigger a repair utterance. McRoy discusses Figure 3.2 where T3 is inconsistent with the
expectations of Russ and is repaired in T4.

An intuitive account of this episode is as follows. Russ believes that Mother knows who will be at the meaning and
wants to tell him. So, Russ responds with T2. T3 provides evidence that Mother does not in fact know who will be
there. Russ’s belief that Mother knows who will be at the meeting is mistaken and so was his response at T2. Russ
then provides a more appropriate response at T4.

This approach to mistakes is close to our approach of the response to a mistaken action. The speaker performs some
communicative action or commits to some intention with some expectation as to the trajectory of the world in the
future. But if the observations contradict the expectation, a mistake is inferred and a repair is attempted.
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3.2 Theconversational adequacy hypothesis

From examples like the above, [142, 143] identifies two different competences that a conversational agent needs to
have to converse: object-level competences and miscommunication competence. The miscommunication competence
is seen as essential for adequate conversation and can facilitate conversation in cases in which the participants do not
have a good command of the language.

3.21 Object-level competence

Object-level competence are those competences that an agent needs to have conversations in which there are no
mistakes. These competences include

o Grammatical competence. This is knowledge of the structure and vocabulary of the language.

o Object-level inference. This is the ability to reason about the objects mentioned in the conversation, but not to
the conversation itself or to the mental objects of the agent.

3.2.2 Miscommunication competence

To be able to handle miscommunications, the agent needs to have miscommunication competence. The components
of miscommunication competence include

o Situated time. The ability for the agent to represent and reason about the time in which it is reasoning and
conversing. This is to be contrasted to temporal logics where the agent reasons about time that is not the time in
which it is itself reasoning.

o History. The agent needs to have a record of events that happened. These include utterances and other external
events as well as mental events by the reasoner.

o Linguistic objects. The agent needs to be able to treat words in the utterances as objects that can be reasoned
about and distinguish between the words and their meaning.

o Contradiction. Since miscommunication can result in inconsistencies in the KB, the agent needs to tolerate
contradictions and have some means to control its effects.

Note that the capabilities are essentially meta-reasoning capabilities and are present in active logic and in Alma/Carne.
Therefore Alma/Carne provides a base upon which to experiment with miscommunication competence.

3.2.3 Conversational adequacy

An agent is conversationally adequate if it can hold an “adequate” conversation with other agents. A conversationally
adequate agent has to have a free-ranging ability whereby it can converse in a reasonable way about any topic. It is
not necessary for the agent to know all topics, but it should be able to realize it does not know about the topic of the
conversation and then try to ask questions and learn. In that case, there can still be an exchange of information, but of
a more limited kind. The need for information exchange rules out agents that talk past their interlocutor, pursuing their
own interests without taking into account the needs of the interlocutor. This frequently happens in current automated
conversation systems.
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Conversational adequacy is something no conversational software seems to have. They seem to have limited under-
standing of what is said to them in a narrow topic and once the conversation moves outside those narrow confines, the
performance tends to degrade catastrophically.

Intuitively, a conversationally adequate program will be one that one can converse with and not give up in frustration
at the opaqueness and stupidity of the agent as with many current systems.

3.24 The conversational adequacy hypothesis

The hypothesis put forth in [143] is that

(i) SUFFICIENCY: aslong as there is at least a weak ability in the object capacities (inference, learning and
language) then effective conversation can proceed if there is a strong miscommunication competence.

(i) NECESSITY: no matter how strong the object capacities, effective conversation cannot proceed if there
is not a strong miscommunication competence.

This hypothesis is not provable because of the lack of a clear definition of conversational adequacy, it can be opera-
tionalized through Turing-test like tests and gives a direction for work in better conversational agents.

3.25 Examples

‘We have earlier come across some examples that support this hypothesis:

e The Frenchman. In the example above, the Frenchman does not have a good command of English. He does not
eventually get what he initially wanted but both he and the deli employee realize that there is a breakdown in
communication and try to repair it. Despite their efforts, the Frenchman does not get his meaning across. In
the end, he perhaps reasons that the cost of getting across his meaning was not worth the trouble and settled for
white bread. However there was a recognition on both sides that there was miscommunication and a diagnosis
of the problem. The resources available did not seem sufficient to solve the problem however. Although the
Frenchmen had weak linguistic competence in English, he had good miscommunication competence.

o Children. In the examples, the child does not have good competence in vocabulary—it is still learning the words.
However, it does know enough to notice that it has made a mistake and uses that to improve its vocabulary.
The recognition of the mistakes and their subsequent correction seems essential for learning the language and
seems to be present (to a degree at least) in very young children who have not learned a language yet. Here
too, linguistic competence seems to be lacking, but miscommunication competence is not. The difference here
is that this happens in a very young child which seems to emphasize the importance of miscommunication
competence. In fact it seems that without something like miscommunication competence, the child would not
be able to recognize its own mistakes and that would make learning the language harder.

o The map-task. In the map-task, the conversational participants do have a good command of the language, but the
fact that they do not have a common view of the map makes communication difficult. The conversants recognize
this through miscommunications. This gives them the opportunity to build and correct that common view as the
conversation proceeds. The experiment is successful if the participants share enough of the same view for the
path built by the follower to be the same as that of the giver. Without sensitivity to miscommunication and repair
it would not be possible to complete the task.
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3.3 TraingAlma/Carne dialog manager

One way of providing evidence for the conversational adequacy hypothesis is to compare the adequacy of a system
without (or with little) miscommunication competence with one with some (or more) miscommunication competence.
This is the motivation for the Trains/Alma/Carne dialog manager project, described in [184, 4].

The Trains-96 [55] dialog manager was replaced by one implemented in Alma that was designed to have better mis-
communication competence. The resulting system handled a class of mistakes in conversation better than the original
system.

The dialog in the Trains system concerns moving trains to and from various cities. Our main interest lies in resolving
potential miscommunications in the dialog. Active logic is well suited for the ongoing inference needed in dialog
management. The metareasoning capabilities facilitate reasoning about breakdowns in the conversation.

3.3.1 Alma/Carne asdialog manager

A user of the system types in requests that are parsed by the Trains parser and sent to Carne which translates the
parse and asserts it as a set of formulas in Alma. Alma uses these formulas to determine the intention of the user.
This process may need more information from the domain. These requests are sent to Carne which in turn queries
the Trains system using the appropriate syntax for the Trains system. The response from the system is translated into
Alma formulas that Carne asserts in Alma. This may be repeated several times. Once the intention is determined,
Alma sends, through Carne, instructions to the system for it to accomplish the tasks required.

The current focus is on resolving errors in reference resolution in the dialog manager. The user may intend to refer to
some train using a linguistic expression (“The Washington train”) that can be interpreted in several ways (Metroliner
or Acela). If the dialog manager chooses an interpretation (Metroliner) other than what the user meant (Acela), the
response is likely to be erroneous. Feedback from the user (“No”) helps the dialog manager recognize its error and
resolving it results in the user and the system agreeing on the meaning of the expression (Acela). The system needs to
realize that its choice of referent for the expression was wrong and change it.

3.3.2 Thelevelsof representation

We briefly describe the representation used in the Trains/Alma/Carne project. More detail on the representation and
the algorithms used can be found in [184]. The utterances of the user are taken to be requests from the user to take
actions in the system. The information contained in the utterance is represented in several distinct layers:
L-req This represents the words said.
I-req This represents the direct logical translation of the utterance with all the ambiguities present.
D-req This is similar to the I-req but with the ambiguities removed.
P-act This specifies how the agent will satisfy the request in the D-req.
E-act This is the actions the system actually takes to satisfy the request.
O-act This is the observation by the system as to whether or not the action was successful. This may not always be

present.

These levels are meant to represent the different stages in the interpretation and execution of the request of the user.
One of the advantages of retaining them explicitly in the KB rather than letting these come and go as the computation
proceeds is that it simplifies dealing with miscommunications.



46

3.3.3 Errorsat each leve

Miscommunication can occur at each of the levels of the representation. We take miscommunication to be mistakes.
Examples of errors at each level are:

L-req A mistake at this level can be obtained when the system gets its input from a speech recognizer. Then the user
may say “Boston” but the system recognizes that as “Ballston”.

I-req Errors at that level can be caused by the parser failing to obtain the correct structure for the utterance, for
instance.

D-req The example presented above about a mistake in the reference resolution falls in this category.

P-act Here we have mistaken intentions. This could happen if, for instance the user wants to send a train to New
York and the plan chosen to do so is mistaken because of fire on the tracks which prevents the plan from being
successful.

E-act This is a case of mistaken action, for example, the action of ending the train from Washington to Baltimore fails
because of fire at the Baltimore station.

O-Act A failure at this level indicates that an action or an intention has failed. For instance the action of sending the

train from Washington to Baltimore might result in the train being stranded between the two cities.

The representation of the separate pieces of information used to derive the intention of the user and the response to
that intention can facilitate reasoning about and responding to mistakes. Without these representations, it would be
hard for the system to know where exactly in the processing of the utterance the mistake first occurred which makes
repairs harder.

3.34 Anexample

To illustrate that a system is more conversationally adequate if it can tolerate contradictions, does meta-reasoning and
is sensitive to passing time, the Trains/Alma/Carne system was compared to the Trains-96 system. For the situation in
which

e There are several trains a some city X.

o The user requests “the X train” to be sent to city Y.
The following behavior is produced:

o The system chooses one of the trains at X as “the X train” and sends this to Y.
o This was not what was meant by the user though, and he rejects the move by saying “No”’.
e The system returns the train to the original position
Both systems behave similarly to that point. But if the user repeats the request to send “the X train” to Y, the Trains-96

system sends the same train it did the first time. The Trains/Alma system however, chooses one of the other trains to
send since the user had rejected the train first sent.

In both cases, the system realizes that its action was mistaken and undoes it. However, the Trains-96 system does
not seem to realize that its choice of referent for “the X train” was mistaken and repeats this choice. This response
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maybe adequate if the user then uses a different description for the train it needs to send, but not in the general case.
The Trains/Alma/Carne system does realize that the first object that it resolved “the X train” to is not appropriate and
corrects the choice. If the second choice is rejected too, the Trains/Alma/Carne system will pick another train. If all
the trains have been selected and rejected by the user, it requests clarification from the user.

3.4 Presuppostionsand implicatures

The rest of this part discusses in some detail detecting and responding to mistakes in presupposition and implicature
processing. The ability to presuppose facts and to come to implicatures of utterances is essential for a natural behavior
in conversation. Mistakes will be present in these cases and these mistakes have to be handled. This is done following
our general approach to mistakes, specialized to handle just the cases of interest.



Chapter 4

Presuppositions

As a conversation proceeds, the new sentences of the participants is interpreted in the context of what has been
mentioned earlier. The discourse context represents, for a participant in a dialog, what is being conveyed in the dialog.
We expect the context to grow as the conversation proceeds and more information is available. The problem we
consider here is a problematic aspect of the relationship between the discourse context and the presuppositions of a
new utterance. See [75, 76] for details.

The presuppositions of an utterance are pragmatic propositions that have to be assumed for the utterance to be under-
stood. The problem of computing these presuppositions has a long history and is not yet fully resolved. Heretofore
one of the most highly regarded treatments was that of Heim whose approach to presupposition projection [78] gives
intuitive results in many instances. However, there are cases where the presupposition is inconsistent with the context
and where Heim’s approach fails. The approach we propose here perfoms similarly to Heim’s in the unproblematic
cases, but when there are inconsistencies, we take more care in resolving the contradictions and the results of our
algorithm accords better with intuition than Heim’s.

4.1 Presuppositions

Presuppositions are a class of propositions that have to be assumed for a natural language utterance to make sense.
For instance, if someone says “The roses are red”, one has to presuppose that there are some roses. Without that
assumption, there is no referent for “the roses” and the truth of the sentence cannot be evaluated. The roses could
have been mentioned earlier and added to the discourse context, or if this is the first time the roses are mentioned, the
presupposition that there are roses can be added to the context.

Presuppositions are a pervasive part of natural language and can be triggered by many constructions, for example

o Definite noun phrases as above. “The roses are red” presupposes that there are roses.
o Cleft sentences as in “It is the roses that are red” This presupposes that there are roses.

o Possessive noun phrases as “John’s roses are red” This presupposes that there are roses that belong to John.

Aspectual verbs as “It has stopped raining” This presupposes that it was raining.

o Factive verbs as “John regrets picking the roses” This presupposes that John picked the roses.

48
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Note that presuppositions cannot be deduced from the utterance, they must be assumed before the meaning of the
utterance can be determined. The sentence constructions above generate potential presuppositions that may or may
not eventually be part of the context. For instance, “The roses are not red” generated the potential presupposition that
there are roses. If this is then followed by “Because there are no roses”, that presupposition should no longer be part
of the discourse context, in fact it contradicts the utterance.

411 Updatingthe context

There are three possibilities when we have a new utterance: (1) the context entails the presuppositions of the utter-
ance; (2) the context entails the negation of the presuppositions; (3) the context entails neither the presupposition nor
its negation. Cases (1) and (3) seem relatively unproblematic. In (1), there is no special problem relating to presup-
positions. In (3), we can accommodate the utterance by adding the presupposition to the context (assuming we know
that the context does not entail the negation of the presupposition). We consider case (2) in more detail.

Heim’'srules

Rules for updating context have been proposed by Heim[79, 78]. A function 4+ maps a context C' and an utterance U/
onto a new context. There is also an accommodation mechanism that handles cases when the presupposition is not
entailed by the context. The four rules that specify + are listed below. The propositions are taken to be sets of possible
worlds. The proposition corresponding to an utterance U is denoted by [[U]].

CCPB
C+U=Cn[U]]

This is the basis case where the utterance is represented by an atomic proposition. Updating the context simply
intersects the possible worlds of the context with those of the utterance. This results in possible worlds that
satisfy both the old context and the utterance.

CCPA
C+ (UandV)=((C+U)+V)
In the case of a conjunction, we first intersect the first proposition with the context, followed by the second one.
CCPN
C+(notU) = C\ (C +0)

In the case of negations, we first “imagine” what the set of possible worlds would be like if the proposition were
true, C' + U, and remove those worlds from the current context. Or, we remove from the old context the worlds
that are consistent with the utterance.

CCPC
C+ (if Uthen V) = C\ (C+U)\ ((C+T)+V))

Conditionals “if U then V” are treated as “not(U) or V”’ which is equivalent to “not(U and not(V))”.

The accommodation process is described by the accommodation rule. Let Pr(U) be the presupposition of utterance
U. Then if the context does not entail the presupposition of the utterance, we first add the presupposition then add the
utterance: C' + U = (C'+ Pr(U)) 4+ U. The accommodation also occurs if the context entails the negation of the
presupposition as in case (2) above. In that case, (C'+ Pr(U)) ends up being an empty set of worlds which indicates
a contradiction. This can cause problems in some cases.
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4.2 Theproblem

Consider the following:
U1: There are no roses.
U2: So the roses are not in the fridge.

We take the logical from of U1 to be =3z Roses(z)! and that of U2 including the presuppositions that there is a fridge
and that there are roses to be —(3z y Roses(z) A Fridge(y) A In(z,y)). Let Cq be the context initially, then applying
Heim’s rule to these utterances we get:

1. We start with context C';.
2. After Ul, the new context is C'y = Cy + [[-3z Roses(z)]]

3. Applying CCPN and accommodation to U2 results in context C's = Cy \ (((Cs + Roses(z)) + Fridge(y)) +
In(z,y)) Since C entails that there are no roses, the proposition to the right of the \ is the empty set of worlds
and we are left with the C's which says that there are no roses.

(5, at the end of U2 therefore ignores the contents of U 2. In particular, the presupposition that there is a fridge is lost.
Intuitively though, at the end of U2 we should still think that there is a fridge. This points to a problem with Heim’s
approach.

4.3 Our solution

We propose processing the information in a finer-grained way. After U/ 1, the context contains the assertion that there
are roses. The presupposition that there are roses (from U 2) conflicts with that. It is either a mistake to believe that
there are no roses or to presuppose that there are. We prefer the results of the utterance rather than the presupposition
and use that to regain consistency. We then proceed to process the rest of 42 in the repaired context. This results in
the context being accommodated with the existence of a fridge.

Heim’s solution seems coarser-grained in that it rejects all the content of /2 once there is a problem in it without
analyzing the cause of the problem and possible repairs. Our solution depends on the ability of the logic to tolerate
contradictions, resolve them and proceed with the reasoning. This capability provided by active logic.

431 Representation

This solution was implemented in active logic. (This was a specialized implementation of active logic—the Alma/Carne
implementation was developed later.) We first give an account of the representations used to model this problem.

4.3.2 Predicatesused.

1. now(t) indicates that we are now at the t'? step of computation.
2. ctxt(c, t) represents that the context at time t consists of the list of formulas c.

3. ut(’ X', t) represents that X has been uttered at time t.

'Note that our solution assumes that the logical forms of the utterance are available from some other module. In this project, we did not
implement these other modules, but simulated them by entering their expected output into our procedures.
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parse(X, t) is the parse obtained at time t by processing an utterance at the previous step.
dfnt(X) represents a definite description in the utterance. (We assume that this is produced by the parser).

update(X, t) represents at time t, elements of the discourse that still need to be incorporated into the context
according to Heim’s rules. X is a list of contexts, atoms from the inputs and the + and \ operators. In the
subsequent presentation of rules and active logic steps, + will be denoted as PLUS, and \ as SLASH.

presup(X) marks X as a presupposition.

exists(x, P(X)) indicates that an object with property P exists in the discourse context.>

assert(X) marks X as having been asserted in an utterance.

contra(X, Y, t) indicates that there is a contradiction between the formulas X and Y in the context at time t — 1.
NULL(X) indicates that formula X is not to be “trusted”.

SUSPECT(X) indicates that formula X has given rise to a contradiction.

4.3.3 Rulesof inference used.

The rules will be presented in the form:

1:

X

i+1:Y

If X is believed at step i, then Y is added to the beliefs at step i+1. Nothing else is added to the beliefs that is not
mentioned by these rules.

1.

ir utCX’,1)
i+1: parse(Y, i+1)

where Y is a parse of X. This rule invokes a parser on X to get Y.

i ctxt(C, 1) parse(X, 1)

i+1: update(Z, i+1)

Z is a list of operators and operands such that successively applying the operators to their operands results in
updating the context with the parsed input utterance according to Heim’s rules (CCPA, CCPN, CCPC).

i update(X, i)

i+1: update(Y, i+1)

where Y is the result of applying the first operator (PLUS or SLASH) in the list Y to its arguments. There are
several cases depending on the operator and on the form of the operands. For instance + adds a formula to the
context.

i:  update(X, i)

i+1: ctxt(X, i+1)

this rule is a subcase of the previous and is applied when all context updating is complete for one particular
utterance, i.e. there are no operators in X. Once the update is complete, the new context is put back into the set
of beliefs of the system.

2Qur use of “exists” here is not the usual logical use with narrow scope. Rather, it has wider scope as used in DRT [87] and by Heim.
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5.1:  cetxt([..., foo(X), ..., bar(not(Y)), ...], 1)
i+1: ctxt([..., SUSPECT(foo(X), ..., SUSPECT(bar(not(Y))), ..., contra(foo(X), bar(not(Y)))], i+1)

This rule detects direct contradictions in the context. Here, X and Y are unifiable and foo and bar are either
assert or presup. Note that foo(X) and bar(not(X)) are tagged as being “suspect” at i+1.
6. i:  ctxt([..., SUSPECT(foo(X), ..., SUSPECT(bar(not(Y))), ..., contra(foo(X), bar(not(Y)))], i+1)
i+1: ctxt(Z, i+1)
Z is the context resulting from resolving the contradiction flagged at step i. The contradiction can be resolved

by using various additional sources of information including:?

e Other elements in the context, for example rhetorical relations, formulas in the context relevant to the
contradictands, the sequence of

inferences leading to the derivation of the contradictands.
o General knowledge which may be outside the context (though we do not treat this here).
o The status of the contradictands— whether they are assertions, presuppositions or distrusted.
Resolving the contradiction can result in one or both of the formulas being distrusted, and in further changes

in the context. Note that the resolution of a contradiction is itself defeasible—this resolution could later lead to
other contradictions which could undo the changes done at this point.

7.1 cetxt(X, 1)

i+1: ctxt(X, i+1)

We simply inherit the context to the next step if there is no change.
8. i ctxt(X, 1), ctxt(Y, 1)

i+l etxt(X U Y, i+1)

If two contexts are present at a step, perhaps an original context and one obtained by incorporating a sentence
into it, we merge the two. This is a merge of formulas, not of possible worlds as before. Merging the 2 contexts
could introduce contradictions in the total context. That will be detected at the next step.

9. i now(i)
i+1: now(i+1)

This is the “clock rule”. Time does not stand still while we are reasoning.

4.4 StepsGalore

We consider only discourses that depend on ‘but’, ‘so’, ‘because’, overtly. We will treat them as inter-sentential
relevance markers. The steps are shown with the step number on the left hand side, next to the contents of the KB at
that step.

44.1 Thefirst example

We now present our first example.*

D; = (There are roses and tulips. But the roses are not yellow)

3See Miller [123] for more on contradiction resolution in active logic
4Some details are not shown, for example the argument representing time in the predicates.
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Step
0  ctxt( [], 0),ut( "There are roses and tulips’)

Letc; =[]0

1 c1, parse(and(exists(x,R(x)),exists(y,T( y))))

This is the result of parsing the utterance and inheriting the previous context.
2 c1, update([cq,exists(x,R(x)),PLUS,exists(y,T(y)),PLUS])

update is the result of applying Heim’s rules recursively to the parsed utterance. Note that this is in postfix form, to
facilitate computation.

3 c¢1, update([ca,exists(y,T(y)),PLUS])

where ¢y = [assert(exists(x,R(X)))]

The first operation is (c1,exists(x,R(x)),PLUS). We just assert the new atom into the context.
4 cq,update(cs)

where c3 = cs U assert(exists(y,T(y)))

We assert the second part of the utterance into the context too.

7 C3

At the end of processing the first utterance, the context contains the assertions that there are both roses and tulips in
the discourse context. We now add the next utterance.

8  c3, ut(’But the roses are not yellow’)
9  cga, parse(and(but,not(and(dfnt(R(z)),Y(z)))))
The new utterance has been parsed and we now need to incorporate it into the context.

10  cs, update(cs,but,PLUS,c3,but,PLUS,dfnt(R(z)),PLUS,Y(z), PLUS, SLASH])

SWe will use c; for both the list of formulas in the context and for the predicate ctxt(c;, j). Which is meant will be evident from the context.
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12 cs,update(ca,cs,dfnt(R(z)),PLUS,Y(z),PLUS,SLASH])

where c4 = c3 U assert(but)

Now we have to add “the roses” to the context. We search in the context for roses that were previously mentioned the
closest to the present time—i.e., a mention of roses closest to the tail of the list.

13 c3,update(cs,cs,Y(z),PLUS,SLASH)

where c5 = c4 U assert(x=z)

We have in fact mentioned roses before, and we make the new mention of roses designate the same roses as the
previous mention by asserting x=z.

14 c3, update(ca, cs,SLASH)

where cg =c5 U Y(z)

Set difference between the two contexts is done by adding to the first context the negation of the elements in the second
context but not in the first.

Here we have a choice of what to negate: either that x=z or that z are yellow, or both. It is at this point that we make
appeal to rhetorical information in but to help us make the best choice. We choose to negate that Z are yellow only
and:

15 c3, update(cq U not(and(assert(x=z),assert(Y(z))))
We eventually obtain:

ctxt([assert(exists(x,R(x))),assert(exists(y,T(y))), assert(but),not(and(assert(x=z),assert(Y(z))),
assert(not(Y(z))),assert(x=z).

We could of course have made a bad choice here. Had that happened, it could have led to a contradiction later on in
the discourse and the choice we made at this point would then be questioned.

442 A second example
We now show an example of active logic using the rules and predicates discussed above to a garden path sentence.
This is essentially D.

Dg = (John bought flowers, [Are the roses in the fridge?], No, (the roses are not in the fridge), Because there were no
roses)

Here we have a case where something is first added to the discourse context only to be promptly removed. As presented
in [78], the CCP rules cannot deal with this discourse. The last sentence would simply produce a null set of possible
worlds, making anything that followed “felicitous.”

To save space we will consider only the shortened discourse D7:

D7 = (The roses are not in the fridge. Because there are no roses.)
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Step
0  ctxt( [1,0) ut( ’The roses are not in the fridge’)

Letcq =].

1 ¢y, parse(not(and(dfnt(R(x)),dfnt(F(y)),in(X, y))))

This is the result of parsing the utterance and inheriting the previous context.

2 ¢, update([cy, c1,dfnt(R(x)),PLUS,dfnt(F(y)), PLUS, in( x,y), PLUS, SLASH])
We get the update predicate by applying Heim’s rules as before.

3 ¢1, update([ca,co,dfnt(F(y)),PLUS,in( x,y),PLUS,SLASH])

where ¢y = [presup(exists(x,R(x)))]

The first operation is (cz, dfnt(F(y)), PLUS). Since we have a definite descriptor, we first search the previous context
(cq1) for a previous mention of roses. As there is none, we accomodate (globally) the context with the presupposition
that there are roses.

4 cq, update([cs, cs,in(x,y),PLUS,SLASH])

where c3= [presup(exists(x,R(x))), presup(exists(y,F(y)))]

Similarly, we accomodate by adding the presupposition that there is a fridge to our context.
5  c1,update([cs, c3 U [assert(in(x,y))],SLASH]

We simply assert that the roses are in the fridge. Note that here, only one context is being updated. We do not add the
new assertion globally.

6 c1, update([cs U [not(assert(in(x,y)))]])

11 ¢4, ut(’Because there are no roses’)
where c4= c3 U [not(assert(in(X,y)))] = [presup(exists(x,R(x))), presup(exists(y,F(y))) assert(not(in( x, y)))])

After some processing, we end up with a new context that contains the presuppositions that there are roses and a fridge
and that the roses are in the fridge. To this new context, the second utterance is added.

12 c4,parse(and(because,not(exists(z,R(z)))))

We repeat the processing we did above.



56

13 c4, update(cy,because,PLUS,c4 ,because, PLUS exists(Z,R(z)),PLUS,SLASH)
17  c4, update(cs)
where c5= c4 U [assert(because), not(assert(exists(z,R(z))))]

We have asserted “because” in the context because “because” can serve as a clue to picking the right choice among
several alternatives we could encounter in later processing.

21 ctxt([presup(exists(x,R(x))),presup(y,F(y)),asssert(not(in(x,y))),assert(because),assert(not(exists(z,R(z))))
‘We now have a context which presupposes that there are roses and which asserts that there are none.

22 ctxt([SUSPECT(exists(x,R(x))),presup(y.F(y)), asssert(not(in(x,y))),assert(because), SUSPECT(not(exists(z,R(z))))
contra(presup(exists(x,R(x))),assert(not(exists(z,R(z))))]

That contradiction is detected and flagged. The formulas that caused the contradiction appear at this step flagged as
being “suspect”.

23 ctxt([NULL(exists(x,R(x))),presup(y,F(y)), asssert(not(in(x,y))),assert(because), assert(not(exists(z,R(z))))

Using the fact that one of the contradictands was a presupposition and the other an assertion we conclude that we
were mistaken about the presupposition. This is not always the right decision but it is a good heuristic. We make
the presupposition that roses exist to be suspect and we reinstate the assertion that roses do not exist (in the discourse
context).

24 ctxt([NULL(exists(x,R(x))),presup(y,F(y)), asssert(NULL(in(x,y))),assert(because), assert(not(exists(z,R(z))))

Since we doubt the existence of roses, we doubt the truthfulness of the statement that the roses are in the fridge.

At the end of processing D7, we “know” the following:

o There is a fridge.

e There are no roses.
And we have doubts about the following:

e There are roses.

e The roses are in the fridge.

And this is what we expect to get.
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45 Discussion of the solution

In this section we highlight the aspects of the solution that enable us to reason about the mistake more flexibly than in
the solution of Heim. This example does not involve actions or intentions. The mistake we deal with is a mistake in
beliefs. This models a passive agent listening to a stream of utterances and incorporating the information into its KB.

45.1 Detecting and representing themistake

A mistake ocurs in this problem when the context entails ¢ but the utterance being processed has —¢ as a potential
presupposition. We consider here the case that ¢ is explicitly contained in the context. If ¢ is entailed but not contained
in the context, the mistake will be noticed later and the processing will then proceed in a similar way.

The assertions in the context are represented as assert(¢) and the presuppositions as presup(—¢). Detecting the
mistake then involves detecting such a pair of formulas in the current context. This is done by rule 5. That rule
removes the contradictory formulas from the context, asserts that they are SUSPFECT and asserts that there has
been a contradiction. The fact that there has been a mistake is represented here by the contradiction assertion:
contra(assert(d), presup(—¢),t). This does not identify the mistake, only indicates that one of the two formulas
has to be mistaken. An example of the application of rule 5 is seen in step 22 of the second example.

45.2 Respondingtothe mistake

In addition to asserting that there has been a contradiction (mistake), rule 5 also removes the contradictory formulas
from the context and asserts that they are SUS P ECT. The removal of the formulas is the first line of defence: since
one of the two formulas is false, by removing them, we minimize the derivation of false formulas.

Resolution of the contradiction is done by rule 6. This uses a preference assertion made in the KB to decide which
of the contradictands to reinstate to the context at the next step. This results in assert(X) formulas being added to
the next step in preference to presup(X) formulas. This is generally a good heuristic since the presuppositions are
potential presuppositions that have to agree with the context.

Once the mistake is resolved, the status of the preferred belief, assert(X), reverts to being believed from being
SUSPFECT while that of the mistaken belief, presup(Y), goes to NU L L which indicates that it is mistaken. The
consequences of the mistaken belief are also changed to NULL.

This resolves the problem and the computation can proceed with the rest of the utterance being included into the
context. Only the mistaken presupposition is removed.

45.3 No actions

It is to be noted that this example does not involve any actions other than manipulating the KB. Further, the changes
done to the KB as a result of a mistake are simple and are the same for all possible mistakes that we consider. These
factors make it easy to resolve the problem simply with the representation that we have a mistake and invoking a
standard method to resolve it. The solution did not explicitly indicate which of the contradictands was mistaken
even though that was discovered in the resolution of the contradiction. Instead, the repair of the context was done
immediately.

If there were actions undertaken in the world or if the response to the mistakes were more complex, it is unlikely that
just asserting contra would have sufficed. It may have been necessary to explicitly indicate which beliefs, intentions
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and actions were mistaken to be able to respond appropriately. This explicit approach would also be useful in case the
correction of the mistake was later found ot be itself mistaken.

454 Why doesit work and Heim’s does not?

The reason our approach gives better results intuitively than Heim’s approach is that we do more careful reasoning
about the mistake that occurs. Once an inconsistency appears in Heim’s approach, the whole segment of the dialog
that is involved is discarded. In our case, then we notice the inconsistency, we note that as a mistake and we find the
cause of the mistake and resolve it which allows us to continue processing the rest of the utterance.

In Heim’s approach, the algorithm does not “realize” that there is a mistake. There is no special datastructure or
procedure that comes into play when the mistake occurs. This precludes reasoning about the contradiction as our
solution does and makes it difficult to have anything but the simplest response to mistakes.

4.6 Related work

There are numerous theories of presupposition, accommodation, and the projection of presupposition. There are fewer
computational implementations. And of these most do not discuss or attempt to treat the cases of actual cancellation
as happens in D7 and Dg. We have chosen to study and adopt Heim’s theory because it covers many of the problematic
cases and it also suggests the kind of step by step, forward chaining reasoning of active logic. Ours is an approach
appealing to nonmonotonic reasoning. Other nonmonotonic approaches to presupposition include those of Mercer
[121], Marcu and Hirst [105], and McRoy and Hirst [119, 120].

46.1 Mercer

Mercer employs a system of default rules to model the presuppositions arising from syntactic forms that appear in
utterances. In [121] he deals with adverbial presuppositions such as the following:

If John kicked the ball, then Bill kicked the ball too.

If Fred called yesterday, then he will call again today.

In these cases the adverbs “too” and “again” give rise to potential presuppositions; that someone else kicked the ball
and that Fred called before. But in each case the potential presupposition does not project. The examples we have been
discussing are mostly cases of existential presupposition triggered by definite descriptions. We do not think that this is
an important difference from Mercer’s examples for the phenomena under study and we believe that we could in the
future bring adverbial and other sources of presupposition into our system. The important similarity between Mercer’s
paper and ours is the concern with the complexity of presupposition. Now Heim’s CCP rules which we implement
are intended to account for projection in if/then sentences in a well-founded, uniform way. Therefore we expect that
our system can deal properly with Mercer’s examples. A major difference between Mercer’s approach and ours is
that he does not address the time evolving positing and cancellation of presupposition. This is a constant theme in the
comparison of our approach with others.

46.2 Marcuand Hirst

Marcu and Hirst [105] present a system designed to handle cancellation of presuppositions. But they take an approach
quite different from our approach. They do not model the step by step incremental reasoning about context. Rather
they compute an entire new theory after each utterance. Although we have not verified this, their system may be able
to get the correct results for most if not all of our examples. It appears that they would deal with a discourse like Dgy by
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first computing the two presuppositions after u;. Then, after u, they would discard all beliefs and compute a fresh set
of beliefs consistent with the entire discourse. They also develop an ontology based on Meinong’s theory of objects.
They use this ontology to deal with discourses about fictional entities and discourses that involve presupposition. We
believe, along with others [63, 78, 88, 177, 89] that presupposition can be treated separately from fictional discourse
and that we can achieve this without a Meinongian ontology. The ultimate success of our approach would bear out this
claim.

4.6.3 McRoy and Hirst

McRoy and Hirst [119, 120] present an abductive treatment of misunderstanding in dialogs. By way of contrast we
use a largely deductive (though time-situated) inference engine. As McRoy and Hirst note, a deductive approach
leads to contradictory beliefs and the need for belief revision. However, in our approach, belief revision is handled as
part—and—parcel of the inference process; it does not require an additional module or phase of processing ¢. Moreover,
contrary to [82], we do not need to assume there are no “abnormalities”; or rather any abnormality is easily retracted
later in the dialog when new evidence is heard.

Thus our approach is an exploration of the utility of largely deductive methods in natural language processing; when
contradictions arise, our logic engine applies the applicable rules. As shown in our output traces above and in Miller
[123], active logic engines are often able to reason quite effectively with contradictions. It is that fact that provides the
underlying framework that we are exploiting.

Ballim and Wilks [9] provide another treatment of belief and inference, essentially context-based, that perhaps could
be marshalled in similar ways to our use of active logics here. However, their treatment does not appear to be
contradiction-tolerant, and their use of time is much less explicit than in active logics, and in particular the rea-
soning done with “viewpoints” (as their contexts are called) does not reflect a notion of current evolving time as in
active logics. Instead they would apparently utilize a back-and-forth juggling of viewpoints to keep contradictions
from surfacing within the same viewpoint.

4.7 Conclusion

This problem illustrates the usefulness of explicitly representing and reasoning with mistakes. Heim’s appproach fails
to give an intuitive solution in the cases we consider because once a mistake occurs, there is no analysis of the mistake
or of its causes. Instead, Heim’s procedure ignores the problematic utterance and processes the dialog as though
nothing happened. In our approach, the fact that there has been a mistake is flagged by the conira assertion and the
logic reasons about it to resolve the problem. The mistake is localized and removed and the rest of the sentence is
processed in the context of this resolution.

Our solution does not explicitly represent which beliefs were mistaken and does not explicitly represent the actions
taken subsequently to repair the mistakes. We only represent that there has been a mistake and the resolution of the
mistake happens procedurally. This is sufficient for this simple case, but may not be adequate in case the choice we
made to resolve the mistake was found to be mistaken or if there were some external actions involved. In these cases,
an explicit identification of the mistaken beleif and the actions taken would be necessary to repair the KB.

This illustrates that point that the most explicit and complex mistake handling algorithms are not always necessary. The
approach we chose to repairing mistakes can be more closely matched to the needs of the problems we are addressing.

6Traditionally such an additional module might be treated as a truth maintenance system [43]



Chapter 5

| mplicatures

‘We present another application of mistakes to language processing. The phenomenon we model here is the cancellation
of implicatures. Implicatures occur very frequently in language processing and dialog, and sometimes one makes an
implicature only to find out later on that is was a mistake to do so. We tend to smoothly adopt the correct view and
continue with the dialog. This is the phenomenon we attempt to model here.

The basic theory accounting for this behavior is Grice’s [72, 73, 71] theory of meaning and implicature. Although
Grice’s theory has been known for a long time, there have not been any commonly accepted computational imple-
mentations of it. Our algorithms that will implement a small but rather problematic part of the theory of implicatures.
These were possible through the contradiction handling and meta-reasoning features of active logic.

51 Implicature

Implicatures, roughly, are propositions that are suggested by an utterance without being entailed by that utterance. If
someone says “John is in the yard or at work.” an implicature would be that the speaker does not know exactly where
John is. This proposition is not entailed by what the speaker said, but seems to follow from it if we assume that the
speaker is being cooperative.

5.1.1 The cooperativeprinciple
This sort of reasonableness assumption is stated in Grice’s [72] Cooperative Principle:

Make your conversational contribution such as is required, at the stage at which it occurs, by the accepted
purpose or direction of the talk exchange in which you are engaged.

This is assumed to be the basis upon which people converse. If we did not conform to such a principle, conversations
could degenerate into a string of non-sequiturs with no useful information exchange.

5.1.2 Themaxims

The Cooperative Principle is rather vague and Grice fleshes out the Cooperative Principle into a set of maxims that fall
into 4 categories:

60
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Quantity ~ — Make your contribution as informative as is required.

— Do not make your contribution more informative than is required.

Quality  — Try to make your contribution one that is true.
— Do not say what you believe is false

— Do not say that for which you lack adequate evidence

Relation = — Be relevant.

Manner  — Avoid obscurity of expression.
— Avoid ambiguity.
— Be brief.
— Be orderly.

In cooperative conversation, it is reasonable for the participants to follow these maxims and we expect them to do so.
But that need not always be the case. A conversational participant can:

e Violate a maxim, in which case he may mislead the hearer.
e Opt out of the Cooperative Principle, and make it clear that he is not going to cooperate in the conversation.
o Be faced with a clash, when different maxims require conflicting behavior.

o Flout the maxim, in which case the speaker blatantly violates the maxim.

The last item typically gives rise to conversational implicature. The hearer must reconcile what the person said with
the assumption that the speaker is observing the Cooperative Principle.

5.1.3 Conversational implicature

Grice then says what a conversational implicature is:

A man who, by (in, when) saying (or making as if to say) that p has implicated that ¢, may be said to have
conversationally implicated that ¢ provided that (1) he is presumed to be observing the conversational
maxims, or at least the cooperation principle; (2) the supposition that he is aware that, or thinks that, ¢ is
required in order to make his saying or making as if to say p (or doing so in those terms) consistent with
the presumption; (3) the speaker thinks (and would expect the hearer to think that the speaker thinks) that
it is within the competence of the hearer to work out, or grasp intuitively, that the supposition mentioned
in (2) is required.

So if we are told “John is at work or is in the yard” in response to a query about the location of John, the interlocutor
seems to violate the first maxim of quality because the assertion is less informative than is required. However, if that
is all the speaker knows, this apparent violation of a maxim is a flouting and the hearer should be able to infer that the
speaker does not know where exactly John is. This sort of reasoning is reminiscent of non-monotonic reasoning with
the assumption that the speaker is cooperative!.

I'We do not however model all of this behavior in the current work.
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5.2 Theproblem

Our main concern here is to model the making and withdrawal of implicatures in real time as a conversation proceeds.
As mentioned above, implicatures are not entailed by the utterance, and so it is possible that one makes an implicature
based on the assumption the speaker is following the Cooperative Principle and later find that that implicature has to
be withdrawn when information is available if we find that the speaker is not following the Cooperative Principle. For
instance, if one asks whether it rained last night, the response might be “The grass is wet . . .” from which one derives
the implicature that it did rain, but if the speaker continues with . . . but the street is not wet.”, it seems false that it
did rain and the implicature has to be withdrawn. This is another instance of a mistake: the initial belief that it did rain
was mistaken and we detect that mistake once we learn that the street is not wet. If the grass is wet and the street not,
then it is likely that it did not rain and the sprinkler was on.

As conversation proceeds, we make many implicatures and some of them turn out to be mistaken. The KB of an agent
will vary over time with the addition and removal of implicatures. It is this change in the beliefs of the agent over time
that we want to model, rather than the final state of the KB after all the information has been processed.

This work is similar to the work on presuppositions discussed earlier. The utterances in the conversation invite us to
make some assertions that turn out to be false. In this case though, there is no need for our solution to maintain an
explicit context for the conversation.

‘We illustrate the problem and our solution to it with two simple examples.

521 Examplel

Consider the following conversation fragment:

(A) Kathy: Aretherosesfresh?
(B) Bill: They arein thefridge.
(C) Bill: But they’re not fresh.

We aim to model Kathy’s reasoning in response to Bill’s utterances. After utterance (B), Kathy concludes that the
roses are fresh. If Bill is being cooperative and obeying the maxim of relevance, then the fact that the roses are in the
fridge is relevant to Kathy’s question about their freshness. The possible link is that fridges are typically used to keep
things fresh and so Kathy can conclude that Bill wants her to conclude that the roses are indeed fresh.

However, at (C), Bill says that they are not fresh. This is not consistent with the implicature that Kathy made and since
the implicature is not entailed by (B), Kathy rejects it and prefers (C) and concludes that the roses are not fresh.

Kathy’s belief about the roses’ freshness starts out being unknown, then true, then false. The problem is to model this
change in belief as it happens.

522 Example2

(A) Kathy: Aretherosesfresh?
(B) Bill: They arein thefridge.
(D) Bill: But they areold.

As in the first example, (B) implicates that the roses are fresh. But then (D) seems to implicate that they are not fresh.
Kathy may then decide to go with either of the implications or none of them. This seems to depend on Kathy’s belief
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about the power of fridges to keep old roses fresh. If she has no opinion on that, then she will have no opinion on the
freshness of the roses either after this dialog. A further analysis is that Bill himself does not know whether they are
fresh since otherwise he would have said so to obey the maxim of quality. He is giving all the relevant information he
has and is letting Kathy come to her own conclusions.

5.3 Our solution

Our solution to this problem is similar to the solution for the presupposition case as far as handling mistakes is
concerned. The problem-specific processing and the representation of the information is different.

5.3.1 Representation

We describe the operators and formulas used in this logic.

Operators

The logic used here was different from the one used for the presupposition work and included a number of new
operators:

e => isused to specify implications.
e & isused for conjunction.

e (@ isused to state the time at which a formula is taken to be true. ¢@10, for instance, expresses that ¢ is taken
to be true at step 10.
e ? Thisis a unary predicate which is true if its argument is in the KB at the time that it is computed.

. This is similar to “?” except that it searches for an exact match of its argument in the KB. Unification is
not allowed. So that ?p(a) is true if p(X) is in the KB (recall that X is a variable) but ‘p(a) is not.

e  This is used to associate formulas to “contexts” or groupings of formulas. Formulas are grouped together
according to their purpose. bel : ¢, for instance says that ¢ is a belief whereas imp : ¢ represents that ¢ is an
implicature. The grouping used are:

bel for beliefs.
imp for implicatures.
mt for facts about the control of computation.
qyn(¢) is used to compute the significance of ¢ when this is the answer to a yes-no question.
rel(P) for formulas that are relevant to P.
time for time facts.

utt for utterances.
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Predicates

There are also a number of reserved predicates which we list here:

contra contra(p, Q) expresses that the logic has found a direct contradiction involving p.
eval This is used to compute prolog programs.
inform i nform(x, y, p) means that agent Xinforms agent Y of fact p.

kill This is used to disinherit a formula. If Ki | | (p) is asserted in the KB, p will not be present at the next step
unless there is a new derivation for it.

now now(t) indicated that the time is now t .
g-yes_.no g_yes_no(Xx, Yy, p) represents thatX asksy whether p is true.
respond repond(x, Yy, p, Q) means that X responds toy’s query g with p.

whoami whoami ( x) says that the agent we are modeling is X.

Someformulas
We present some formulas and their intended meaning to clarify the syntax:

e time:now(1l) says thatthe current step is 1
e bel:roses(rl1) says thatthe agent believes that there are roses called r1

e utt: (g_yes_no(kathy, bill,fresh(rl)) @) says that the agent believes that there was an
utterance at time 1 which was a yes/no question from Kathy to Bill about whether 1 was fresh.

5.3.2 Axiomsused.

The first set of axioms for inheritance, contradiction detection and resolution, and the clock rule are likely to be
common to a wide variety of problems described using this representation.

% i nheritance rule: we inherit anything that is not killed and is not
% itself a kill

(mt: (((C"(QX) &("(kl (X)) &eval(\+ (Q=tinme)) & (?(k2(Q))
&eval (\+ (X =k2(_))) &eval(\+ (X =kill(1)))) => (Q X)) @.

%ontradi ction detection rule: when we detect a contradiction, we add

% a contra belief at the next step and we kill both contradictands
% and the contra belief itself (so these don't propagate)
(nt: (" (QX) & (Wnot (X)) & (?(kill(not(X)))))
nt:(kill(not(X)))))@.
(nt:(("(QX) & (Wnot (X)) & (?(kill(contra((QX), (Wnot(X))))))) =>
nt:(kill(contra((QX), (Wnot(X)))))))@.
(nt:(("(QX) & (Wnot (X)) & (?(kill(contra((QX), (Wnot(X))))))) =>
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nt:(contra((Q X), (Wnot(X)

))))) @.
(mt:(((QX) & (Wnot(X) & (2(kill

(X)) = n:(kill(X)))@.

%ontradiction resolution rule: we prefer utterances(beliefs)

(m:((contra((inmp:X), (bel:Y))) => (bel:Y)))@@.
(m:((contra((bel:Y), (imp:X))) => (bel:Y)))@.

% the clock rule
(mt: (("(time:now(T)) & eval (Tl is T+1)) => tinme:(now(Tl)))) @.

%the initial tine

(time: (now(0))) @.

The next set involves specific rules for the implicature problems:

% usual ly when X informs us of P, we believe P.
(bel: (( (informX, Y, P@) & whoam (Y) & (?(ab2(X, Y, P)))
) => (bel:P))) @.

% di rect response to a yes-no question- we believe the response
(bel: (( (respond(X, Y, P, g_.yes_ no(P))@) & whoam (Y) & (?(ab2(X, Y, P)))
) => (bel:P))) @.
(bel: (( (respond(X, Y, not(P), g_yes_no(P))@) & whoam (Y) &
(?(ab2(X, Y, P))) ) => (bel:P))) @.

% i ndirect responses to yes-no questions- we try to figure what it neans
(bel: (( (respond(_, X, P, g_yes_no(Q)@) & whoam (X) & now(T) &
eval (\+ P=0Q &eval(\+ P=not(Q))
=> (qyn(Q:P) )) @.

%if we have figured the answer, we make it an inplicature and we stop
%trying to find out what the response nmeant. In this case, we just |ose
% all the irrelevant beliefs we cane across.

(bel: (( “((ayn(Q):P) & (?(k2(qyn(Q))) & eval (P = Q) =>inp:P))@D.

(bel: (( “((ayn(Q):P) & (?(k2(qyn(Q))) & eval (P = Q) =>

n:k2(qyn(Q) ))@.
(bel: (( “((ayn(Q):P) & (?(k2(aqyn(Q))) & eval (P = not(Q)) => inp:P)) .
(bel: ((C “((ayn(Q):P) & (?(k2(aqyn(Q))) & eval (P = not(Q)) =>

nt:k2(qyn(Q) ))@.

Finally we have rules that are specific for the examples under consideration:

%things in fridges are cold

(bel: ((‘*(Zinfridge(X)) & (?2(k2(2))) & (?(not(cold(X))))) => Z:cold(X))) @.

%things in fridges are small
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(bel: ((“(Zinfridge(X)) & (?2(k2(2))) & (?(not(small(X))))) => Z:small (X))) @.

% things in fridges are dead
(bel: ((*(Zinfridge(X)) & (?2(k2(2))) & (?(not(dead(X))))) => Z:dead(X))) @.

%things in fridges are edible
(bel: (("(Zinfridge(X)) & (?2(k2(2))) & (?(not(edible(X))))) =>
Z:edible(X))) @.

% col d roses are fresh
(bel: ((roses(X) & ‘(Zcold(X)) & (?2(k2(2))) & (?(not(fresh(X)))))
=> Z: fresh(X))) @.

(bel: (whoam (kathy))) @.
(bel: (roses(rl)))@.

The utterances considered are also represented in the same way. These are presented later.

533 Examplel
For example 1, we have these additional formulas:

% utterances

% kat hy asks bill whether the roses are fresh or not at tine 1
(utt: (g_yes_no(kathy, bill, fresh(rl))@))@a.

% bill responds to kathy’'s question by saying that the fridges are in the
% fridge (at tine 2)

(utt: (respond(bill, kathy, infridge(rl), q_yes_no(fresh(rl)))@)) @.
% then, at time 7, bill tells kathy that the roses are actually not fresh.
(utt: (informbill, kathy, not(fresh(rl)))@))@.

Some of the output trace for this case is presented below.

Our implementation in active logic produces the positing of an implicature followed by its cancellation as we move
from (B) to (C). There are several steps between (B) and (C) and several more after (C). The output trace below shows
that at step 9 (which occurs after the utterance (C)) a contradiction briefly appears. Then it is withdrawn. At this point
Kathy has no belief at all whether or not the roses are fresh. Then the belief that they are not fresh is restored using
a rule that expresses the maxim of Quality. Below we reproduce and comment in more detail on some of the output
trace for this example.
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Step 1

time:now 1)

bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

Kathy asks (A) Are therosesfresh?

Step 2

utt: (g_yes_no(kathy,bill,fresh(rl))@)

bel : whoani ( kat hy)

bel : roses(r1)

time: now 2)

utt: (respond(bill,kathy,infridge(rl), g_yes no(fresh(rl)))@

Bill says (B) They arein thefridge.

Step 3

rel (fresh(rl)):infridge(rl)

bel :infridge(rl)

time: now 3)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

Kathy starts to think about what Bill’s response means. The proposition rel(fresh(r 1)):infridge(r 1) means some thing
like: With regard to the question whether or not fresh(r1) the fact that infridge(r 1) could be relevant. The active logic
system, in the course of its normal inheritance procedure will try to fire any rules that it can using infridge(r1). This
is our simplified model for Kathy’s thinking about or trying to figure out the relevance of Sill’s indirect answer.

Step 4

utt: (g_yes_no(kathy,bill,fresh(rl))@)
bel : whoani ( kat hy)

bel : roses(r1)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
rel (fresh(rl)):infridge(rl)

time: now 4)

bel :infridge(rl)

rel (fresh(rl1)):cold(rl)

rel (fresh(rl)):small (r1)

rel (fresh(rl1)):dead(rl)

rel (fresh(rl)):edible(rl)
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Nothing interesting yet. Kathy is still thinking. She considers the relevance of the temperature, size, and edibility of

the roses.

Step 5

rel (fresh(rl)):fresh(rl)

time: now 5)

rel (fresh(rl)):edible(rl)

rel (fresh(rl1)):dead(rl)

rel (fresh(rl)):small (r1)

rel (fresh(rl1)):cold(rl)

bel :infridge(rl)

rel (fresh(rl)):infridge(rl)

utt: (respond(bill,kathy,infridge(rl), g _yes no(fresh(rl)))@)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

Here at step 5 Kathy finds that the roses are fresh. That is the import of
rel (fresh(rl)):fresh(rl).

Inferring either this or

rel (fresh(rl)):not(fresh(rl))}

will stop Kathy’s search for an answer to her yes—no question.

Step 7

time: now7)

i mp:fresh(rl)

bel :infridge(rl)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl))) @)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

utt: (respond(bill, kathy,not(fresh(rl1)), g_yes_no(fresh(rl))) @)

Now Bill says (C) Theroses are not fresh.

Step 9

time: now 9)
n:kill(fresh(rl))
nt:contra(inp:fresh(rl), bel:not(fresh(rl)))
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nt:kill(contra(inp:fresh(rl), bel:not(fresh(rl))))
nt:kill(not(fresh(rl)))

bel :infridge(rl)

bel : not (fresh(r1l))

i mp:fresh(rl)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

utt: (respond(bill, kathy,not(fresh(rl1)), g_yes_no(fresh(rl))) @)

Kathy believes what Bill says, bel:not(fresh(r 1)) but now detects a contradiction. So neither the implicature imp:fresh(r 1)
nor this belief will inherit to the next step.

Step 10

utt: (respond(bill, kathy,not(fresh(rl1)), g_yes_no(fresh(rl))) @)
utt: (g_yes_no(kathy,bill,fresh(rl))@)

bel : whoani ( kat hy)

bel : roses(r1)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl))) @)
time: now 10)

bel : not (fresh(rl))

bel :infridge(rl)

But the belief that the roses are not fresh is derivable from utt:(inform(bill kathy, not(fresh(rl)))@?7) at step 9
because Kathy believes everything Bill said. However, the implicature from (B), that the roses are fresh cannot be
rederived; an utterance initiates a search for relevance and hence implicature only at the step it is perceived. In active
logic we spread the reasoning over a sufficient number of steps to, so to speak, divide and conquer some of the complex
thinking that happens during discourse understanding.

534 Example2

The common background includes the defeasible belief that old roses are not fresh. We saw in the first example that
the implicature at (B) was based on defeasible beliefs about things in fridges and about cold roses. This means that we
could have a Nixon Diamond[161] after (D); there will be two (defeasible) implicatures: one that the roses are fresh
and the other that they are not fresh. This is what happens in our trace as we pick up Kathy’s thinking at step 7.

Step 7

time: now7)

i mp: fresh(rl)

bel :infridge(rl)

utt: (respond(bill,kathy,infridge(rl), g _yes no(fresh(rl)))@)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

utt: (respond(bill,kathy,old(rl), g _yes_no(fresh(rl)))@)
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Here is where Bill says (D) They are old.

Step 8

utt: (respond(bill,kathy,old(rl), g _yes_no(fresh(rl)))@)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

bel : whoani ( kat hy)

bel : roses(r1)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
i mp:fresh(rl)

time: now 8)

bel : ol d(r1)

bel :infridge(rl)

rel (fresh(rl1)):old(r1)

As before, Kathy begins to think about the relevance to her question of Bill’s utterance. So she now thinks that the age
of the roses is relevant to her question rel(fresh(r1)):old(r1). She will begin searching for what that relevance could
mean.

Step 9

rel (fresh(rl)):not(fresh(rl))
time: now 9)

rel (fresh(rl1)):old(r1)

bel :infridge(rl)

bel : ol d(r1)

i mp:fresh(rl)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
bel : roses(r1)

bel : whoani ( kat hy)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

utt: (respond(bill, kathy,old(rl), g _yes_no(fresh(rl)))@)

She happens to discover the relevance after only one step. It is that the roses are not fresh rel (fresh(r 1)): not(fresh(r 1)).

Step 10

utt: (respond(bill, kathy,old(rl), g _yes_no(fresh(rl)))@)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

bel : whoani ( kat hy)

bel : roses(r1)

utt: (respond(bill,kathy,infridge(rl), g _yes _no(fresh(rl)))@)
i mp:fresh(rl)

rel (fresh(rl1)):old(r1)

nt:kill(not(fresh(rl)))

n:kill(contra(inp:fresh(rl), rel(fresh(r1)):not(fresh(rl))))
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nt:contra(inp:fresh(rl), rel(fresh(rl)):not(fresh(rl)))
n:kill(fresh(rl))

time: now 10)

bel : ol d(r1)

bel :infridge(rl)

nt:k2(rel (fresh(rl)))

rel (fresh(rl)):not(fresh(rl))

Here the contradiction is discovered between the the implicature from (B) and the more recent implicature from (D).
So both are marked Kill so they will not be inherited at the next step.

Step 12

utt: (respond(bill, kathy,old(rl), g _yes_no(fresh(rl)))@)

utt: (g_yes_no(kathy,bill,fresh(rl))@)

bel : whoani ( kat hy)

bel : roses(r1)

utt: (respond(bill,kathy,infridge(rl), g _yes no(fresh(rl)))@)
time: now 12)

bel : ol d(r1)

bel :infridge(rl)

Here Kathy has reached a state where she cannot infer anything helpful about her original question. It worked out this
way because Bill said things which only implicated that the roses were fresh or not fresh. But both implicatures were
cancelled. Active logic can allow one to infer again what one has just withdrawn. But in the model we have designed
the search for the relevance or import of an utterance only begins at the step immediately following the perception
of the utterance as relevant to a question. This captures the fact that it is utterances, not beliefs, that give rise to
implicatures. It also captures the idea that cancellation just eliminates the implicature; any new implicature would
have to wait for a new utterance. However, we are not prepared to say that this strategy is generally applicable.

5.4 Discussion of the solution

This problem, the solution and the representation of the solution differ from those in the presupposition problem case.
However, the part of the solution relating to mistakes is similar.

In this example as well as the previous one, the detection of a mistake occurs when a direct contradiction is found.
This implies that there is a mistake somewhere, but it is not clear what the mistake is. This logic, just like that one for
the presuppositions, prevents the potentially mistaken formulas from being used to derive new formulas. The way it
does it in this case though, is to disinherit it so that it does not appear in future steps.

The specific strategy to decide which belief is mistaken depends on the domain. In this implicature domain, the
strategy is simply to prefer beliefs over implicatures. This is expressed as:

(m:((contra((inmp:X), (bel:Y))) => (bel:Y)))@@.
(m:((contra((bel:Y), (imp:X))) => (bel:Y)))@®.

If there is a contradiction between an implicature X and a belief Y, then Y will be added at the next step. Since once
a contradiction is noticed the formulas are disinherited, the implicature is not present in the next step.
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At this point, we have discovered what the mistake is: it is the implicature. This is not explicitly asserted in the
database in this simple approach to mistakes. It is sufficient, in this example, for the mistaken beliefs not to be present
in the subsequent steps and that is accomplished automatically.

In the second example, we have a contradiction between two implicatures. In our simple approach, there is no way to
resolve such a contradiction so both contradictands remain disinherited. In this case we have not identified what the
mistake is: whether it is that the roses are fresh or that they are not fresh.

Once again, if there had been actions taken on the basis of the mistaken beliefs or if we had recursive mistakes, it
would have been necessary to explicitly assert and reason about the mistaken beliefs. The example, as the previous
one, shows, however, that in cases where the behavior is limited, one can get by with a much simpler way to handle
mistakes.

55 Related work

55.1 Lascarides and Oberlander

[100] use a system of default rules to infer implicated temporal relations in discourses. One of their domain problems
involves the conflict between rules that reflect the Gricean manner maxim and rules that reflect the Gricean relevance
maxim. (They may or may not wish to characterize their rules in this way.) They employ what seem to be well
motivated methods for prioritizing default rules in order to resolve conflicts. For the examples we have discussed our
system also resolves some conflicts. Implicatures give way to literal assertions and conflicting implicatures lead to
suspension of belief. It may be interesting that some of this behavior in our system emerges from a combination of
other behaviors that embody Gricean maxims and principles of rationality. We have not yet investigated whether and
how we would implement more explicit prioritization in active logic. There are, of course, important differences as to
how cancellation works and how the effects of, say, prioritized default rules arise. As far as we can tell the methods
under study by Lascarides, Oberlander, and Asher do not model the drawing and later cancellation of implicature as
we do. Recalling our first example, the difference we emphasize between the dialog (A), (B), (C) and the dialog (A),
(O), (B) is not important to theirs, as well as perhaps most other, nonmonotonic theories.

55.2 Green and Carberry

[70] consider task oriented dialogs. Their treatment of yes—no question dialogs influenced our relevance rules in
Figure 2. They and others use abductive inference to constrain the search space when trying to derive a direct answer
from the utterance of an indirect answer. We think we could have used abductive inference for the same purpose in our
system. We chose instead to work with a perhaps less efficient strategy. Given a relevant proposition one simply looks
for rules in which that proposition can be instantiated. Then one generates inferences from those rules until a direct
answer is found (if it is). This method may have some cognitive validity. Perhaps some indirect answers are more
difficult to appreciate than others and perhaps that is because people only spend a short time trying out inferences that
combine what was said with what they know. We have nothing more to say beyond these speculations at this time.

As far as active logic goes, we could attempt to subsume any or all of the above methodologies. That is, we could
attempt to implement their methods in active logic. This would be an interesting project.
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5.6 Conclusion

This example although quite different in implementation from the presupposition work illustrates that the same ap-
proach to mistakes can be used in both cases. This adds evidence to the notion that there could be a general mistake
handing algorithm that can be used on a wide range of problems. The specifics of the algorithm are to be provided
by the domain under consideration, however, just as the behavior of the domain has to be specified. The behavior of
an agent in case of mistakes can be seen as a more thorough representation of the domain than a representation that
ignores mistakes.
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Mistakes in agents
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Chapter 6

Mistakes in agents—an introduction

In the previous part, we have seen the design and implementation of software systems that detect specific kinds of
mistakes in language processing. In both examples, the software was focused on a narrow domain and had special data
structures and procedures to deal with mistakes. The dialog manager application was implemented in a more general
framework but the approach to mistakes was still, to some extent, specific to that application.

We now turn to agents that are not as domain specific as those, towards a design for a generic agent that can deal
with mistakes appropriately in any domain given an adequate description of that domain. This description will include
information as to how to react to mistakes.

The first step is to generalize the treatment of mistakes we have seen earlier. The only mistakes that concerned the
logic in the previous applications were mistaken beliefs. Each of these applications had a different way of to handle
these mistakes. We now want a general way to express the choice of which among a set of possibly mistaken beliefs
is indeed mistaken. We also want a general way of repairing the KB once the mistake has been identified. These
should be domain-independent and should be usable whatever domain we wish to model. Our solution is to use a
non-monotonic language to specify defaults and preferences among the defaults. Domain information that is uncertain
is to be expressed as defaults and the choice between such conflicting beliefs is to be expressed as preferences. The
algorithms developed to apply defaults and handle the contradictions that signal mistakes depend only on the structure
of the reasoning and not the domain.

These algorithms and representations were then implemented as an application of Alma. We discuss that implementa-
tion in some detail including the deviations between the algorithms and the implemented procedures in Alma.

The fact that the logic uses a non-monotonic language and has rules to apply defaults suggests that it can be used as
some kind of non-monotonic logic. Ours is an implementation rather than a formally defined logic. Other characteris-
tics that set our implementation apart from non-monotonic logics are that it is based on mistakes, that it is computable
and that the answers it gives can change with more information and even with time.

We do not (yet) have a formal semantics for the system which makes it harder to compare with other non-monotonic
logics. We have instead collected a set of examples of non-monotonic reasoning from the literature and organized
that into a test-suite for non-monotonic reasoners. We tested out implementation against that test-suite and for those
problems that were expressible and that could be computed in our formalism, intuitive answers were obtained. A re-
lated issue is whether intuition (even collective intuition) is good enough a measure of the goodness of non-monotonic
logics. This led us to review some work on experiments on human default reasoning.

Finally, we sketch the design of a general agent that is meant to handle mistakes. Contrary to the cases considered
earlier, we now have to deal with mistakes in intentions and actions as well as mistakes in beliefs. The propagation
of mistakes from beliefs to intentions to actions and conversely becomes more prominent in this setting. We pay
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particular attention to the fact that the agent will need to act in the world. Having the agent logically decide each
action it will take seems rather unrealistic given the complexity of logical reasoning. So we look towards a a hybrid

system of a plan execution architecture coupled with a logic that will look over the execution and intervene in case of
mistakes.



Chapter 7

Towards a time-situated non-monotonic
reasoner

The above two problems dealt with essentially similar problems, though with different representations. In this chapter,
we consider a more uniform approach to these sorts of problem. While there are particularities in the domain that
need to be represented differently in each problem, there is a common approach to handling mistakes. In both cases,
mistakes are detected by a contradiction in the KB and following that, a problem specific set of axioms is used to find
the mistake and the mistaken formulas are then removed. We aim to find a general way to express the preference for
the formula taken to be true and general procedures to do repair of the KB. We aim for these to be generally usable
in case of mistaken beliefs. The formalism we choose to represent this sort of information is that of non-monotonic
logics. We therefore develop an active logic based reasoner that uses the language of non-monotonic logics to deal
with mistakes and beliefs in a general way.

We begin in the next section by considering in more detail the similarities and differences between the two above
applications. From that information, we consider how the techniques used could be generalized and derive desirable
properties of a system that would be a generalization of the above two systems. Next we review non-monotonic logics
and examine how the language of non-monotoniclogic can be used to fulfill the expressive requirements of our desired
system. We then describe the language our system uses, followed by the rules of inference of the system. We then
focus on how that system handles mistakes. Since the language of the system is a non-monotonic one, we next consider
the extent to which our system could be used to do general non-monotonic reasoning. We end by reviewing some of
the work in this area.

7.1 Similaritiesand differences

In this section we bring out in more detail the similarities and differences in the above two examples. Inference is done
in a similar way and although the approach to mistakes is similar, the details are different.

7.1.1 Detection of mistakes

In both cases, mistakes are detected through something like a contradiction between formulas in the KB. These are
not direct contradictions of the form ¢ and —¢ but are determined by the representations chosen for each example. In
the presupposition case, the contradictions are of the form assert (p) and presup(not (p)). These formulas
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are part of the context of the conversation, which is a list of formulas. In the implicature case, the formulas that are
contradictory are of the form bel : p and i nmp: (not (p)). The formulas are now explicitly tagged to be part of
contexts.

The essential circumstance that we want to detect is the same in both cases: the presence of ¢ and —¢. However, the
specific details of the problem and the representation chosen prevent us from using these direct forms in the KB.

7.1.2 Consequences of contradictions

In both cases, the detection of a contradiction indicates a possible mistake and the consequences of the possibly mis-
taken formulas are prevented from being used in further computations. In the presupposition case, once a contradiction
has been derived, these formulas are labeled SUSPECT and since there are no rules for doing inference with SUSPECT
formulas, there is no further inference from these. The solution to the implicature problem labels the possible mistakes
with ki | | . This prevents the inheritance of these formulas from one step to the next which effectively prevents further
inference from these formulas.

Both approaches accomplish the same thing. However, in the presupposition case, the formulas are still part of the
beliefs of the agent, but in a suspect state. In the presupposition case, they are not part of the beliefs. Given that history
is available, it is not clear that the beliefs have to be maintained in the current state as in the presupposition case, except
perhaps for efficiency. On the other hand though, the system is likely to get less efficient when its KB grows large.

7.1.3 Resolving contradictions

Resolving the contradiction mainly involves determining which of the contradictands is mistaken. The approaches
are similar in that there is a preference for a class of formulas over another. In the implicature case, formulas of the
form bel : p are preferred to those of the form i np: not (p) . In the presupposition case, formulas assert (p)
are preferred to formulas of the form pr esup(not ( p) ) . This preference is expressed as axioms in the KB. In the
implicature case they are:

(m:((contra((inmp:X), (bel:Y))) => (bel:Y)))@.
(m:((contra((bel:Y), (imp:X))) => (bel:Y))) @

—~

And in the presupposition case they are represented as Prolog rules:

prefer(Cl, C, Cl):-
Cl::fornula(assert(_)),
C2::formul a(presup(_)), !.
prefer(Cl, C, Q):-
C2::fornul a(assert(_)),
Cl::formul a(presup(_)), !.

Here too, the representation chosen for each case influences the specification of the preference. These preferences
are further restricted in that we can only arbitrate between formulas such that each comes from a rather large class
of formulas. We cannot for instance handle the contradiction between two implicatures, for instance, i nMp: p and
i mp: not ( p) in the implicature case.
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714 Miscelaneousdifferences

The implicature approach explicitly inherits formulas at each step through an inference rule. The presupposition
approach retains the state of the KB from step to step, implicitly inheriting all formulas. The data-structures used to
represent the domain information is different and that affects the representation of the mistake handling procedures.
These differences are not essential for the handling of mistakes but preclude a uniform approach to the problem to the
problem.

7.15 Summary

In both cases, the method of handling mistakes is similar, but the details of the representation and therefore of the
processing differ. Mistakes are detected through the presence in the LB of formulas of a specific kind. Once they
are found, they are prevented from being used in further inferences. The mistake is identified based on a preference
between classes of formulas asserted in the KB. These implementations are specific to the problem that they are meant
to solve and don’t seem to be easily generalizable.

7.2 Generalizingthisbehavior

We would like to generalize the procedure for dealing with mistaken beliefs. We want to have a uniform representation
of the problems so that the agents can use the same algorithm to deal with mistakes of that kind for different domains.

The desirable behaviors are:

1. Detection of contradictionsIf each domain has its own representation of contradictions, we can’t have a general
way of detecting or handling mistakes. A solution is to make the representation the simplest possible so that
instead of contradictions between assert (p) and pr esup( not ( p) ) in lists of formulas or between bel : p
and i mp: not ( p) , we detect contradictions between g and not ( q) .

2. Choosing mistaken formulas The current method is to verify that the formulas are from different classes.
In the presupposition case, we prefer assert to presup and in the implicature case, we prefer bel : to
i mp: . These are large rigid classes of formulas. This prevents expression of preferences between two different
assert for instance, or if we want to sometimes prefer assertions and sometimes prefer presuppositions. The
approach of expressing preferences between classes of formulas seems sound but the classes themselves need
to have more flexibility.

3. Expression of preferences The preferences themselves are expressed in the KB as axioms that decide what to
do in specific cases of contradictions. If there are many classes of formulas and possibly many combinations
that give rise to contradictions, we will need many axioms expressing these preferences for each possible com-
bination. We don’t want to have to express all this information explicitly. The logic should be able to reason
about the preferences to a certain extent.

4. Defaults and uncertainty Once could argue that all information, except perhaps for logic and mathematics,
is uncertain[106, 67]. It is all subject to being mistaken and there should be no certain information in most of
commonsense reasoning. Practically, however, a good deal of the information we have is typically taken not to
be mistaken. We do believe that the sky is really blue although we are open to the possibility that that is not in
fact the case. This is even more so for the rather limited agent that we are concerned with here.

‘We should therefore be able to distinguish between the certain and uncertain information in each domain. In the
above examples this is done implicitly through the preference formulas: implicatures and presuppositions are
taken to be uncertain. We would like an explicit expression of this uncertainty.
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Eventually, we would like an agent that can consider all of its knowledge as being uncertain and decide dynam-
ically what is and what is not to be trusted at different times. The mistake mechanism should still be useful in
this setting. For now though, we do something much simpler and explicitly flag uncertain formulas.

7.2.1 Propertiesof the system
To summarize the above discussion, the system we want needs to have the following properties:

o A uniform representation of contradictions.
o A uniform approach to resolve these contradictions.
e A way to state that some formulas are usually true and others are always true.

e A way to represent preferences between any number of classes of formulas of any size.
Other requirements of the system that stem from our aim of it being the on-board reasoner of an agent are:

o It should be executable, that is the language should directly specify the behavior of the language.
o It should accept new information as it executes

o It should reason in time.
Some advantages of having a uniform representation are:

e We can have a single mistake-handling algorithm that will be usable for a wide range of problems.
e Any properties we can show for that system will apply to all domains that use it.
e Once we get the representation and algorithms right, it becomes easier to encode other domains.

e We can add capabilities to the agent by simply adding axioms instead of redesigning the agent.

7.3 Using nmr to specify behavior in cases of mistake

The expressive requirements about are found to a certain extent in languages for non-monotonic reasoning[157, 108,
115, 129, 117, 18, 53]: a non-monotnonic reasoning language allows us to express that some formulas are to be taken
as typically true and that some classes of formulas are preferred to others. However, non-monotonic languages do not
typically represent facts about inconsistencies in the KB, neither do they consider KBs that grow in time or become
inconsistent. A further problem with non-monotonic logics is that they are typically non-computable whereas we need
to obtain answers fast enough to keep up with the world. We need to adapt the language of non-monotonic reasoning
so that it fulfills our requirements. The reasoning system that results is different from typical non-monotonic logics.

7.3.1 Non-monotonic logics

Nonmonotonic logics are meant to capture the incompleteness and uncertainty of knowledge in a logic. In contrast
to monotonic logics, the set of consequences of a theory in a nonmonotonic logic does not grow monotonically with
the size of the theory. We might have T' |= ¢, where T' is a theory and T"U T} [~ ¢. This is meant to capture some
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aspects of commonsense reasoning where knowing that Tweety is a bird leads one to conclude that it flies but if one, in
addition, learns that it is a penguin, this leads to a retraction of this conclusion. Details of some non-monotonic logics
are provided below. In the following, we consider a generic non-monotonic language that has defaults and preferences
between the defaults.

7.3.2 Useful features of non-monotonic languages

We would like to use the language of nonmonotonic logics (1) to make a distinction between certain and uncertain
information in the domain axiomatization; (2) express information indicating a preference for beliefs in case we have
contradictions; (3) in certain cases preventing the derivation of the mistaken beliefs in the first place. The language
should provide a uniform way of doing this for a wide range of problems.

Certain and uncertain information

Non-monotonic logics give us a clear way to express certain and uncertain information. Certain information is rep-
resented as first order formulas whereas uncertain information is represented as defaults. The defaults need special
inference rules for their application.

Preferences for resolving mistakes

In the examples above, the procedure to decide which of a pair of contradictands is mistaken was made in a more or
less domain or problem dependent way. Non-monotonic logics can help in that they provide a standard language in
which to express a preference for one formula to another. Two features that we will be using are the assertion that
some formulas are defaults and that some defaults are to be preferred to others. If all the relevant domain information
is encoded in this fashion, we can have a domain independent strategy to find the mistaken formulas. The domain
dependent information as far as mistakes are concerned, is encoded in the same way for all domains.

If we have a mistake that involves a formula that is derived from a default and one that is derived from certain
information, the formula that is derived from certain information is to be preferred and the mistake is the formula
derived from the default. For instance, if the agent believes that Tweety does not fly because it is a penguin (and
penguins don’t fly by default) and also sees Tweety flying with its own eyes (which we consider certain), then it has
to come to the conclusion that Tweety indeed does fly and that its default conclusion was mistaken.

If either of two formulas is mistaken and both are dependent on some (different) defaults, then if we know that one
default is preferred to the other, the mistake is most likely to be with the less preferred default. The agent might believe
that Tweety flies since it is a bird, but also that Tweety does not fly since it is a penguin. Both these beliefs are derived
from defaults, but the default that penguins don’t fly is to be preferred to the default that birds fly, so the mistake is
that Tweety flies.

The language of non-monotonic logics allows us to express easily and generally these choices for resolving the mis-
takes. The language can be used in a a large variety of domains and a standard set of nonmonotonic logic handling
procedures are needed.

Preventing mistakes

In addition to selecting which beliefs are mistaken, non-monotonic logics with their default and preference formulas
can prevent mistakes from happening. If we know for a fact that Tweety does fly, then even if we know it is a penguin
and that the “penguins usually fly” default is applicable, we can refrain from applying this default since we know that
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it is going to be mistaken. Similarly, if a more preferred default has already been applied, we need not apply a less
preferred one that will be removed later. The explicit representations of defaults and preferences is essential for that.

7.3.3 Problemswith non-monotoniclogics

Although non-monotonic languages enable us to express information that is useful in resolving the mistakes, there are
problems with the typical non-monotonic logic that makes them unusable for our purposes. These relate mainly to the
on-board agent logic character that we aim for and that is essential for practical applications.

No time-situatedness

Traditional non-monotonic logics are not time-situated. They can reason about time and in fact do so in the case of
temporal reasoning, but do not reason in time. An on-board logic for an agent needs to reason in time though. It has
to take the passage of time into account in its computations. One important aspect of this is that it needs to make
decisions and act before it is too late. This may mean that there is not enough time to compute the best answers to
queries.

I ncor porating new information

Nonmonotonic logics are typically provided with a static description of the world for them to reason about. In our
case, we have a dynamic set of facts about the world that is fed into the logic. There is never all the information that
will be relevant and new information in constantly coming in that can make previous reasoning invalid. This could
be done in non-monotonic logics by constantly recomputing the logic with new information but that would then be
ineffective. The logic needs to be able to incorporate new and potentially inconsistent information while it is running
and do so efficiently somewhat like belief revision systems [69]

Non-computability of nmr

A feature of non-monotonic logics is that they are generally uncomputable [22, 24]. They are therefore not very useful
for agents that are acting in the world and need to decide now whether Tweety flies or not and are prepared to make
mistakes.

One way to see this is a problem is that we will have to make decisions and come to conclusions before we have
enough information to do so. Knowing only that Tweety is a bird, we will conclude, if necessary, that Tweety flies
even though it could be a penguin and therefore not fly and we don’t know that that is not the case. This simply means
that the agent will be liable to commit mistakes in its reasoning. That is not a problem for us since we are set up to
deal with mistakes. Non-monotonic logics though, are not usually designed for these circumstances.

M eta-reasoning

The mistakes made by the reasoner can be reasoned about if we have a theory about mistakes. To do that in the
same logic that reasons about the domain of interest requires the capability for meta-reasoning. This is not typically
available in non-monotonic logics.

The advice we can obtain from the NMR as to which mistake to prefer can itself be seen as potentially mistaken
information. If it does turn out to be mistaken, we can deal with this mistake just as we deal with any other mistake.
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Seeing the NMR as an incomplete and uncertain specification of what to do when there is a mistake in the KB unifies
this view.

Contradictions

A consequence of the need to make decisions before all relevant information is known and the non-computability
of the logic is that there are bound to be contradictions and inconsistencies in the KB. Non-monotonic logics are
typically based on complete first order logics and therefore the presence of an inconsistency makes all the formulas
in the language derivable. Further the contradictions or inconsistencies cannot be reasoned about or resolved. This
makes such logics unusable for our purposes where mistakes and inconsistencies are expected.

7.4 Language

Since the requirements of our system differ significantly from non-monotonic logics, we cannot use these. We will
however use the language of non-monotonic logics to specify the domains we want to model. We now describe the
non-monotonic language of the logic that we build. The logic is non-monotonic, but it also has various other properties
that are essential to it being used as an on-board logic.

Our language is like a first order language with a new connective representing defaults (), a naming operator that
relates formulas to names, a preference relationship that applies to names of formulas and is intended for defaults.

7.4.1 Thedefault operator

If ¢ and ¢ are formulas, then ¢ <— 1) is a formula. We intuitively understand that as representing that if we believe ¢
to be true and there are no facts that would suggest 1 not to be true, then it is reasonable to conclude that v is true. If
we know of other facts that suggest that —1) might be true, then even if ¢ is true, we may not want to say that 1) is true.
The other relevant facts can be other defaults or first order formulas.

For example, if we have Bird(Tweety) — Flies(Tweety) and we know that Bird(Tweety), we can conclude
Flies(Tweety). If, however, we know that = F'lies(T'weety), then we do not want to conclude Flies(Tweety).
In this case we have a fact, =Flies(Tweety), that suggests that F'lies(Tweety) may not be true. Or if we have
Penguin(Tweety) and Penguin(Tweety) — —Flies(Tweety), that too suggests that Tweety might not fly and
therefore we do not want to apply the default without further consideration (see later).

These formulas can be universally quantified. We then get, for example, Vz Bird(z) — Flies(x). This simply
generalizes the above for each object that we know of. So, given any object, if we know it is a bird and we do not
know anything that would suggest that it might not fly and we can conclude that it flies.

Universally quantified defaults are the way we would typically express regularities in the world: birds fly, pen-
guins don’t fly, summer days are warm and so on. These can then be instantiated to give default instances. Given
SummerDay(z) — Warm(z), we can instantiate that with SummerSolstice so that the default instance is
Summer Day(SummerSolstice) — Warm(SummerSolstice).

We will generally refer to a default a; — (; by ;. «; is the premise of the default and j; is the consequent of the
default. The instantiation of the default with ¢ is referred to as 6;(c). (We sometimes omit the “(c)” and refer to this as
i)
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Applying a default

The logic can apply a default instance é;(c) if «;(¢) is in the KB. The result of applying the default is the addition of
Bi(e) to the KB. If &;(c) is a universally quantified default, we can talk about applying é; to some object a which is
understood as instantiating 6; with ¢ and applying the resulting instantiated default. For instance, we can apply the
instance Summer Day(SummerSolstice) — Warm(SummerSolstice) if Summer Day(SummerSolstice) is
true with the result that WarmDay(SummerSolstice) will be added to the KB.

A default holding

We say that a default 6;(c) holds if «;(c¢) and §;(¢), both are in the KB.

742 Names

Formulas can be assigned names which makes it easier to refer to them later. Referring to formulas is essential for
meta-reasoning and is not usually available in non-monotonic logics. An operator N amed is used for that. The name
of the formula can be parameterized. This allows instances of formulas to have instantiated names. Some examples:

o Named(Bird(Tweety) — Flies(Tweety), TweetyFlies) The name of the formula Bird(Tweety) —
Flies(Tweety) is TweetyFlies

o Yz Named(Bird(z) — Flies(z), BirdFlies(x)) In this case, each instance of Bird(z) — Flies(z) has a
name BirdFlies(x) The default used to conclude that Tweety flies, for instance will be Bird F'lies(Tweety).

o Named(Yz Bird(z) — Flies(z), AllBirdsFly) In this case, the name of instances of the formula are not
specified. This only expresses the name of the quantified default. The instantiated defaults cannot be referred to
by the name specific to the instance in the description of the domain. Instantiation of formulas with parameter-
ized names results in the names too being instantiated.

74.3 Preferences

Preferences between defaults can be expressed using the Prefer predicate. Prefer(N1, N2) says that formula
(default instance) N1 is preferred to N2. The preference is useful to express preferences between defaults that may
be conflicting. If we have two defaults that are relevant to some formula [;, then the preference can tell us which to

apply.

For example, we can have a default instance that if Tweety’s birthday is a summer day, then that day will typically be
a warm day:

Named(Summer Day(TweetyBirthday) — WarmDay(TweetyBirthday), W D1(TweetyBirthday))
On the other hand, if there is a cold front that day, it will not be warm:
Named(ColdFront Day(TweetyBirthday) — —-WarmDay(TweetyBirthday), W D2(Tweety Birthday))

If we know that Tweety’s birthday is a summer day but that there is also a cold front on that day, we can apply neither
of these defaults because there is some other fact that we know that is relevant to the warmth of the day. But if we also
know that

Prefer(W D2(TweetyBirthday), W D1(TweetyBirthday))
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We should be able to use that to conclude ~WarmDay(TweetyBirthday).

Preferences can be quantified, so that Yz Pre fer(W D2(z), W D1(z)) can be instantiated with TweetyBirthday to
give the instance of the preference above.

Preferences, like defaults, are assumed to be provided as part of the domain description.

7.4.4 Inconsistent Default Sets

It is possible to have a set of defaults such that not all of then can hold in the KB at the same time and there is no
preference between them, for instance the Nixon Diamond [161]. The defaults cannot all hold because that would
cause an inconsistency. Because not all the defaults can hold and we have no evidence as to which ones should or
should not hold, we have no opinion about any of the defaults holding. Such a minimal set of defaults that are jointly
inconsistent and between which there are no preferences is called an ID (inconsistent default set). See below for an
example.

745 Defeasible and non-defeasible partsof the KB

The first order formulas and their consequences form the non-defeasible part of the KB. Once a non-defeasible formula
is derived, it is never removed from the KB. Defeasible formulas—those derived from defaults—can however be removed
from the KB in case of mistakes.

7.4.6 Usage

The above features make many new formulas possible in the language. The intended use is illustrated here.

We have a number of named defaults:
Vo Named(Penguin(z) — —Flies(x), PenguinsDont Fly(z))

Vo Named(Bird(z) — Flies(z), BirdsFly(z))

The preference between these can be expressed as:

Yz Prefer(PenguinsDontFly(z), BirdsFly(x))

If Tweety is a penguin, Penguin(Tweety), we will instantiate both defaults with resulting names PenguinsDont Fly(Tweety)
and BirdsFly(Tweety) and the preference instantiated with Tweety is Pre fer( Penguins Dont Fly(Tweety), BirdsFly(Tweety)).
This allows the logic to choose between the contradictory consequences.

Another example:
Vo Named(Quaker(z) — Pacifist(z), QuakerPacifist(z))

Vo Named(Republican(z) — —Pacifist(z), RepublicanNot Pacifist(z))
This time we do not have a preference between the defaults. If we know that Quaker(Nizon) A Republican(Nizon),

we don’t want to conclude that Nixon is or is not a pacifist. The resultis that {Quaker Pacifist(Nizon), Republican N ot Pacifist( N
is an ID. Note that it is the instances that are in the ID and not the general defaults.
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7.5 Rulesof inference

‘We want our inference rules to only allow the derivation of formulas that are to be believed according to the intuitions
presented above. This typically means not applying all the defaults with true antecedents because although a default
may be applicable, there might be a suggestion that the consequent 3 is not true. As seen earlier, these might be
that 1. =4 is derivable non-defeasibly or 2. there is a more preferred default with antecedent that is true and whose
consequent implies -3 or 3. there is a set of defaults with inconsistent consequents and the default of interest is part of
that set. To be sure that we can apply a default, the logic needs to verify these conditions beforehand. These conditions
involve proving that some formula is not provable: in case 1 that =3 is not non-defeasibly provable; in case 2 that
there is no preferred default 6; such that o;; A §; is provable; in case 3 that there is no set of defaults such that they
hold and —/ is provable from them. So these conditions cannot be computed in general. There are two choices: apply
no default or apply a default and detect and repair the possible mistakes. We choose the second approach and therefore
we cannot achieve the aim to only apply defaults that should be applied since we will occasionally apply a default that
should not be applied. We instead now aim to approach the state of having only the defaults that should be applied
applied with enough computation.

7.5.1 Approach

The approach taken is to verify that the required conditions hold in the current state of the KB. This can of course
introduce mistakes since a condition that might seem to be true given the current state of the KB, may not be true
after all because not enough computation had been done at the point the condition was tested. For instance, we might
know that Tweety is a bird and therefore can conclude that it flies, but we might also know that it was born in 1900 but
have yet to conclude that this means Tweety cannot fly. We only consider mistaken beliefs so the mistakes manifest
themselves as inconsistencies in the KB. Inconsistencies are detected as direct contradictions—between ¢ and —¢. The
occurrence of a direct contradiction indicates that at least one default has been mistakenly applied, but not which one.
We then have to identify the mistake and repair the KB.

In each of the cases that we apply a default that should not be applied, a contradiction will be derived. Say we apply
;. If that is a mistake because —3; is non-defeasibly provable, we will eventually prove this and there will be a direct
contradiction. Similarly for the cases of a more preferred default holding and é; being in an ID. Since we assume that
the non-defeasible parts of the domain axiomatization are consistent, defaults and the misapplication of defaults is the
only way contradictions can be obtained. So, we obtain contradictions if and only if we misapply defaults.

The rules that we need to specify then are a default application (DA) rule and a contradiction resolution (CR) rule.
Note that the derivation of a contradiction is a very useful and important event since this is what indicates to the logic
that it has misapplied some default and is therefore mistaken about some of its beliefs.

752 AL rules

The default application rule has to verify that the conditions mentioned above hold. Detection of the direct contradic-
tions is done by the active logic engine which asserts that there has been a contradiction as cont ra(nl, n2, t),
where N1 and N2 are the names of the contradictands and ¢ is the time at which the contradiction was detected. Active
logic also distrusts the formulas and their consequences which would not have been derived were it not for the contra-
dictands. Further computation, including identifying the mistaken beliefs and restoring the true formulas is specified
by the CR rule.
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DA: Applying a default

The rule for applying a default is straightforward. Given a default (instance) é; = «; < ;, if «; is in the KB, we add
(; to the KB unless either of these conditions hold:

e —[; is in the KB and has been derived non-defeasibly. This can be computed by verifying that = is in the KB
and examining its derivation for the presence of any defaults.

o There is some default §; such that Prefer(é;,6;) and é; holds in the KB. This is easy to verify too since the
logic represents the preference relations explicitly and it is easy to verify whether «; and ; are in the KB.

o There is some ID that that default is in. This can be done simply by looking up the IDs recorded by the logic.

With this rule, defaults are not added if it is apparent that there is a stronger reason not to do so. The application of
a default is clearly computable. it mainly involves KB lookups. The cost for this fast default application or jumping
to conclusions is that we may be mistaken. We do not have the assurance that once a default is applied it will hold
forever. But this is a cost we are willing to pay since we can handle the mistakes and the alternative—not to apply the
default unless we are sure it is correct to do so—condemns us to not doing anything.

However, when a default is applied, we also need to verify whether there are less preferred defaults that holds in the
KB and that should not. Taking this approach rather than allowing the contradiction to appear later simplifies the CR
rule and reduces inconsistency in the KB. So another task for the rule is:

o Given that é; has been applied, for each default instance 6, such that Pre fer(6;, 65 ), if 65 holds in the KB, it is
removed and its consequences undone. See later for details of undoing.

The parameterization of the names of defaults with variables in the default itself becomes useful here. Consider the
following example:

Vo Named(Bird(z) — Flies(z), BirdsFly(z)) and

Ve Named(Penguin(z) — —Flies(x), PenguinsDont Fly(z)) together with the preference

V& Prefer(PenguinsDont Fly(z), BirdsFly(z)).

If we apply of PenguinsDontF'ly to Joe, we do not want that to prevent us from applying BirdsF'ly to Fred because
of the preference. This is not going to happen here because the defaults applied are PenguinsDontFly(Joe) and
BirdsFly(Fred) which cannot be the arguments of any instance of the preference.

CR: Resolving contradictions

The other rule that we need is the CR rule to respond to contradictions. These indicate mistakes in reasoning, or more
precisely, mistakes in applying defaults. Once the contradictions are detected, the contradictands and their conse-
quences are distrusted automatically by Alma which results in these formulas not generating any new consequences.
The CR rule needs to find the cause of the mistake and repair it. The repair involves reinstating some formulas and
deleting others. It also serves to detect IDs.

The Alma automatic response reflects a realization that there is a mistake and that the mistaken formula is either of
the contradictands, but the active logic engine is in no position to decide which it is. The first task of the CR rule is to
find out the which of the contradictands is mistaken. This is a diagnostic task that is compiled into the inference rule.
This is possible since there are just a few ways that this could happen.

From the default application rule, we can see that a clash among defaults that have preferences among them will not
result in a contradiction because the less preferred default is removed when the other is added. Therefore the only
possibility is an ID: a set of defaults is jointly inconsistent and such that there is no preference among these defaults.
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The problem then is to decide from all the defaults involved in the inconsistency, which are those that are to be taken
to be in the ID. We need to find the minimal set of such defaults. Note that the ID could be a singleton set in which
case this is a default the negation of whose consequent is obtained non-defeasibly from the KB.

Computing I Ds The defaults involved in the inconsistency are simply the defaults appearing in the derivation of that
inconsistency. If there are multiple derivations of some formulas, we might get several sets of defaults. Defaults not
appearing in the derivation are not related to the contradiction and are of no concern.

The sets obtained need not be minimal sets. Assume we have a contradiction between ¢ and —¢ and the defaults in
the derivation of ¢ are ég and é; and for —¢, there is just one default, 65, involved. If §; depends on &y for it to hold,
that is 8g is in the derivation for 31, then §; cannot be in the ID since once we assume é; holds, the inconsistency is
present. The ID consists of §; and §5. In general then, we identify the IDs as the defaults that are the closest to the
contradictands—the “leaf defaults”. This can easily be computed from the derivation tree. The IDs are then asserted in
the KB.

There is no problem of getting too small a set of defaults in the ID since the leaf-defaults include the first ID on every
branch of the derivation for the contradiction. Those defaults not included are used to derive the conditions that allow
the defaults in the ID to hold. These defaults, by themselves, are not directly involved in the contradiction and should
not be included in the ID. As long as the premises for the defaults in the ID hold, whether this is though some default
or not, we will get the inconsistency. Other defaults not on the derivation tree are not involved in the contradiction
either. So the IDs computed are not too small.

The computation of the ID can also be mistaken. It may be non-minimal because a default included might not be
relevant to the contradictand. Assume [ is a contradictand which is obtained from Fy A 81 which in turn was obtained
from 3y and ;. According to the procedure described above, both §; and §; will be in the ID, but §; is irrelevant to
the contradiction. Since we only use 7 to get Fy A 1, from which we then re-derive 3g.

The solution is to try to prove that subsets of the consequents of the IDs we computed are inconsistent using only
non-defeasible formulas. If any of these proofs succeeds, the subset is an ID and the previously computed one was
mistaken. The new ID could also be mistaken though and similar proofs are started. If none of the proofs ever succeed,
we have a minimal ID. However, the logic can never be sure of that.

These proofs are done in parallel with the usual computation of the logic and we do not wait for them to succeed or
fail before going on with using the ID.

TheCRrule
Therefore, when a contradiction is found, the CR rule does the following:

1. Find the leaf defaults.

2. If there is just one, undo the effects of detecting the contradiction and undo the application of that default. In
this case, there is just one default and the negation of its consequence is derived non-defeasibly. This condition
is verified by the DA rule before applying a default and this default instance will therefore not be subsequently
applied.

3. If there are several leaf defaults, undo the effects of the contradiction detection rule and undo the application of
the leaf defaults. Further, record the set of distrusted formulas in an ID and start proofs to look for subset IDs.
If any of these succeeds, undo the distrust of the defaults that are in the ID and take this to be a new ID.

Undoing consequences

In the above, there is the need to undo the consequences of some action at several points which is where the con-
sequences of the mistake get repaired. The consequences are the actions taken in the KB—addition or deletion or
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distrusting of formulas. We assume that these actions are recorded in the Alma history and that they are accessible
given the formula. The aim of the repairs in this domain is to remove formulas now believed to be false from the
KB and to add the true formulas that were removed (or ensure that they can be later added) because of the mistake.
These operations should be done recursively on the consequences of the formulas added or deleted. There are some
complications however which we address now.

Not deleting everything added In undoing the addition of formulas, the general rule is that if some formula depends
on a formula now believed to be false, then that formula too is false. This is correct generally, except for special
cases as the cont r a formulas or other historical formulas. The cont r a formula expresses that there has been a
contradiction at time t . Even if we do not believe the formulas anymore, the fact that there was a contradiction still
holds and we should not delete that Cont r a assertion. One would in general do this by reasoning about each of the
formulas to decide whether it is false or stays true.

In the case of this logic though, since there are a small fixed set of such cases, we can compile this reasoning into
the procedures for undoing consequences so that the cont r a formulas stop the recursive undoing. This reduces the
flexibility of the mistake processing but increases efficiency. The reduction of flexibility is not important if we reason
in the same system, but if we want to change the way the reasoning is done, that may be important.

Undoing undoes Since the belief that there is a mistake might itself be mistaken, we might need to undo some previous
undoes. This does not present special problems except that all the actions done as a result of the previous undo should
be recorded and those actions undone.

MultiplederivationsIf the default application to be undone has a consequence ¢ but ¢ is also independently derived,
then ¢ and its consequences should not be deleted. We can think of adding or deleting derivations rather than formulas.
Then, it there are no more derivations for a formula, it is deleted.

Removing I Ds When there is a set of defaults that are jointly inconsistent, one of the actions done is to assert that
there is an ID. However, if one of the defaults in the ID is found to have been applied by mistake, for example if the
negation of the consequence is derivable non-defeasibly, then the assertion that that set of defaults is an ID is not true
anymore. We need to ensure that that assertion is removed as a result of the removal of any of the defaults in it even
though the addition of the ID assertion was not directly triggered by the addition of that default.

75.3 Characterization

‘We now summarize these rules by stating the circumstances under which there is a derivation of a default consequence,
or the deletion of the consequence and the derivation of IDs. We assume for simplicity that there is a unique derivation
for the formulas under consideration.

(3; is added to the KB at time ¢ if all of these conditions hold

e There is no non-defeasible derivation of —3; at time ¢ and
e There is no derivation of —/3; that depends on a more preferred default at time ¢.
e «; isin the KB at time ¢

e §; isnot in any ID at time ¢
If 3; is in the KB at ¢ — 1, it is removed at time # if either

e —[; is derived non-defeasibly at time ¢ or

e —[3; is derived from a more preferred default at time ¢ or
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e ¢6; is found to be in an ID at time ¢

&, ..., 6; are asserted as being members of an ID if there is a derivation of a contradiction that involves these as leaf
defaults.
&, ..., 6; are removed from the list of IDs if for any one of the defaults, either the antecedent is removed from the KB

or if one of the defaults preferred to this one is applied to the KB or if a subset of this ID is inconsistent.

The logic will not know when it has the “final answer” to any query unless this can be non-defeasibly derived. If
that is not the case, there is always the possibility that a new derivation will arise that will make the previous answer
invalid. So the logic can typically not “know” that it has the right answer even if it has it, and the answer can change
over time. However, a later answer, incorporates the information used to obtain all the earlier ones. This implies that
later answers are better than earlier ones so that our confidence in the answers should increase too.

If the domain is one in which there are rather short derivations that will be of interest to the problems in the domain,
then assuming a fair control strategy for choosing which inferences to do, we will eventually compute all the relevant
derivations and we can expect the answer to stabilize after some time. The logic still cannot claim to know that this is
the correct answer, but that will typically be the case.

7.6 Mistake handlingin thislogic

While our logic with a non-monotonic language admits of a great variety of domains, the structure of these domains is
more circumscribed than the ones that we can represent in active logic in general. This allows more precise methods
for dealing with mistakes.

Some of these mistakes are simple enough that we can deal with them immediately and any mistaken responses can
be handled in the same way. In this case, these mistakes are not explicitly represented or reasoned about logically
and the logic has special procedures in the inference rules to generate the correct response. This illustrates that not all
mistakes all the time should be explicitly represented and reasoned about in the logic. It is more efficient not to do so
when we can, but some flexibility is lost. In this case, this is not a problem.

7.6.1 Detecting mistakes

As in the case of active logic, mistakes are detected by contradictions. The assertion of the cont r a formula represents
that one of the contradictands is a mistaken belief, and so does the assertion of the di st r ust formulas. In this case
however, since the structure of the representation is determined by the logic, it is possible in some instances to pin
down which formula is mistaken. This is helped by the assumption in the logic that the only source of mistakes are
the defaults.

If one of the contradictands involves no defaults but the other one does, it is clear that the mistake lies in the default
application that gave rise to the contradictand. That default, together with all its consequences are mistaken.

In the case that there are more than one default involved in the contradiction and no preference information is available,
the logic falls back to a general strategy by distrusting all the (leaf) defaults involved and their consequences. This is
still more informed than the case in active logic because we can here move up the derivation tree to find the possible
causes of the mistakes.

An important case of detecting mistakes is the implicit detection that there has been or will be a mistake in applying
defaults. In the first case, the application of a more preferred default involves the search for a less preferred one that
has been applied earlier. This amounts to detecting a mistake before it derives a contradiction. In the second case, the
attempt to apply a default involves a search for a more preferred default that may have been applied. This too prevents
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a future mistake that would be obtained by applying the less preferred default. These two cases of mistake detection
do not appear explicitly in the KB and immediately result in the appropriate mistake handling procedure.

Another sort of mistake that is detected is that of taking a superset of an ID to be an ID. The detection occurs when
a proof that a subset of that set is inconsistent succeeds. This is not directly represented in the KB and is handled
immediately. This is another instance of a small number of fixed mistakes that can be handled procedurally. The
domain of these mistakes this time is not the domain axiomatized but the logic itself. If the new ID that results from
this mistake detection is itself mistaken, the same procedure can be followed and we do not need to undo any past
responses.

7.6.2 Handling mistakes

Handling mistakes too is done in a more informed way here as compared to the case for active logic. Corresponding
to each of the methods for the detection of mistake described above, there is a mistake handling behavior.

In the case of implicit detection of mistakes, the logic immediately deletes the consequence of the weaker default
application and removes all of its consequences from the KB. Another preemptive move is for the logic to refrain from
applying a default that is less preferred than one already applied.

If a contradiction is detected, this means that there has been no preferences between the defaults. If there is just one
default involved, its application has to be mistaken and the problem is solved. Otherwise, the logic cannot decide
between the defaults involved and all the leaf defaults are distrusted. The lack of information leads to the logic having
to represent the possibility of a mistake rather than taking action to solve the problem.

Handling the case of mistaken IDs is done automatically—the reasoning in this case is simple enough that there is no
need for logical inference and a procedure is sufficient.

7.6.3 Representation

In the cases that the logic can definitely identify the mistake, it is dealt with without any representation of it being
made in the KB. In the ID case however, we need to keep the representation of the mistake since the logic does not
know what is mistaken and the ID itself could be mistaken.

The lack of representation for the case that the logic can detect and resolve the mistake implies that the logic cannot
later reason about this decision in case there are mistakes in the decisions of what is mistaken. This is not a problem in
this logic but in a more general domain where one may need to reason about the preferences, possibly using defaults,
this approach will limit the ability of the system to repair some of its mistakes. In that case, because the preferences
might be mistaken, finding a mistake in a preference might mean undoing the consequences of that preference. To do
this, a record of the consequence of the preference will have to be kept which is not done in the rules presented above.
The ongoing Alma history record does have a record of all derivations of interest, however these are not as convenient
to work with as more explicit records.

The mistaken IDs is an example of knowing what the mistake is and how to handle it so that there is no need to assert
itin the KB.

7.7 Usingthisasageneral NMR

The aim of this chapter was to use the language of non-monotonic logics to specify the behavior of the system in the
event of mistakes. We now consider how the resulting system can be used as a non-monotonic reasoner in its own
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right.

7.7.1 Differences
There are several differences between the system we have described here and a non-monotonic reasoner:

e Our reasoner can give an answer relatively fast.
o However any answer can be mistaken.

o It can accept new information as it computes

It tolerates inconsistencies

It is a mainly forward chaning reasoner

We can in general not tell when the system will have derived the final answer and whether the answer it derives is
the correct one. This is caused by the UN-computability of non-monotonic logics in general and on our dependence
on non-provability formulas. If we could be sure in general when the system comes up with the right answer, the
process would be computable, which may be the case for restricted fragments of non-monotonic logics, but not for
general logics as we consider them here. This is the case even if no new information is added to the KB. The answer
can change just because more computation is done and new facts emerge. So the system we have will have changing
answers and there is no way to know when it has the correct answer. This does not look promising as a system to
compute non-monotonic logics.

However, the later answers the system derives are based on all the information the earlier ones were derived plus new
information that made the logic change its KB. The later answers are then based on more information than the earlier
one and can be seen as being better answers (provided the old and new information are combined appropriately). The
system then seems to act as an anytime [16] non-monotonic reasoner—the quality of the answers improves with time.

If we further assume that the derivations that are relevant to the computations we are interested in are rather short,
given an appropriate control strategy for applying inference rules, we can expect the answers not to change anymore
after a relatively short time. Those answers are likely to be the correct ones. There is evidence that the sort of reasoning
done in everyday situations tend to be short [140]. It seems that these “everyday” situations are commonsense ones.
If the control strategy extends derivations uniformly, it satisfies the second condition. We can then expect to have the
correct answer for commonsense problems in a relatively short time. Further work has to be done to formalize these
notions.

If we accept the fact that some answers can be mistaken and that we should prefer later answers to earlier ones, then
given the appropriate domains—those where the relevant derivations are short, this can be used as a non-monotonic
reasoner which gives good answers relatively fast.

7.7.2 Tests

We have tested the reasoner on a large variety of examples of non-monotonic reasoners in the literature. The results
of the tests are discussed later. In summary, if we are willing to wait for the correct answer to be derived, this system
does generally behave as a non-monotonic reasoner intuitively should.
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7.8 Related work

In the 1980’s a number of new logics were devised for nonmonotonic reasoning. We give a brief account of a few of
them here. All of the approaches we describe except for the more recent work were more concerned with defining a
logic that could formalize the intuitive jumping to a conclusion that seems to be needed to reason in domains other
than mathematics and logic. These approaches were, in general, not computable, and some were not even meant
to be computable despite the advertised aim to model jumping to conclusions. More recent work has focused on a
computable approaches to the problem. However, these do not quite jump to conclusions the way one would expect.
This makes the logics not quite suitable for use as an on-board logic for agents.

The approach we have presented here, although it has problems with controlling the inference is much closer to being
the sort of logic that can be used to control an agent acting in the world. The main problem with that approach is that
we do not have a guarantee that we have the right answer to a query because the answer we have is liable to change
later with more information or more computation. This sort of behavior seems to occur in people too: we might decide
to make coffee but with more thought we might decide to drink tea instead. If people, who after all, are the paradigms
of commonsense reasoning can change their minds, it is surely acceptable for agents to do so too. The other problem
with our approach at this time is that we do not yet have a formal semantic characterization of the logic. This is an
important aspect of the logic but one that may not be as crucial for our approach as problems of control of reasoning
are.

7.8.1 Circumscription

McCarthy [110] uses circumscription to formalize the process of jumping to conclusions. Predicate circumscription
is a rule of conjecture that allows one to jump to the conclusion that the only objects satisfying a property P are those
that can be shown to satisfy P. Circumscription is nonmonotonic since by adding a new object a that satisfies P to the
knowledge base, we can no longer conclude by circumscription that a does not satisfy P even though we could do so
before the addition.

The circumscription of P in A(P) (where A is a first order sentence containing predicate P and A(®) is obtained by
replacing all occurrences of P in A by @), is given by the sentence schema:

A(®) AVE(D(F) — P(F)) — VE(P(T) — (7))

The inference relation Fp that results from circumscribing P is nonmonotonic. The above can be straightforwardly
extended to circumscribe several predicates.

The model theoretic counterpart of circumscription is minimal entailment: A minimally entails ¢ with respect to P,
A [=p qif ¢ is true in all models of A that are minimal in P'. McCarthy shows that if A Fp ¢ then A =p q.

McCarthy notes that circumscription is not a nonmonotonic logic. He sees it as a form of nonmonotonic reasoning—
jumping to conclusions— augmenting first order logic. The way one could use circumscription is for the reasoning
system to apply circumscription to some predicates when the need presents itself, for example if the system has to
make a decision that may be prevented by some other facts, it would want to minimize these obstacles to just those it
knows about— minimizing the extent of the obstacles. Heuristics would decide when to circumscribe which predicates.

Formula circumscription, an extension of predicate circumscription was introduced in [108]. In the new version,
formulas rather than predicates are circumscribed, and other formulas are allowed to vary during the minimization.
Another difference is that now the circumscription is represented as a second order formula rather than as a axiom
schema. Formula circumscription is defined as follows:

"Models minimal in P have the smallest extensions for P
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Let A(P) be a second order formula with P a tuple of predicate symbols in A(P), let E(P, z) be a well formed
formula in which P and a tuple of individual variables, z occur free, then the circumscription of E( P, z) with respect
to A(P), A(P') is:

A(P'YAVYP'[A(P') A V2E(P', ) — E(P,z)] — VeE(P',z) — E(P,z)]]

The predicates in (P, z) that are not in P are allowed to vary. Also the circumscription axiom is in the same language
as the rest of the knowledge base and one can therefore reason about the axioms.

McCarthy also introduces the use of abnormality predicates to specify the use of circumscription in default reasoning.
We can express that birds generally fly by Yz Bird(x) A ~ab(aspectl(z)) — Flies(z). This says that if a bird is not
abnormal in aspect1, then it flies. To reason about what birds fly, one circumscribes the abnormality.

To summarize, circumscription is a minimization approach to nonmonotonic reasoning: it minimizes the extent of
certain predicates or formulas so we can jump to conclusions about them. It is expressed in second order logic for
which there is no complete proof theory which makes implementation problematic.

7.8.2 Default Logic

Reiter [157] notes that inference made by default can be rejected by later information. These inferences are based on
an absence of information to the contrary which Reiter equates to consistency. So, “if x is a bird, in the absence of
information to the contrary, assume that x can fly” is taken to mean “If x is a bird, and it is consistent to assume that x
can fly, assume that x can fly”.

Defaults are metarules of inference that are used to complete a theory. They are represented as:
alz) : Mprz, ... M By (z)
w(z)
where a(z) is the prerequisite and w(z) is the consequence. The rule is read as: if a(z) and if it is consistent to

assume A1z, ... 0m (), then conclude w(z). A default theory is a pair (D, W) where D is a set of default rules, and
W is a set of closed formulas.

The consequences of a default are given by the extensions of the theory which are defined using a fixed-point operator.
Some default theories may have no extensions, while others may have several. Reiter

sees the purpose of default logic to be to provide an extension for the beliefs of a reasoner. An extension is to be used
for reasoning until it is found that that is a bad extension. This leads Reiter to take a formula as “believed” as long as
itis in any extension.

Reiter discusses normal default theories which are of the form a(z) : Mw(z)/w(x). These have the interesting
property of semi-monotonicity by which the proof theory is local with respect to defaults used in the proof, i.e., one
does not have to consider all the defaults while building proofs. However, the proofs still depend on satisfiability
tests for IW. A further restriction is to consider closed normal formulas where all formulas in the default are closed.
In this even more restrictive case, deciding whether a formula is present in the extension of a default theory is still
undecidable.

Another view of the role of default reasoning is that of deriving new beliefs for a task: we define the default theory
(D, W), determine if a given formula is derivable in the theory. If it is, that formula is added to . In case new
information is available that contradicts 17/, some sort of belief revision is needed.

In contrast to circumscription, default logic is a proof-based, fixed-point approach to nonmonotonic reasoning. An-
other difference is that the default in default logic is not accessible to the reasoner, whereas it is (although as a second
order formula) in circumscription. The computational properties are not good since tests for satisfiability are needed
for finding any extensions.
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7.8.3 Autoepistemic Logic

Moore [130] reconstructs nonmonotonic logic [116] as a model of an ideally rational agent reasoning about its own
beliefs to solve problems in nonmonotonic logic. The result is autoepistemic logic.

Moore denies that autoepistemic logic is default reasoning but says it is some kind of commonsense reasoning. Purely
autoepistemic reasoning is not defeasible either. The nonmonotonicity of autoepistemic logic derives from the fact
that the meaning of an autoepistemic statement depends on the theory in which it is embedded. The nonmonotonicity
comes from the indexicality of the logic.

Moore uses a modal operator L that is taken to mean “is believed”. Sets of autoepistemic formulas are interpreted as
the beliefs of an agent. A belief L P is true if and only if P is in the autoepistemic theory. The problem of inference
is to determine what set of beliefs the agent should have based on some initial axioms.

The theory is taken to be sound and complete, resulting in an agent that is rational (because it is sound) and ideal
(because it is complete). No real program can be this rational ideal agent, but Moore says they should approximate
them.

Finding a syntactic characterization of an autoepistemic theory is done by fixed point definitions. No algorithms are
forthcoming for computing the sets of formulas, but the sets can be defined. The following should be satisfied by an
ideally rational agent:

I.IfP...Pp,€Tand P;... P F Qthen@Q € T.
2. IfPeTl,then LPeT.

3. f PgTthen-L PeT.

4 fLPecTthenPecT.

5. If-LPeT,then P gT.

Conditions 1, 2 and 3 define stable autoepistemic theories: no further conclusions can be drawn from the theory. If a
stable theory is consistent, then 4 and 5 also hold. These can be used to define stable expansions of a theory which are
theories an ideal agent should believe. Just as in default logic, there can be several expansions of a set of beliefs, or
none.

And just like default logic, autoepistemic logic is a fixed-point approach to nonmonotonic reasoning. However the
sentences that give rise to the nonmonotonicity are in the language itself and can be reasoned about by the agent.
One could argue that this is easier to do in autoepistemic logic than in circumscription. Just like default logic and
circumscription though, the problem of inference is undecidable since the agent is omniscient (as can be seen from the
characterization of stable expansions above).

7.84 Shoham’spreferential models

[173] presents an attempt to provide an underlying semantical framework for non-monotonic logics. The approach is
to consider the interpretations of a standard logic together with a preference relation between the interpretations. The
aim is for different kinds of relations to produce the various non-monotonic logics known.

The relation C is a strict partial order over the interpretations of the logic and My C M5 means that interpretation
M5 is preferred to interpretation M;. An interpretation is said to preferentially satisfy a formula is that interpretation
does satisfy the formula and there is no more preferred interpretation that does so. Based on this, preferential validity,
satisfiability and entailment are defined.
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This is used to describe circumscription and the modal approaches to non-monotonic logic. However, it does not
model default logic appropriately.

Our intuition is that our system can be described using a preference relation over interpretations of a first order logic,
but the definitions that Shoham uses do not seem to fit well. It seems more appropriate for our approach to say that an
interpretation preferentially satisfies a formula if it satisfies the formula and there are no more preferred interpretations
where that formula does not hold. Our view is that an interpretation will preferentially satisfy a formula if it is a most
preferred interpretation and it satisfies the formula. If there is a more preferred interpretation that satisfies the negation
of the formula, then the interpretation that does satisfy the formula does not preferentially satisfy it. This difference in
the view of satisfaction makes our approach very different from Shoham’s. However, more work needs to be done on
this.

7.8.5 Truth maintenance systems

Truth maintenance systems (TMS) [43, 162] are to be used in conjunction with a problem solver and maintains the
reasons for the beliefs of the system. The TMS does not itself make inferences about the domain—it determines the
current set of beliefs and maintains the justifications for them. The beliefs, justifications and inferences are provided by
the problem solver. TMS are meant to help in a wide range of roles including belief revision, contradiction handling,
dialectical arguments, modeling others beliefs and more. We will focus on the belief revision and inconsistency control
aspects here.

The TMS maintains beliefs as either IN or OUT. We can see these as being believed or not. A belief is IN if there is a
reason for it. Note that there can be many reasons for a belief. The reason for a belief consists of two sets of beliefs,
the in-list and the outlist. A belief is IN if all the beliefs in the in-list are IN and all the beliefs in the outlist are OUT.
The first set of beliefs support the belief in question whereas the second set deny it. If any belief in the second set is
IN, the belief in question is not.

These two sets allow different kinds of beliefs to be recorded:

o Normal deductions have the inlist non-empty and an empty outlist.
o Premises have both empty inlists and outlists.

o Assumptions have non-empty outlists. Assumptions depend, in part, on some other beliefs being OUT and these
make the system non-monotonic.

The TMS allows the problem solver to add nodes which represent beliefs and to add or delete justifications and to
mark some nodes as contradictory. Once the problem solver adds or deletes justifications of a node, the TMS process
makes the appropriate changes to the set of beliefs—making them IN or OUT as need be. In case a contradictory node
becomes IN, the TMS backtracks to find assumptions on which the contradiction depends. It then picks one of them
to remove to regain consistency.

The TMS is different from the other formalisms we have seem in that it does no reasoning but it allows for belief
revision and contradictions which are two crucial aspects of logics for agents. Our CR rule, just like the TMS depends
on the structure of the derivations for resolution of contradictions. However, instead of being in a separate process, it
is part of the reasoning system. Since the CR rule depends only on the form of the derivations, it seems that the same
functionality could be obtained from a TMS linked to a reasoner.

However there are some crucial differences between the two approaches:
o The reasoner needs to explicitly flag some nodes as contradictory. The TMS does not represent and is not

sensitive to the logical relations between beliefs. So it cannot on its own detect inconsistencies. The number of
possible inconsistencies is large and it is not practical for each possible contradiction to be noted in the TMS.
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o It is not clear how the TMS would react to preferences between defaults. While default could be represented as
assumptions, it is not clear how one would represent the preference between classes of assumptions. It seems
that the TMS would need to have access to some domain information and the algorithms would need to be
changed for that information to be taken into account.

The TMS approach and features are quite similar to our own, but the disconnect between the TMS and the reasoner
make it unsuitable for our purposes. In our case, even though the reasoning we do in case of contradictions is purely
procedural, the fact that the reason maintenance is done in the same system as the reasoner is a great advantage. This
will be even more apparent if the constraints we have on the reasoning are relaxed as we do later.

7.8.6 Delgrande’'sconditional logic

Delgrande has developed default formalisms based on conditional logic in which, among other things, attention is
paid to the representation of the denial of defaults (see [40] and [41]). In these logics—there are two of them, one
propositional and one first-order—the conditional operator = is added to an otherwise standard logical language in
order to represent defaults, or what Delgrande calls statements of “normality.” In the propositional version (called NP)
a default is a statement of the form o = /; intended to be read roughly as “if « then normally 3”; for example: “if it
is raining then normally the grass is wet.” In N (the first-order version) defaults are written in the form Vz(a = ),
intended to be read as “a’s are normally 3’s,” for instance: “ravens are normally black.” A possible world semantics
is the basis for truth in both NP and N. Specifically o = § is true if 3 is true in each of the least exceptional worlds
in which « is true, and Vz(a(z) = f(z)) is true in a world Wiff (o = ) is true for each individual in the domain of
individuals in w.

Delgrande’s primary aim in these logics is a mechanism for reasoning about defaults (for drawing conclusions which
themselves are defaults), rather than reasoning with them (e.g., for drawing conclusions about individuals). As exam-
ples, in the propositional case, the default P = () follows from P — (), and in the first-order case V(P (z) = R(z))
follows from Vz(P(z) = Q(z)) and Va(Q(z) — R(x)).

Indeed, the first-order version, N, does not permit default reasoning about individuals. This is due to the fact that
despite the suggestive notation, the default Va:(ow = ) is not to be construed as concerning ordinary quantification.
Specifically, no mechanism is provided for substituting individuals for z, nor therefore for drawing default conclusions
about an individual z from the default. Thus, though intuition may suggest that F'lies(tweety) ought to follow from
Ve(Bird(z) = Flies(x)) and Bird(tweety), if Tweety is “normal”, such is not the case in N; there simply is no
inference rule nor axiom (schema) in the logic to help accomplish this. Delgrande provides a separate mechanism for
drawing default conclusions about individuals.

One interesting feature of Delgrande’s approach is the relationship which arises between typicality entailment (=)
and strict entailment (—): Vz(Pz = Qz) follows from Vz(Pz — Qz). One could argue whether this is appropriate.
Certainly = and — bear some relation to one another, as Delgrande notes, though just what that relation ought to
be may not be clear. On the one hand, it may seem reasonable that if all P's are Q's then typically P’'s are Q's, as
comes out in Delgrande’s formalism. On the other hand it can be considered misleading to assert that consequent.
For instance asserting that typically birds are animalsis surely misleading as it encourages the listener to assume that
some birds are not animals. E.g., from the assertion that typically birds are animalsGrice’s [72] maxim “be maximally
informative” would lead to the inference that most, but not all, birds are animals. Also, [51] argue that it is in the very
nature of a default to have counterexamples.

7.8.7 Poole: default reasoning astheory for mation

Poole [149] bases his work on the premise that reasoning is not a matter of deduction but of theory formation. He views
default reasoning as an attempt to use a set of hypotheses and a set of facts to explain observations. The hypotheses
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used in the explanation play the role of defaults.

Poole uses a first order language together with a set of facts F, a set of names of possible hypotheses A, and a set
of constraints C'. Names of possible hypotheses are predicates of the same arity as the hypotheses they name. For
each name in A there is a fact in F which links the name to the hypothesis. If, for example, we want to have as
default that birds normally fly, we would put birdsfly(z) in A as the name of a hypothesis. F would then contain
birdsfly(z) — (bird(z) — fly(z)). The constraints in C' are formulas that state when a particular hypothesis
is not applicable. For example, if we do not want the birds fly(z) hypothesis to apply to ostriches, we would put
ostrich(z) — —birdsfly(z) in C. Poole defines a scenario of 7, A, C'to be a set D U F where D is a set of ground
instances of A and D U C'U F is consistent. An explanation of a closed formula g is then a scenario that implies g.

As an example, let F = {bird(tweety), ostrich( fred), birds fly(z) — (bird(z) — fly(z)), ostrich(z) — bird(z)},
A = {birdsfly(x)}, and C = {ostrich(z) — —birdsfly(z)}. With this, we can explain fly(tweety). The set D
contains birds fly(tweety) which lets us derive bird(tweety) — fly(tweety) from F, and from that we can get
fly(tweety). However we cannot find an explanation for fly(fred) because ostrich(fred) and the hypothesis
birdsfly(fred) are inconsistent with the constraint in C'.

Unlike the approaches of Delgrande and Schlechta (see below), Poole’s treatment combines reasoning with defaults
with reasoning about defaults.

7.8.8 Schechta'sgeneralized quantifiers

Schlechta [170] represents defaults in first order logic with a generalized quantifier. An open default such as “Normally
birds fly” is taken to mean “Most birds fly” and is represented as Vabird(z) : fly(x) which says that there is an
“important” subset of the set of birds, all of whose members fly. We will mainly discuss the simpler case of normal
open defaults: “Normally things don’t fly” which is represented as Va— fly(z). This says that there is an important
subset of the set of all objects, all of whose members don’t fly.

The notion of important subsets is captured in the semantics by a system N (M) of important subsets of the domain.
N (M) consists of subsets of M such that the intersection of any two of the subsets is not the empty set (unless the
domain is empty). This condition rules out contradictory important subsets and therefore rules out situations where
both “normally ¢(z)” and “normally —¢(z)” are true. Also ruled out are empty important subsets when the domain
is not empty. The notion of truth follows that in first order logic with additional inductive steps including: Vz¢(z)
holds in (M, N'(M)) provided there is a set A in N'(M), for all members a of which ¢(a) holds. This captures the
idea that for something to be normally true there has to be an important subset of the domain for which that property
holds. Since it is not possible for an important subset of the domain to satisfy ~¢(z) while Va¢(z) holds, we cannot
have “peaceful coexistence” between Ve—¢(z) and Yzé(z).

The language is a first order language augmented with the quantifier V and with a set of axiom schemata. The
equivalence property is obtained from the axiom schema: Va¢(z) A Va(é(x) — (x)) — Vaip(z). Inconsistencies
in the defaults can be detected using the axiom Va¢(z) — —Va—¢(z). Analogous axioms are present in the open
default case where another axiom of interest is [Vz¢(z) : ¥(z)] AVz(d(z) Ap(z) — F(2)). — Vaé(z) : ¥(z). This
enables us to go from “Normally birds fly”” and “Things that fly have wings” to “Normally birds have wings”. However
we also have: Ve¢(z) — Vad(z) which (as mentioned earlier in the discussion of Delgrande) we find unintuitive: if
all birds are animals, then it seems misleading to say that typically birds are animals.

This logic was developed in the context of an order sorted system where defaults are attached to the sorts. In case of
inconsistencies between defaults or between defaults and certain other information, this order can be used to select a
consistent subset of these defaults. The general rule is that more specific information is preferred over more general
information.

Schlechta’s approach enables us to reason about (and deny) defaults and to resolve conflicts between defaults in a
principled way. But as with Delgrande’s first order proposal, we cannot use Schlechta’s scheme to conclude facts
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about individuals. There is no axiom or inference rule that lets us go from V= fly(z) to = fly(fred).

7.8.9 Approximateinference

In [25], Cadoli and Schaerf describe how default logic and circumscription can be approximated for the propositional
case. The approximation is based on their earlier work on approximating propositional logic [23]. They define two
consequence relations, one of which is incomplete and the other unsound with respect to propositional inference.

The inference relations are based on interpretations which in one case map all propositions except those in a set .S into
the truth value 0, and in the other case map all propositions except those in a set S onto truth values 0 or 1, but so that
not both p and —p are mapped onto 0. The inference relation based on the first interpretation is complete but not sound
whereas the second is sound but not complete. By expanding the set .S, the approximate inference relations converge
on the correct consequence relation |=. These consequence relations are used to define approximations to credulous
default reasoning assuming the defaults are normal defaults in CNF and there are no tautologies. Two consequence
relations are defined in this case too, one unsound and the other incomplete with respect to credulous default reasoning.
These converge to the correct answer as the set .S is expanded. The approach to circumscription is similar.

The main differences between this approach and ours is that this approach has a well defined semantics and a well
defined notion of the approximation of the logics. However, the logics treated are propositional and not first order as
our logic and there are more restrictions on the form of the logic in the case of Cadoli and Schaerf. The propositional
default logics, while being intractable are not undecidable, so that there is a point at which all the computation stops
and there is a final answer. The first order case, however is is undecidable and we cannot know that we have the right
solution.

7.8.10 Ghose and Goebel

Ghose and Goebel [65] consider propositional, prerequisite-free, semi-normal defaults for their approach to any-
time default reasoning. They consider two approximations that are relaxed to approach the correct solution. «-
approximations consider a subset of the propositions in the default theory. [(-approximations on the other hand,
consider a subset of the default theory. The problem of computing these partial solutions is then mapped onto partial
constraint satisfaction problems. Different techniques correspond to the o and to the [ partial solutions. Algorithms
for the partial constraint satisfaction are then used to compute partial solutions to the default inference.

Similar to the above, this approach is restricted to propositional default logic and further restricts these to prerequisite-
free semi-normal defaults. The same remarks about propositional defaults apply.

7.9 Futurework

The logic and the rules of inference above have been motivated by appealing to intuition and to the behavior of the
presupposition and the implicature reasoning systems. We have tested our non-monotonic system with a number
of examples in which it behaved correctly. However, this is not sufficient for characterizing the logic. We need to
specify a semantics for the logic and find what relation the rules of inference given above have with these semantics.
Other work involves extending the logic so that it can reason with preferences and use more complex diagnoses of
contradictions.
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7.9.1 Characterizingthelogic

The semantics we propose to work out are a possible-worlds semantics with defaults and preferences corresponding
to preferences between sets of worlds. Note that our approach differs from that in [173] in the definition of entailment
and satisfiability.

We take a non-monotonic theory to consist of a first order set of sentences, a set of defaults and a set of preferences
among the defaults. The defaults and preferences in the theory induce a preference relation among the interpretations
of the first order part of the theory. A default is said to hold, be compatible or not be compatible with an interpretations
according to whether the antecedent and consequent are true, or the antecedent is false, or the antecedent true and
the consequent false in that interpretation. An interpretation is preferred to another according to the status of defaults
holding or being incompatible in the interpretations and on the preference between these defaults. This preference
relation is a partial order on the interpretations of the first order part of the theory and we take a formula to be
preferentially entailed by the model if it is true in all the most preferred interpretations in the model. Other semantic
properties follow from this.

The inference rules would ideally assert in the KB only and all those formulas true in all the most preferred interpre-
tations. The problem though is that they jump to conclusions before all relevant information is known. That is where
contradictions occur and formulas need to be retracted from the KB.

If there are no IDs (sets of inconsistent defaults) in the theory, then all the conflicts between defaults are arbitrated by
default preferences. Further, from the rules we presented, the only contradictions that occur are those in which a single
default is inconsistent with the first order part of the theory. Therefore any misapplication of rules will be correctly
repaired when they are found. If we assume that the inference rules are applied fairly, then we eventually get to the
correct default applications in the KB. Once this has happened, the state of that default will not change. Therefore, the
KB will eventually stabilize with the correct defaults holding. The logic may derive wrong answers intially, and may
switch from bad to good and back to bad answers several times, but it will eventually get to the correct answer and not
change anymore.

Further, if we assume some probability distribution on the minimun lengths of proofs for those formulas that are of
interest, and a distribution on the depth of the default preference trees, we can derive the probability that the correct
answer for a formula of interest has been derived after a given amount of computation. This probability can be used
as a measure of goodness for the answer the logic produces resulting in the logic being an anytime algorithm [16].

In case there are IDs, a potential problem is that our method to identify the IDs may include defaults that do not
belong to the ID. This fact can be discovered after more computation, but there is no guarantee that it will not recur.
A possible behavior then is that a default may be taken to hold and not to hold and so on indefinitely. We currently
see two approaches to this problem: (1) to change the inference rules; (2) to restrict the application of inference rules
so that this does not occur. The second solution may restrict the possible strategies of control needed for greater
efficiency. This is however also likely to result in incompleteness.

7.9.2 Extendingthelogic

We can also extend the logic to allow reasoning about defaults and preferences. There might be circumstances where
we need to reason about defaults to decide which to prefer, or to derive new defaults. We might also want to reason with
preferences. These are not part of the current logic where we assume that all defaults and preferences are available at
the start of reasoning. In more realistic settings (see later), this might not be possible and we will need to do the sort of
reasoning mentioned above. The difficulty then is that the algorithms for applying defaults and solving contradictions
will not be suitable anymore because we might later find some default or some preference that we did not know about
earlier. This introduces a new class of mistakes that needs to be taken care of. It is not clear whether there can then be
simple inference rules to do so as is the case now.
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7.9.3 Morecomplex diagnoses

The complications introduced then might also require a more sophisticated diagnosis of the problems when con-
tradictions are encountered. Currently, the diagnosis is compiled into the inferences to apply defaults and handle
contradictions. But in the new setting, this might not be sufficient and the logic may have to reason explicitly about
mistakes to diagnose contradictions. All of these new features can be represented and implemented in Alma, so there
is no obstacle as far as implementation is concerned.

7.10 Conclusion

We started by considering a generalization of the natural language applications in the previous chapters. This led us
to the use of a non-monotonic language to describe the mistake handling behavior of the generalized system. We then
specified the rules of the system and we considered its use as a non-monotonic reasoner.

‘We note that the reasoning system we described is suited for kinds of mistakes in beliefs rather than for all mistakes.
This restriction to mistaken beliefs allowed us to compile the responses to the mistakes in inference rules. In more
complex situations when we need to reason about actions and intentions, this approach might not be applicable.

We briefly considered how this system could be used as a non-monotonic reasoner. The characteristics of the sys-
tem differ from the usual non-monotonic logics in several ways. The intuition is that our system has an anytime
behavior—the answer improves over time. This leads to future work to formalize this intuition. The semantics can be
a formalization of the informal semantics discussed in this chapter. The goodness measure that we need for showing
anytime behavior may be a measure of the probability that the answer we have at one point is going to change. This
may depend on some properties of the domain and these restrictions may themselves be of interest.



Chapter 8

Non-monotonic reasoning in Alma

The aim of the rules and representations of the previous chapter were to have a practical system that generalizes
the treatment of mistakes in the presupposition and implicature applications by specifying this behavior in a non-
monotonic language. The implementation of this system in Alma is described in this chapter. The system was imple-
mented as an Alma application, without modifying any the Alma algorithms. This preserves the generality of Alma
by not committing Alma to any particular approach to non-monotonic reasoning, but it also makes the resulting logic
less transparent and less easy to use.

In the next section we describe the representations and procedures that were used to implement the logic. These are
approximations of the algorithms presented in the previous chapter and we discuss these differences in the subsequent
section. These approximations make the implementation easier and the run-time complexity lesser at the cost of
generality. The section after that illustrates the implementation with various behaviors involving defaults. We conclude
with future work to be done.

8.1 Implementation of therulesin alma

In this section we describe how the DA (default application) and CR (contradiction resolution) rules described in the
previous chapter are implemented in Alma. With the appropriate sentences in the logic representing defaults and
preferences, these rules allow the logic to deal with a large variety of domains (with mistakes) in a uniform way.

The approach was to implement the rules without modifying the Alma system. The representations and procedures
are built on top of Alma primitives rather than being themselves Alma primitives. This makes use of the ability of
Alma to use new representations and Prolog procedures. Some consequences of that are that the representations are
not as economical as they could have been; the procedures to apply the rules take place over more than one step and
the representations and procedures are not very transparent. Applying a default, for instance, takes a few steps with
intermediate data being asserted in the Alma KB.

We first describe the representations used in the implementation and then the procedures that implement the DA and
CR rules.

8.1.1 Representation

The implementation of the rules above require several representations that are presented here. These are predicates in
the Alma language and should be considered to be reserved predicates.

102
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Defaults

Defaults are written as f i f formulas with names that have to be parameterized by by the variables used in the default.
This facilitates finding instantiations of the defaults. The fact that the formula is a default has to be stated by a separate
def aul t formula.

The default Vo P(z) — Q(z) is represented as:

named(fif(P(x), conclusion(defcon(dl(X), Qx)))), di(X)).
defaul t (d1(X)).

The fact that the formula is a default has to be asserted explicitly in the KB since there is no other way to distinguish
defaults from non-defaults.

The default itself is represented as a f i f formula so that, among other things, the default is not contraposed. The
conclusion of the fi f is a complex term that includes the name of the formula itself as its first argument and the
conclusion desired as the second.

defcon

def con(N, C) represents that the DEFault CONclusion of the default named by the first argument is the second
argument. The latter is the conclusion of the default and is a formula that may be eventually added to the KB. This
allows the logic to associate directly in the KB the names of the default instances to the conclusions obtained. It is
important that the name be the name of the instance of the default rather than that of the quantified default. The logic
uses this trick to obtain the name of the instance of the default since Alma does not have an instantiation rule (or a
universal quantifier elimination rule). This is important in case of preferences as we will see later. Applying the f i f
inference rule to a default does not therefore result in the conclusion being asserted but only in the assertion of what a
potential conclusion of the default could be. This corresponds to verifying that the premise is in the KB. After that we
need to verify that the default is applicable.

applied_default

If it is found that a default can be applied, that fact is asserted in the KB through a appl i ed_defaul t (N, C)
formula. The arguments are identical to the corresponding def con( N, C) formula. This signals to the logic that C
can be added to the KB.

add_default_conclusion

Once the conditions have been verified, and before the conclusions of the default are to be added to the KB, defaults
that are less preferred than the one in question have to be removed. This occurs after appl i ed_defaul t (N, C) is
asserted in the KB. Once this is done, add_def aul t _concl usi on(N, C) is asserted in the KB. This indicates
that the conclusion Ccan be safely added to the KB now.

prefer

Preferences are represented as would be expected, using the names of the defaults. The fact that the names of defaults
are parameterized with the variables of interest in the default gives some flexibility in stating preferences.
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The usual type of preference one would like to assert is something of the sort “Prefer an instance of the application of
the default that birds fly to the same instantiation of the default that animals don’t fly”. Assuming that the names of
the defaults are bi r dsFl y( X) and ani mal sDont Fl y( X) this is represented as:

prefer(birdsFly(X), animalsDontFly(X)).

If we wanted to express that the fact that any bird flies is to be preferred to any animal not flying (even an animal that
is different from the bird), we could do this as pr ef er (bi rdsFl y(X), ani mal sDont Fl y(Y)) In this case,
once a bi rdsFl y( X) default has been applied to some bird, no instance of ani mal sDont Fl y( X) can be used
since that application of bi r dsFl y is preferred to it.

If we have a preference that applies to just one object in the domain, we can express it as
prefer(birdsFly(joe), aninmal sDontFly(joe)) forinstance.

default_apps

When there is a contradiction, one of the actions the logic takes is to compute the defaults that the contradictand
depends on. There can be several sets of such defaults for each derivation of that contradictand. This is represented in
the KB by

defaul t _apps(N, D)

Nis the name of the contradictand formula and D is a list of lists of defaults, each list being the defaults used on one
derivation of N.

depends_on_defaults

The logic also asserts whether the contradiction has a derivation that does not depend on any default. This is easily
computed by verifying that one of the elements of the list Din def aul t _apps(N, D) is the empty list. This is
expressed in the KB as

depends_on_defaul t s(N)

distrust

Alma automatically distrusts formulas when there is a contradiction. These are removed from the list of formulas
that can be used for the inference rules and a di st rust (nl) formula is added to the KB where nl is the name
of the formula to be distrusted. The procedures implementing the CR rule need to distrust formulas when the cause
of a contradiction has been located to a default. The distrust is done by a Prolog procedure which also asserts the
appropriate formulas in the KB.

8.1.2 Procedures

The algorithms used to implement the rules described above use the ability of Alma to run Prolog programs as part of
inference rule applications. This makes it much easier to implement the algorithms required than to do them a step at
a time in Alma. There are two main procedures: one to apply defaults (DA) and one to handle contradictions (CR),
which are the only mistakes that we consider here. These procedures are split into a few smaller procedures that store
intermediate results in the KB using the representations described above.
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DA—default application

Step 1
Given a default

nanmed(d1(X), fif(p(x), conclusion(defcon(di(X), q(x))))).
defaul t (d1(X)).

The usual Alma rules apply and once the antecedent of this formula (p( X) )is present in the KB !, the conclusion is
asserted. If p( @) is present in the KB, we get:

defcon(dil(a), q(a)).

This asserts that g( @) is a potential default conclusion of d1( a) .

Step 2
We now need to verify that there is nothing known at that time that would stop (@) from being added to the KB.
This is done by:

1. Gathering all the formulas of the form pr ef er (N, d1(a)). This is done with the gat her _al | predicate
of Alma. gat her _al | (X, L) searches for formulas that unify with X that are in the KB and returns them in
the list L.

2. Verifying that there are no more preferred default than ¢1(a) that have been applied. Given the listof pr ef er (N, dl(a))
gathered in the previous step, the logic searches for applications of the preferred defaults. These are represented
inthe KB as appl i ed_def aul t (N, C) and can be simply looked up.

3. If there are none, this default can be applied and appl i ed_def aul t (d1(a), q(a)) is added to the KB.

Step 3

At this point the less preferred defaults whose consequents are inconsistent with the consequent of d1( a) are in the
KB, if there are any. These were mistakenly applied and should be removed before the consequent of d1( a) is added.
Doing this preempts a future contradiction with q( @) . This is done as follows:

1. Gather all the defaults less preferred than d1( a) . This is done as above using gat her _al | .
2. For each of these defaults:

(a) Find their applications through appl i ed_def aul t .

(b) Delete the appl i ed_def aul t and undo its consequences. The def con formula corresponding to
the less preferred formula is left in the KB because that default is still potentially applicable, but since
the conditions for its application are now false (since a more preferred default has been added), the
appl i ed_def aul t formula and its consequences are removed.

3. Assert that this has been done by asserting add_def aul t _concl usi on(d1(a), q(a)).
Step 4

At this point all that is left is to add gq(a) to the KB. This concludes the application of a default. Note that this
procedure takes four steps and adds intermediate results to the KB.

"More accurately, as soon as each element of the antecedent is present in the KB



106

CR—contradiction resolution

The detection of contradictions is done automatically by Alma as soon as it occurs and a formula of the form
contra(P, Q T) is asserted where P and Q are the names of the contradictands and T is the step number at
which the contradiction was detected. Alma also distrusts the contradictands and their consequences. The assertion of
contra(P, Q T) isthe trigger for the following procedure to resolve the contradiction.

Step 1

1. The leaf defaults in each derivation for each contradictand are computed. This is easily done through a Prolog
program that traverses the derivation tree for the contradictand. The derivation is obtained through the meta-
relations in Alma.

2. These defaults are asserted in a def aul t _apps formula for each contradictand as seen above.

Step 2

At the next step, depends_on_def aul t is computed. If a contradictand C1 has a derivation that depends on
no default, then not (depends_on_def aul t (Cl)) is added to the KB, else depends_on_def aul t (Cl)
is added. This is easily computed by verifying whether def aul t _apps(X, Y) contains an empty list in Y for
contradictand X.

Step 3

Then the logic attempts to resolve the contradiction. As seen earlier, because the DA rule removes less preferred
defaults when any default is applied, and does not apply any default if a more preferred one is applied, there are no
contradictions between defaults that are related by the preference relation. The only possibilities then are that one of
the contradictands was derived non-defeasibly (and depends_on_def aul t s is false for it, or that there is an ID.
This is done in the following way:

1. If depends_on_def aul t s is false for one of the contradictands, then for each set of defaults the other
contradictand depends on,

(a) Ifitis a singleton set, remove the corresponding appl i ed_def aul t and undo its consequences. This
is a case of a default being inconsistent with a non-defeasible formula and the default application being
mistaken.

(b) If it is a set of defaults, this is an ID and distrust the appl i ed_def aul t corresponding to the defaults
and their consequences too. Here we cannot choose between the defaults applied and the solution is not to
apply any of them.

2. If both contradictions depend on defaults, then

(a) Compute the cross-product of the lists in the def aul t _apps formulas.
(b) For each set of defaults

i. If it is a singleton set, remove the corresponding appl i ed_def aul t and undo its consequences.

ii. If it is a set of defaults, this is an ID and distrust the appl i ed_def aul t corresponding to the
defaults and their consequences too.

We see that defaults are applied when it seems from the state of the KB, that they can be added. However, as soon as
evidence is discovered that they have been mistakenly applied, the default application is removed.
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8.2 Comparison with therules

‘We compare the implementation we describe above with the algorithms expected for the rules of the previous chapter.
The implementation makes some assumptions and simplifications to keep the procedures manageable. These have not
had serious adverse effects in our tests. However it is possible to construct cases where they will fail.

¢ No complete FOL

We assumed that we could derive all possible formulas (except for those derivable from contradictions) from
the underlying logic. This is not the case here. Alma typically runs in the forward direction with resolution,
therefore we lose the completeness that is assumed. We may therefore not derive some important formulas.

Assuming that the domain description consists of defaults, implications and atomic formulas, this is not a prob-
lem. If there are disjunctions however, some conclusions might not be derivable. For instance if a1 A a3 and
a1 — ( and as — [ are in the KB, we would expect to derive 3. However this is not derivable in the current
system.

o Noexplicit representation of default instances

The procedures above do not instantiate defaults as a separate step before applying them. This makes it less
straightforward to identify the default instances used to derive formulas of interest. This is a result of the use of
resolution as the main rule of inference in Alma. To get around this problem, we use the def con representation
to relate the defaults instances to their consequences. This solves the problem, but is rather inelegant.

o Noexplicit representation of 1Ds

The implementation does not explicitly represent IDs. This facilitates the implementation and speeds up the
application of defaults and other reasoning processes but also has some problematic consequences. The solutions
to these problems is provided by the control strategy Alma currently uses. If this is changed, the assumptions that
solve the problems will no longer be valid and the IDs may have to be explicitly represented. The consequences
of not representing IDs are:

— Defaults not verified for ID membership According to the rules in the previous chapter, a default must
be checked for membership in an ID before applying it. Since we do not explicitly represent IDs here, this
can’t be done and potentially allows the logic to derive formulas it should not.

This is not a problem though, since the control of the logic applies an inference rule to a set of premises
just once. If é; say, is found to be in an ID, then the premise of §; and §; itself will have already been
used once. That would have eventually resulted in the ID being found, the consequences will have been
distrusted and this instance of é; will not be applied any more so that there is no risk of a future mistaken
application of é;.

— No ID subset verification

According to the CR rule in the previous chapter, if §;, . . ., §; are jointly inconsistent, the logic has to verify
whether there is a subset of these defaults that is an ID. If there is, these are not minimal and therefore not
an ID. This cannot be done here since the IDs are not explicitly represented and the logic runs the risk of
not applying a default that should be applied.

This problem does not appear since the control strategy amounts to a breadth-first exploration of the for-
mulas derivable. In that case, the extra defaults that can cause non-minimal sets of inconsistent defaults
are not likely to be present in the derivations of inconsistency. This is still a possibility of that although we
have not encountered it in our tests.

— No proofsfor ID subsets

For the same reason as the above, the logic does not verify whether some subset of the presumed IDs it
derives is inconsistent. Since we assume that we do not get superset IDs, this is not necessary.
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8.3 Illustration of behavior

We illustrate the behavior of the system with a few simple cases of nonmonotonic reasoning.

8.3.1 Simpledefault application

We have a default whose antecedent is in the KB and we show the steps before the consequent is asserted in the KB.

The KB initially contains the default and the antecedent:

nanmed(fif (bird(X), conclusion(defcon(birdsFly(X), flies(X)))), birdsFly(X)).
defaul t (birdsFly(X))

bird(tweety).

together with the Alma formulas describing the behavior of the system for nonmonotonic reasoning which we don’t
show.

At the first step, the relevant new formula is:
def con(birdsFl y(tweety), flies(tweety)).

The default has been applied and the consequence of the Tweety instantiation of the default is that Tweety flies. At the
next step we get:

appl i ed_defaul t (birdsFly(tweety), flies(tweety)).

The logic has verified that there is no obstacle to applying this default and is next going to remove weaker defaults.
This is done in the next step and the new formula is:

add_default _concl usi on(birdsFly(tweety), flies(tweety)).
The default is asserted at the next step:
flies(tweety).

The KB does not change subsequently apart from incrementing the step number.

8.3.2 Default application preempted by non-defeasible information

This is similar to the above case, but this time, the negation of the consequent is present in the KB. This prevents the
application of the default. The KB this time round contains in addition the fact that Tweety does not fly:

named(fif (bird(X), conclusion(defcon(birdsFly(X), flies(X)))), birdsFly(X)).
defaul t (birdsFly(X))

bird(tweety).
not (flies(tweety)).
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We still obtain the assertion that a possible consequence of the default is that Tweety flies:
def con(birdsFl y(tweety), flies(tweety)).
And that is all that is derived. Because of the presence of non-defeasible information that Tweety does not fly, the de-

fault cannot be applied and the derivation does not progress beyond that point. In particular, appl i ed_def aul t (bi rdsFl y(t weet:
does not get added.

8.3.3 Default application preempted by a preferred default

This time, there are two defaults, one of which is preferred to the other. Only the preferred one is applied. In this
example, we have two defaults, one which is the same as before and the other a default stating that penguins typically
don’t fly. We also have a preference for the second default to the first.

nanmed(fif (bird(X), conclusion(defcon(birdsFly(X), flies(X)))), birdsFly(X)).
defaul t (birdsFly(X))

nanmed(fif (pengui n(X), concl usi on(defcon(pengui nsDontFly(X), not(flies(X))))),
pengui nsDont Fl y( X)) .
def aul t (pengui nsDont Fl y( X)) .

pref er (pengui nsDont Fl y(X), birdsFly(X)).

i f(penguin(X), bird(X)).
pengui n(tweety).

We also know that Tweety is a penguin and that penguins are birds. At the first step, we derive that Tweety is a bird
and also that a consequence of the penguinsDontFly default is that Tweety does not fly:

def con( pengui nsDont Fl y(tweety), not(flies(tweety))).
bird(tweety).

Since there is nothing stopping the application of the penguins default, that proceeds and at the same time the logic
asserts that a possible conclusion of the birdsFly default is that Tweety flies:

appl i ed_def aul t (pengui nsDont Fl y(tweety), not(flies(tweety))).
def con(birdsFl y(tweety), flies(tweety)).

At the next step, two things happen: the logic tries to remove any default that has been applied that is less preferred
than the penguin default applied to Tweety, and the logic verifies whether there is a default that has been applied that
is preferred to the birds-fly default applied to Tweety. Since the logic has started to apply the penguinsDontFly default
to Tweety, the birds-fly default does not apply and the other default continues the process of being applied:

add_def aul t _concl usi on( pengui nsDont Fl y(tweety), not(flies(tweety))).

This results in Tweety not flying:

not (flies(tweety)).

And no new formulas are derived except for the clock.
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8.3.4 Detection of IDs

This time the logic detects that there are two defaults that are inconsistent and for which it does not have preferences.
This results in an ID. The initial set of formulas is as above except that we do not have the preference between the
defaults. Also we assert both that Tweety is a bird and that it is a penguin so that we do not have a delay in the
application of the defaults. This does not change the end result of the computation. The initial KB is:

nanmed(fif (bird(X), conclusion(defcon(birdsFly(X), flies(X)))), birdsFly(X)).
defaul t (birdsFly(X))

nanmed(fif (pengui n(X), concl usi on(defcon(pengui nsDontFly(X), not(flies(X))))),

pengui nsDont Fl y( X)) .
def aul t (pengui nsDont Fl y( X)) .

i f(penguin(X), bird(X)).
pengui n(t weety).
bird(tweety).

At the first step, both defaults become applicable and we have:

def con(birdsFl y(tweety), flies(tweety)).
def con( pengui nsDont Fl y(tweety), not(flies(tweety))).

Since neither has a more preferred default that has been applied, we move on to the next step:

appl i ed_def aul t (pengui nsDont Fl y(tweety), not(flies(tweety))).
appl i ed_defaul t (birdsFly(tweety), flies(tweety)).

There is nothing to delete here and we go to the next step:

add_def aul t _concl usi on( pengui nsDont Fl y(tweety), not(flies(tweety))).
add_default_concl usi on(birdsFly(tweety), flies(tweety)).

This results in both defaults being applied and we get:

flies(tweety).
not (flies(tweety)).

This is inconsistent and the direct contradiction is recognized at the next step:

contra(30, 29, 5).
di strusted(30, 5).
di strusted(29, 5).

Here 29 and 30 are the names of the contradictory formulas and 5 is the time at which the contradiction has been
detected. in addition to asserting that the contradictands have been distrusted, they are in fact distrusted also. We now
get into the contradiction handling procedures. The first thing is to compute whether the contradictands depend on
defaults, we get:
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defaul t _apps(29, [[23]]).
defaul t _apps(30, [[24]]).

This says that there is just one derivation for formula 29 and default 23 is in that derivation, and similar information
for default 30. The result is that both contradictands depend on defaults:

depends_on_def aul t (29).
depends_on_def aul t (30).

So that neither contradictand can be trusted and we go ahead and distrust the consequences of the defaults. Note
that when we get the contradiction we distrust the consequences of the contradictands, but here we distrust the con-
sequences of the default itself which might have been applied several inference steps earlier and from which other
formulas might have been obtained and will now be distrusted.

NN

eval _bound(di strust _applied_defaul ts(29, [[23]]),
eval _bound(di strust_applied_defaul ts(30, [[24]])

—_——
—_——
——
[R——
[R——
~— —

The consequences of these are located and distrusted and nothing new is derived other than the assertions that these
consequences have been distrusted which we do not reproduce here. Therefore the logic has no opinion as to whether
Tweety flies or not.

8.3.5 Default application removed by a hon-defeasible formulas

In this case, the default applies and after that, non-defeasible information is available that contradicts the default. The
default is then removed. This case is similar to the corresponding case above except that the fact that Tweety does not
fly is added later. Just as the first case, the logic asserts that Tweety flies from the birdsFly default:

flies(tweety).
If we now add that Tweety does not fly, we get a contradiction as above. But this time, (after a few steps):

defaul t _apps(22, [[18]]).
defaul t _apps(27, [[11).

The non-defeasible formula (27) does not depend on any default. This is asserted at the next step:

depends_on_defaul t (22).
not (depends_on_def aul t (27)).

In this case, the fact that Tweety does not fly is reinstated and we go on to distrust the consequences of the default
instance that birds fly applied to Tweety:

eval _bound(di strust_applied_defaul ts(22, [[18]]), [[[218]]1])-
not (flies(tweety)).

After distrusting the appropriate formulas, nothing changes and the logic contains the fact that Tweety does not fly.
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8.3.6 Default application removed by a preferred default

This is similar to the above case except that this time a more preferred default is applied which removes the first
default. We do this just like the above preference case except that we assert that Tweety is a penguin after we have
derived that it flies instead of doing so in the initial KB.

After applying the first default, we get:
flies(tweety).

We then add the assertion that Tweety is a penguin:
pengui n(t weety).

The usual process of applying the penguinsDontFly default starts. The logic first determines that there is no more
preferred default that would block the application of this default and asserts:

def con( pengui nsDont Fl y(tweety), not(flies(tweety))).

The next task is to delete the default applications that are less preferred than this. This deletes the consequences of the
application of the default that birds fly so that the following formulas are no longer in the KB:

appl i ed_defaul t (birdsFly(tweety), flies(tweety)).
add_default _concl usi on(birdsFly(tweety), flies(tweety)).
flies(tweety).

And the rest of the application of the penguinsDontFly default proceeds normally and we eventually get:

not (flies(tweety)).

8.4 Futurework

There are several ways this logic could be modified to give better results. These modifications all come at the cost of
greater complexity and slower performance. Whether these will be of benefit practically is not clear. We might have
a logic that covers more theoretical cases that do not appear often (or ever) in normal usage. The question is then
whether the added cost of computation is worth these few cases.

84.1 FOL completeness

The logic was based on the assumption that the underlying first order system was complete (except for the reaction to
inconsistencies) and this is not the case for Alma. To remedy this situation, we would need to change Alma so that it
is complete in the forward direction. This will cause harder control problems however. Another possibility is to use
Alma in the backward direction for default queries. This will require backward reasoning through defaults which is
not done now. Another approach would be to characterize more closely what is lost in not having this completeness
and whether these ares are to be handled.



113

84.2 IDs

As we pointed out above, this implementation does not deal with IDs the way the logic requires and it would seem that
there are cases where the implementation would deviate from the logic in the results of the computation. Therefore
one of the tasks is to make IDs explicit and to reason about them in the way the logic requires.

8.4.3 Control

The control problem is a general one and applies not only to the mistake handling with non-monotonic language but to
Alma in as well and to the logical approach to reasoning in general. In the context of this implementation though, one
could search for control heuristics that would make computing defaults more efficient and make the inferences more
relevant to the queries of interest.

8.4.4 Inferring preferences

Our nonmonotonic logic requires that the preferences in the domain be explicitly represented. However, in many cases,
preferences can be inferred from the structure of the domain. This is particularly the case for hierarchical information
where specificity can be used to deduce default preference. This sort of computation can be implemented in the logic
using meta-representations of Alma.

8.5 Conclusion

We have presented an implementation of the rules for the previous chapter for handling mistakes using a non-
monotonic logic language. The implementation simplified the algorithms and are therefore less general than the
version in the previous chapter.

The resulting system was used to encode and test various samples of non-monotonic reasoning found in the literature.
For most of the cases, the logics did get the expected answers, in some cases after getting a wrong answer first. This
is a characteristic of the system and illustrates the improvement of the answers over time. Tests of the system on more
extensive problems are presented in the next chapter.



Chapter 9

Tests for non-monotonic logics

This chapter presents two separate but closely related topics. One is a test suite for non-monotonic logics, the other is
the performance of our logic on this test suite.

We have gathered a wide range of problems involving non-monotonic reasoning in the literature and have classified
them into categories based mainly on the structure of the problems. Each category has a number of problems with
different degrees of complexity. This test suite includes Lifschitz’s benchmark problems [104] and also others found
in the literature. We present one problem for each category here as illustration. The complete set of problems is found
in appendix 11.

The second purpose of this chapter is to give an account of the performance of our logic on that test suite. Some of
the categories were not solvable by our logic while others were partially solvable and in others yet, our logic solved
all the problems. In this chapter we provide a detailed account of the solution of one problem in each category. The
encoding for the other problems in that category that we solved is found in appendix ?7?.

9.1 Comparing reasonersvscomparing logics

We begin by justifying the need for a test suite for non-monotonic reasoners. After all, it would seem that the appro-
priate way to test a reasoner would be to specify it accurately, prove properties about it and compare these properties
among different reasoners. The distinction we make here is that we want to compare implemented logics. These may
not have as clean a characterization as we may like, and the set of properties might not be easily derived. Also, the
dynamic characteristics of the logics need to be taken into account in the comparisons. It is therefore valuable to have
a way to test these implementations and our approach has been to gather an array of sample tests from the literature
and classify them into categories that seem to require similar capabilities of the reasoner.

911 KLM

Kraus et al (KLM)[94] characterized consequence relations for non-monotonic logics using a few properties that are
believed to be important and useful for non-monotonic reasoners. This work enabled a large variety of logics to
be compared according to whether they had or did not have these properties. This was very valuable in that the
earlier method of comparing logics essentially consisted in finding examples that one logic could express and reason
intuitively with and another couldn’t. The new approach made the comparison more systematic.

When it comes to comparing implementations of reasoners though, this approach is not directly applicable since it
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requires us to first of all derive the KLM properties of the implementation. This may not always be possible for more
practically oriented implementations. Things do not always proceed cleanly from a well specified semantics and proof
theory to algorithms and to implementations. The non-computability of non-monotonic logics also complicates issues
since a logic that will theoretically give us the right answer some day is not as interesting as an implementation that
does give us the right answer in a short time. A complement to this approach then is to have a suite of tests that the
implementations can be run on and the implementations compared based on the tests that they successfully pass.

9.1.2 Comparingimplementations

We have started work on such a suite of tests to test the capabilities of the logic described in the previous chapter. We
have gathered a number of examples of non-monotonic reasoning in the literature and have classified them in various
categories. The intention is to compare implemented logics through the identity and number of the categories for
which they give reasonable answers in a reasonable time span. There are still issues of speed of reasoning, scaling up,
ease of encoding and more that we have not addressed. However we think that this is a basis on which to build a better
tool for testing implementations of non-monotonic logics.

Ideally, a non-monotonic reasoner should be able to solve all the problems in the test suite. However, that need not
be the case. Just as we propose a range of mistake-handling approaches, it is advantageous to have a range of non-
monotonic logics which solve different subsets of the test suites. The gain then can be better efficiency or better
temporal characteristics in the special cases. However, knowing what cases a particular reasoner can or cannot handle
is important.

9.2 Human non-monotonic reasoning

While it is desirable to have non-monotonic reasoners that solve a very wide range of non-monotonic reasoning
problems, it is interesting to verify whether people do those sorts of non-monotonic reasoning. After all, a motivation
for non-monotonic reasoning has been the sort of reasoning people do everyday as opposed to the more strict reasoning
in mathematics and logic.

9.21 Everyday reasoning

Galotti [60] surveys the psychological literature on different types of reasoning up to 1989. She makes a first distinction
between thinking and reasoning: thinking includes reasoning, problem solving, decision making and brainstorming.
Reasoning is taken to be a type of thinking and is defined as a mental activity that transforms information to reach
some conclusion. The mental activity has to be focused on some goal and must be consistent with logic if all the
premises of the reasoning are specified. However the conclusions need not be deductively valid in general. A further
distinction is made between formal and everyday reasoning. Figure 9.1 contrasts the characteristics of these forms of
reasoning tasks.

‘We note that nonmonotonic reasoning problems share some of the characteristics of everyday reasoning but the for-
malism we develop here seems more apt for tasks that satisfy more of the conditions.

o While tasks given to standard nonmonotonic formalisms might have several answers, the formalisms do not in
general have a notion of the quality of the answers. Our formalism will have a notion of the quality of answers:
the longer we compute, the better the quality the answer will be.

e Similarly, in our formalism, it is not known when we have reached the ’right’ answer. All we can say is that
if we compute more, we will not get a worse answer. Therefore it is better suited for tasks where there is not
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Formal reasoning Everyday reasoning
All premises are supplied Some premises are implicit or not supplied
Problems are self-contained Problems are not self-contained
There is typically one correct answer There are typically several correct answers that differ
in quality
There usually exist established methods of inference that | There rarely exist established procedures to solve the
apply to the problem problem

It is typically unambiguous when the problem is solved One often wonders if the *best’ solution is good enough
The content of the problem is often of limited academic | The content of the problem has personal relevance
interest
Problems are solved for their own sake Problems are solved as a means of achieving other
goals

Figure 9.1: Formal and everyday reasoning

necessarily a point at which one has obtained the correct answer and the computation can stop.

o Finally, we plan to use our formalism in non-toy domains where the tasks are not just of academic interest.

The views of the relationship between formal and everyday reasoning cover the range from formal reasoning being a
part of everyday reasoning to the view that they share different processes and share few similarities. An interesting
difference noted by [140] to support that last point is that formal reasoning has a “long-chain structure” whereas
everyday reasoning has a “fork” structure. The long-chain structure uses many individual steps each leading to the
next, whereas in the fork structure there are many short lines of argument, each with some degree of certainty, but
which all converge on the solution.

Chapman [29] argues that everyday reasoning includes social and communicative argumentation and develops from
argumentation in discourse. Since he claims that everyday reasoning has discourse origins, conversational norms, in
particular, Grice’s maxims play an important part in everyday reasoning. He explains some of the errors people make
in formal reasoning as being caused by the assumption of Grice’s maxims in these cases. For example, if told “If it
rains the grass is wet” and “The grass is wet”, a common error people make is to think that it has rained. This is
explained by them applying Grice’s maxim of relation and quantity and therefore assuming that no other information
is relevant to the situation (for example that the sprinkler is on).

Chapman links everyday reasoning with nonmonotonic reasoning through Grice’s maxims which have a “deep kin-
ship” with nonmonotonic reasoning (in chapter ?? we present work that formalizes some of Grice’s maxims in a
nonmonotonic logic) . In both nonmonotonic reasoning and reasoning with Grice’s maxims, inferences are made from
an absence of information and the inferences made may have to be later retracted. Logics of conversation and everyday
reasoning may have a common structure in which Chapman suggests, nonmonotonic reasoning could be important.

Metareasoning is closely linked to commonsense reasoning in that one could view the jumping to conclusions that
nonmonotonic reasoning does as a form of reasoning about what assumptions or axioms the logic should work with
and finding the consequences of these. Reiter, for example, takes this view and sees his default rules as meta-rules of
inference. Given the similarities between everyday reasoning and commonsense reasoning, we would expect there to
be an analogous connection in psychology between everyday reasoning and metareasoning [131, 132]. This does not
seem to be the case, and it would be interesting to find the reasons for that.

9.2.2 Human experiments

We now turn to some experiments done on humans to test whether they do default reasoning as is usually taken to be
the case.



117

Elioand Pelletier experiments

The work of Elio and Pelletier [137, 49, 50, 138] focuses on human performance in default reasoning. They argue that
default reasoning is “psychologistic” in that there is no notion of correct inference other than what people do. They
reject using intuitions to construct formalisms for default reasoning and insist that empirical investigations of human
behavior is necessary.

The experiments they did are base on the first four of Lifschitz’s benchmark problems. The problems given to the
subjects were modified and elaborated with extra information. In these problems there are two objects and a number
of default rules. One of the objects is known to be exceptional by not obeying some of the defaults. The problem is to
decide whether the other object does obey the defaults.

The results were that people did generally apply the defaults to the object in question but that was influenced by two
factors:

o the specificity of the information about the exceptional object and why it violated the rules

o the similarity between the exceptional object and the object people were meant to reason about.

The conjecture of the authors was that people reject the defaults if they can construct alternate scenarios to explain the
violations. Other findings are that

o People do better with natural kinds than with artificial kinds—people seem to have less confidence that artificial
classes behave like natural classes when it comes to defaults.

e There seems to be a heuristic that if an object is exceptional in one sense, it is likely to be exceptional in other
senses also.

These results are not the ones predicted by Al theories where the fact that one object violates one default does not
affect its obeying another and where one object violating a default does not affect another object obeying that default.
Also there is no distinction made between natural and artificial kinds.

Ford and Billington

[58] gives an account of experiments on default reasoning to investigate people’s performance on defeasible and non-
defeasible rules. In these experiments they controlled for prior knowledge, beliefs and opinions. The Elio and Pelletier
experiments involved elaborate stories that appealed to people’s prior knowledge. These experiments, however, was
about supposed plants and animals from a far off galaxy so that they were not meaningless but not as loaded with
meaning as Elio and Pelletier.

The problem set consisted of 14 problems that systematically varied the interaction between defeasible and non-
defeasible information and the degree to which they conflicted. Most Al formalisms they used agreed on all of the
problems except for one problem.

In those problems with no conflicts, the results followed the Al predictions very closely. However, when it came to
conflicts, the match between human performance and the Al conclusions differed much more. There was an especially
large difference when it came to reasoning about conflict with specificity.

Ford and Billington identified some negative and some positive factors from these experiments. Some of the negative
factors are that:

e people are reluctant to draw tentative conclusions when faced with conflicting defeasible rules.
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e people seem to count the number of paths leading to a conclusion.

e people seem to take the length of the path into account without consideration for the rules along the path
Some positive factors are that:

e people recognize that if all Xs are Ys, then there can be Ys that are not Xs.
e people recognize that if all Ys are Zs then any Xs that are Ys are Zs

e people recognize that if Xs are usually Ys, there are many Y's that are not Xs potentially.
The conclusions Ford and Billington draw are that:

o People don’t use specificity.
e People are unwilling to come to conclusions when they have no previous experience in the domain.

o When people do draw conclusions, they are neither coherent nor rational.

The significance of theseresults

While we agree with Elio and Pelletier on the inadequacy of using intuition for determining the behavior of non-
monotonic logics, their emphasis on empirical investigations as the only way to validate non-monotonic reasoning
seems misplaced. As they themselves recognize we do not reject first order logic given the results of Wason [188].
What we need then is a justification of default reasoning other than intuition and human performance. One suggestion
is that one can consider the utility to an agent operating in the world to have and to use defaults and preferences among
defaults. The intuition is that a rational agent would use defaults, it is unclear though what behavior would be optimal.
Refusing to use defaults would most certainly paralyze the agent. Using defaults without care for their applicability
does not seem to be right either. We believe that some sort of use of defaults with a readiness to correct mistakes might
be a good behavior. This sort of study has been done in the context of probabilistic reasoning [167, 84].

The finding that people seem to take more than just the logical structure of the problem into account and the conjecture
by Elio and Pelletier that people construct scenarios to explain the violations of the rules and apply these to other
objects is very interesting. Logics in general, lack the context sensitivity for these sorts of behavior. This could be
realized by an agent who notices an inconsistency or incoherence and instead of simply looking for a default that can
fail, it does a more general diagnosis and searches for a explanation which it then uses in further reasoning. This is
beyond the scope of the current work but could be explored using Alma as framework.

While we may not be directly interested in modeling human behavior but instead are interested in getting agents to
operate effectively in the world, experiments on how humans reason are invaluable since the world the agents operate
in are usually designed and invariably described by people and because the agent typically has to interact with people
and has to take their actions into account.

9.3 Categories

There are a great many examples of non-monotonic reasoning problems in the literature. The examples seem to fall
into those illustrating prototypical behaviors of non-monotonic reasoning and other examples that are meant to show
some shortcoming in some formalism. To have a better handle on these, we classified the examples into 12 categories.
The criteria for our classification involved the structure of the problem and the sorts of resources required to solve
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them. There are also several examples that can be mapped onto one another with a simple change of names. In those
cases, we picked one of the examples only so that as far as possible, the examples exercise different capabilities of the
logics.

9.3.1 Thelifschitzbenchmarks

In a well known set of problems, Lifchitz [104] lists a number of benchmark non-monotonic reasoning problems
according to the sorts of reasoning they represent. The aim of this benchmark was to verify whether a logic could for-
malize the problems rather than to implement them. We are however also interested in solutions to these problems in an
implementation. Lifschitz has five major classes: default reasoning, inheritance, uniqueness of names, reasoning about
action and autoepistemic reasoning. Within each class, he presents several problems that differ in complexity. For ex-
ample, in the default reasoning class, the examples go from “basic default reasoning” where the main task is a default
application, to “reasoning about priorities” where the reasoner is meant to derive a conditional whose antecedent is a
statement about the priorities of defaults. While it seems that every reasoner should solve the first example, the last
one seems to require more expensive capabilities, including meta-reasoning and the ability to make assumptions and
reason with them. Similarly, in the “reasoning about actions” category, the problems range from “frame problem for
temporal projection” in which the reasoner has to conclude the results of an action to “counterfactual reasoning about
unexpected change”.

That classification while appropriate for describing the sorts of problems one may express with non-monotonic logics
does not seem well suited for testing the capabilities of a reasoner. The problems within each category seem to require
a reasoner with a wide range of capabilities to solve them.

9.3.2 A capability-based classification

We preferred to classify the problems we found, including those from [104] into categories that seem to require
similar capabilities. This allows us to possibly compare different reasoners based on the categories of problems that
they can solve. For instance, we may say that some reasoner solves the single default cases, but not the multiple
inconsistent defaults cases. This classification may give a better measure of the capabilities of implemented non-
monotonic reasoners. This classification was based on our reasoner and different reasoners may have different natural
classifications. This is to be investigated further.

The categories we picked are: 1. Simple default application; 2. Multiple consistent defaults; 3. Multiple inconsistent
defaults with explicit or implicit preferences; 4. Multiple inconsistent defaults with no preference; 5. the Closed
World Assumption; 6. Epistemic reasoning; 7. Reasoning about names; 8. Reasoning about action; 9. Reasoning with
assumptions; 10. Diagnostic reasoning; 11. Minimization; and 12. Miscellaneous problems.

An account of these categories with examples and our solutions to the examples is presented next.

9.3.3 Reasoningintime

The categories above and indeed all of the examples in the literature do not typically consider the change in the beliefs
of the agent doing the reasoning as time passes. This is the case even for cases of temporal reasoning because there
the agent is typically seen reasoning about time, as though time is just another variable, rather than reasoning in time—
reasoning as the world changes. It seems reasonable to suppose that most agents operating in the world will not have
all the relevant information to the solution of a problem presented to them at one time at the start of the reasoning.
Rather, information will come a little at a time with the agent possibly concluding false facts during the course of
reasoning. This time-sensitivity is a distinctive aspect of active logics and a crucial aspect of any agent that is to
operate in the world. Most of these examples found in the literature can be put in a time-situated framework where the
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relevant information is provided over time rather than all at once and in different orders. The relevant measure then
would be the way the KB of the reasoner changes over time rather than its final state.

9.4 Tests

We now describe the categories into which we gathered the non-monotonic reasoning examples that we found and
give a representative example from the literature. We show the solution to that example in our logic if available. The
encodings are shown as the sentences input into Alma to describe and solve the problem. In our encodings, we do not
include the Alma formulas that correspond to the rules for applying defaults or resolving contradictions. The behavior
of the system is shown as a sequence of interesting events in the computation and the steps at which they occurred.
These interesting events are the addition of interesting formulas by the logic, as well as their distrust and deletion. The
addition of formulas to the KB by the user is also included in the list.

9.4.1 Result summary

The results of applying the problems to our logic are summarized below:

Problems solved appropriately | 46
Problems not attemptedf 23
Problems not solvable} 24
Total problems 93

1 These problems were very similar to problems that had been successfully solved and we did not attempt to solve
them. It is expected that they too would be sucessfully solved.

1 These were problems that could not be expressed in the language or cases where there are no procedures in the
language to solve the problems. These include:

— Assumptions. In these problems, the solution required the logic to make some assumption. The logic can-
not currently make assumptions and reason about their consequences. This is a deficiency in Alma/Carne
and once this is solved, these problems should be solvable.

— Minimization of instances. While we can successfully minimize subsets of large classes (see below for
examples), we have not implemented the procedures or the logic to enable this in our logic. Therefore, we
cannot minimize the extent of predicates so that we account for only some individuals.

— Diagnosis. These problems involved diagnostic reasoning. The kind of reasoning done in our logic to
diagnose contradictions is very simple and cannot be used to solve these problems. This would require a
separate diagnostic reasoning module to be added to the logic. This can be modeled logically and make
use of the meta-representations available in Alma.

9.4.2 Simple default application

This category of examples consists of applying a default given that the premises are true.

An example

This is example Al of the benchmark problems [104].
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Assumptions:

e Blocks A and B are heavy.
e Heavy blocks are normally located on the table.

e A is not on the table.
Conclusions
e B is on the table.

This illustrates that even though heavy blocks are usually on the table, we do not always conclude that. In this case
we know non-defeasibly that A is not on the table, so the default does not apply in this case. In addition, the non-
application of the default to A does not affect its application to B.

Our encoding

This is a rather straightforward application of a default.

and( bl ock(a), heavy(a)).
and( bl ock(b), heavy(b)).

% Heavy bl ocks are normally | ocated on the table

nanmed(fif (and(bl ock(X), heavy(X)),
concl usi on(def con( heavyOnTabl e( X), onTable(X)))),
heavyOnTabl e( X)) .
def aul t (heavyOnTabl e( X)) .

%ais not on the table
not (onTabl e(a)).

Behavior

Step  Formulas
4 onTabl e(b)

This formula stays in the KB thereafter.

9.4.3 Multiple Consistent defaults

Instead of just one default as above, we now have multiple defaults. These are not inconsistent but may have interesting
interactions among one another. Reiter and Criscuolo [161] list a set of examples in all of which the following defaults
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are present: 1. Typically As are Bs and 2. Typically Bs are Cs. Each example then adds an additional link between
these defaults, for example that “No As are Cs”, “As are typically not Cs” and so on.

Example
The example we choose to illustrate this category is one of those from [161]:

1. Typically Asare Bs
2. Typically Bsare Cs

3. Itisnot the case that typically Asare Cs

Given an object thatis an A, isita C?

Our encoding

We want to deny that As are typically Cs, which is different from asserting that As are typically not Cs (see [126]).
The difference is apparent if we have an object that is an A but not a B. In the first case, there should be no conclusion
whereas in the second case we assert that the object is not a C.

The denial is represented by a default that defeats itself: if an object is an A and a C, then it is typically not a C. The
consequent of the default causes a contradiction which results in suspending belief about the object being a C. Since
the antecedent of this denying default will only be derivable when the fact that the object is a C is derived, we do not
get the problem of asserting spurious negations as above. The representation of the denial that As are Cs is best seen
as a constraint in the KB—there are typically no cases where something is an A and a C. If there is such a case, then C
cannot hold. At this point, the active logic detects the contradiction and removes it which leaves us with no opinion
as to whether the object is a C. Note that if we assert that some object is both an A and a C, that will not generate a
contradiction because the denial default will not apply. We can take this kind of sentence as expressing denials in our
logic.

% Typically As are Bs
ly

% Typi cal Bs are Cs
nanmed(fif(a(X), conclusion(defcon(asbs(X), b(X)))), asbs(X)).
defaul t (asbs(X)).

named(fif(b(X), conclusion(defcon(bscs(X), c(X)))), bscs(X)).
defaul t (bscs(X)).

%1t is not the case that typically As are Cs
% This is rendered as If both Ax and Cx, then Cx is not the case.

nanmed(fif(and(a(X), c(X)), conclusion(defcon(denyAC(X), not(c(X))))),
denyAC( X)) .
t (denyAC(X)) .

a Q
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Behavior
Step Event
4 Add a(anna) We add this formula
8 Add b(anna) From the default As are Bs
12 Addc(anna) From the default Bs are Cs
16 Addnot (c(anna)) From the denial default
17 Distrusted c( anna) From the contradiction
17 Distrusted not (c(anna)) From the contradiction

17 Added contra(43, 35, 16) From the contradiction

This contradiction does not get resolved because there is no preference for one or the other of the contradictands, so
we do not assert anything about ¢c( anna) . This seems to be the appropriate response to this problem.

9.4.4 Multipleinconsistent defaultswith explicit preferences

In these cases, there are several defaults that could apply because their premises are true, but they cannot apply jointly
because that will cause an inconsistency. However we do have explicit preferences between the defaults which helps
decide what the contents of the KB should be.

Example

This example is from [5]. The preferences between the defaults are represented by an epistemic entrenchment ordering
[69].

1. Sicilians are normally hotheaded.

2. Blondes are normally not hotheaded.

The entrenchment is given by:
sieilian(X) — —hot(X) < sicilian(X) — hot(X)
blonde(X) — hot(X) < blonde(X) — —hot(X)
sicilian(X) A blonde(X) — —hot(X) < sicilian(X) A blonde(X) — hot(X)

Queries:

1. Fiorais Sicilian. Is she hotheaded?
2. Johanna is blonde and German. Is she hotheaded?

3. Rachel is a blonde Sicilian. Is she hotheaded?

Encoding

We represent
sieilian(X) — —hot(X) < sicilian(X) — hot(X)
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This is represented as a two defaults and a preference. A default that Sicilians are typically hotheaded and one that
Sicilians are typically not hotheaded. The preference is that the first default is preferred to the second. The facts about
blondes are similarly represented.

The last set of formulas:
sicilian(X) A blonde(X) — —hot(X) < sicilian(X) A blonde(X) — hot(X)

is represented as a preference for Sicilians being hotheaded to blondes not being so. This is not the only way these
defaults could be encoded. This approach seems closer to the original expression of the problem.

% Typically sicilians are hot headed
named(fif(sicilian(X),
concl usi on(def con(sicilianNotHot (X), not(hot(X))))),
sici | i anNot Hot ( X)) .
defaul t (sicilianNotHot (X)).

% Typically sicilians are not hot headed
named(fif(sicilian(X),
concl usi on(defcon(sicilianHot(X), hot(X)))),
sicilianHot (X)).
defaul t(sicilianHot (X)).

prefer(sicilianHot(X), sicilianNotHot(X)).

% Typi cal | y bl ondes are hot headed
nanmed(fif (bl onde(X),
concl usi on(def con( bl ondeNot Hot (X), not(hot(X))))),
bl ondeNot Hot ( X)) .
def aul t (bl ondeNot Hot ( X)) .

% Typi cal | y bl ondes are hot headed
nanmed(fif (bl onde(X),
concl usi on(def con( bl ondeHot (X), hot(X)))),
bl ondeHot (X)) .
def aul t (bl ondeHot ( X)) .

pr ef er (bl ondeNot Hot ( X), bl ondeHot ( X)) .

% This takes the place of the third set of fornulas
prefer(sicilianHot (X) deNot Hot ( X)) .
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Behavior
Step Event
5 Addsicilian(fiora) We add this to the KB
9 Add hot (fi ora) Since Fiora is Sicilian, she is hotheaded
12 Add ger man(j ohanna) We add this to the KB
12 Add bl onde(j ohanna) We add this to the KB
16 Addnot (hot (j ohanna))  This is from Johanna being blonde
28 Add bl onde(rachel) We first just add that Rachel is blonde

32 Addnot (hot (rachel)) This is because Rachel is blonde

38 Addsicilian(rachel) We later find that Rachel is Sicilian

40 Delete not (hot (rachel ))  Since Rachel is Sicilian, the blondeNotHot default is not applicable
42 Add hot (rachel) The default that Sicilians are hotheaded wins

Note that we add the information about Rachel at two different times. We first state that Rachel is blonde which lead
to the conclusion that she is not hotheaded. When we later add the fact that she is Sicilian, the previous conclusion
cannot stand and it is removed from the KB before adding the conclusion that she is hotheaded. This illustrates the
“reasoning-in-time” aspect of active logic.

9.45 Multipleinconsistent defaultswith implicit preferences

In this case, there are inconsistent defaults and the examples do not specify any preference between them. However,
by inspecting the problem, it is clear that there are implicit preferences. These are typically specificity preferences: if
an object a of class C' has property P and an object b is in class /D which is a subclass of C' and has property — P, then
the apparent contradiction between these properties is resolved by picking the property associated to the more specific
class. In this case, we take b to be = P.

Our logic does not derive these specificity preferences so these problems cannot be solved appropriately unless we
make explicit the preferences. Having the logic infer the preferences can be done using the meta-representations
possible in Alma. See the examples on minimization for how this could be done.

We do not present any example of this here since if we add preferences explicitly, this becomes like the above case,
and if we don’t, it becomes like the next case. The appendix, however, has examples of this kind of problem.

9.4.6 Multipleinconsistent defaultswith no preferences

In this case, there are defaults that lead to inconsistency but no preferences, either explicit or implicit so the logic is
given no indication as to which default it should prefer. Our logic finds IDs and ends up with no opinions about the
facts of interest although it might initially assert that the facts are true or false. In this case too, the logic behaves as
expected.

Example

The best known example of this type is the Nixon Diamond problem [161].

Typically republicans are not pacifists.
Typically quakers are pacifists.
John isboth a quaker and a republican. IsJohn a pacifist?
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Encoding

The defaults are encoded in the usual way, without any preference between them:

90008
% Republ i cans are typica
nanmed(fif (republican(X),

concl usi on(def con(repnot pac(X), not(pacifist(X))))),

repnot pac( X)) .
def aul t (repnot pac(X)).

y not pacifists

% Quakers are usually pacifi st
nanmed(fif (quaker (X),
concl usi on(def con(quaker pac(X), pacifist(X)))),

guaker pac(X)) .
def aul t (quaker pac(X)) .

% John is republican and quaker
and(republican(john), quaker(john)).

Behavior

In this case, there are no conclusions about John.

9.4.7 Closed World Assumption

The closed world assumption is made by assuming facts are false unless we know otherwise. It is not possible and not
practical if it were possible, to generate the negation of all formulas in our logic. Instead, when using the CWA, we
need to make its use explicit in the formulas it is needed in. This is a shortcoming of the forward chaining approach
of Alma.

The CWA is represented as a default that expresses that the formula we are interested in is false, and that default is
less preferred than the other defaults. So the logic usually derives the formula is false but any evidence that it is not so
causes the logic to change its KB.

Example

This example is from [156]:

Consider an extensional databasewith
Teacher = {a,b,c,d}

Student = {A, B,C}
and the Teach relation: (a, A), (b, B), (¢, C), (a, B).

Query: who does not teach B?

The answer we want is {c, d}.
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Encoding

Query answering is not very elegant in active logic because of the forward chaining nature of the logic. One solution
is to start a backward search for the answer. Another is to allow the logic to derive the answer in its usual forward
chaining mode. This is the approach we take here.

An axiom is used to generate queries about whether each teacher teaches the student. The default implementing the
CWA concludes that each of the queries is false. However, if there is a fact that shows the query to be true, the default
does not apply. And if the default does apply, denying the query, and later on, there is a derivation that the query is
true, the denial is removed.

Note that this solution does not wait for proof that the query cannot succeed as would be expected for the usual
implementations of the CWA. It assumes the query is false, and if we have better information later, it changes its mind.

% Any query is assuned f
nanmed(fif(query(X), conclusion(defcon(cwa(X), not(X)))), cwa(X)).
defaul t (cwa(X)).

% Facts about teachers and students
teacher (t A).
t eacher (t B).
teacher (tC).
teacher (tD).

student (sA).
student (sB).
student (sC).

teaches(tA, sA).
teaches(tB, sB).
teaches(tC, sO.
teaches(tA, sB).

% For each teacher, we query wheter that teacher teaches sB
fif(teacher(X), conclusion(query(teaches(X, sB)))).

Behavior

For each teacher X who does not teach B, we get not(teaches(tX, B)).

Step Event

2 query(teaches(tD, sB)) From the querying axiom
2 query(teaches(tC, sB)) From the querying axiom
2 query(teaches(tB, sB)) From the querying axiom
2 query(teaches(tA, sB)) From the querying axiom
6 not(teaches(tD, sB)) From the default

6 not(teaches(tC, sB)) From the default

This example illustrates a shortcoming of the Alma system as far as queries are concerned. Since the system is
essentially forward chaining, the query had to be transformed to be in the forward direction. The backward chaining
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facility in Alma does not assume the CWA or negation-as-failure as in Prolog. Therefore if that were used, the negation
would not have been obtained directly.

9.4.8 Epistemic reasoning

Epistemic reasoning or auto-epistemic reasoning is another popular domain for non-monotonic reasoning in the liter-
ature. In our implementations, we interpreted these problems in two ways. If the problem used epistemic reasoning to
solve other problems, we translated these problems to use the default reasoning formalism of the logic which does not
explicitly use any auto-epistemic information. For those examples that are meant to illustrate epistemic reasoning, the
introspection feature of Alma was used.

Example

This is example E4 from [104]

Assumptions:

o Blocks that are not known to be heavy are on the table.

e Block A is heavy.
Conclusions

e Block B is on the table.

Encoding

We use the negative introspection ability of Alma to represent the rule about blocks being on the table. We also need
to assert that B is a block.

% a is a heavy bl ock
and( bl ock(a), heavy(a)).

%b is a block
bl ock(b).

% bl ocks that are not known to be heavy are on the table.
i f (and(bl ock(X), not(eval bound(pos_int(heavy(X)), [X]))),
onTabl e( X)) .

v 4V

Behavior

Step Event
3 onTable(b) The rule is applied and B is on the table.
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9.4.9 Reasoning about names
The issue in reasoning about names is to reason about the uniqueness of names. The examples we found were straight-

forward cases of default application except that one had to make the distinction between objects and names of objects.
This was implemented in the logic by using a predicate nanes that maps names to objects.

Example

We illustrate this with example C1 from [104]

Assumptions:

o Different names normally denote different objects
e The names “Ray” and “Reiter” denote the same person.

e The names “Drew” and “McDermott” denote the same person.
Conclusions

e The names “Ray” and “Drew” denote different people.

Encoding

We use a predicate “names” to represent the names of objects in the domain and we have a default that if two objects
have different names then they are different. However, “Ray” and ‘“Reiter” name the same person as do “Drew” and
“McDermott”.

nanmed(fif (and(names( X1, Y1),
and( names( X2, Y2),
eval _bound(\+ X1 = X2, [X1, X2, Y1, Y2]))),
concl usi on(def con(dndo( X1, X2), different(Yl, Y2)))),
dndo( X1, X2)).
def aul t (dndo( X1, X2)).

%ray and reiter denote the sane thing
fif(and(names(ray, X), nanmes(reiter, Y)),
concl usi on(same(X, Y))).

% drew and nctdernott denote the same thing
fif(and(names(drew, X), nanmes(nctdernott, Y)),
concl usi on(same(X, Y))).

% sane is not different
if(same(X, Y), not(different(X Y))).

nanes(ray, pl).
nanes(drew, p2).

LLL
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Behavior

step Event
4 Adddi fferent (p2, pl) plandp2 are different by default
4 Adddi fferent (p2, p2) plandp2 are different by default

9.4.10 Reasoning about action

Reasoning about action is an important class of non-monotonic reasoning applications. Some of the earliest motivation
for non-monotonic reasoning was reasoning about action [109]. There are several such examples in the literature,
represented in different formalisms, mainly situation based [109, 159] or interval based[2, 92, 93]. Both of these ways
of reasoning about action can be represented in the logic. The same non-monotonic behavior is used in both sorts of
examples. The logic gives the results expected.

Examplel

This example is D1 from the benchmark problems [104]. Lifschitz uses a situation calculus approach to the repre-
sentation. Actions are represented as defaults with the preconditions and the fact that the action is executed as the
antecedent of the default and the result of the action as consequent. The law of inertia is also represented as a default
that maintains all properties by default while any action is done. The defaults representing actions are stated to be
preferred to inertia for the facts that they change only. This results in an action changing only the facts specified and
leaving all others unchanged.

Assumptions:

o After an action is performed things normally remain as they are.
e Any time a robot grasps a block, the block will be in the hand.

e If a block is in the hand then, after the robot moves it to the table, the block will be on the table.

Initially block A is not in the hand.

o Initially block A is not on the table.
Conclusions

o After the robot grasps block A, waits, and then moves it onto the table, the block will be on the table.

Encoding

This is a straightforward example. As each action is performed, the defaults enable the correct state of the world to be
computed. The action defaults have to be explicitly preferred to the inertia rule applied to the same action.

s performed things normally stay the same
naned(fif(and(do(A, S), holds(F, S)),
concl usi on(defcon(inert(A, F, S), holds(F, done(A S))))),
inert(A F, 9)).
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default(inert(A F, S)).

% any time the robot grasps a block it will be inits hand
naned(fif (do(grasp(B), S),
concl usi on(def con(graspi nhand(B, S),
hol ds(i nhand(B), done(grasp(B), S))))),
graspi nhand(B, S)).
def aul t (graspi nhand(B, S)).

%this is preferred over inertia that is about a grasp action
prefer(graspi nhand(B, S), inert(grasp(B), _, S)).
%if a block is inhand, after noving it to the table, it will be on the table
nanmed(fif (and(hol ds(i nhand(B), S), do(nove(B), S)),
concl usi on(def con( noveont abl e(B, S),
hol ds(ont abl e(B), done(move(B), S))))),
noveont abl e(B, S)).
def aul t (moveont abl e(B, S)).

% This is preferred to inertia.
prefer(nmoveontable(B, S), inert(nmove(B), inhand(B), S)).

nanmed(fif (and(hol ds(i nhand(B), S), do(nove(B), S)),
concl usi on(def con( novenohand(B, S),
not (hol ds(i nhand(B), done(move(B), S)))))),
nmovenohand(B, S)).
def aul t (movenohand(B, S)).
pref er (movenohand(B, S), inert(move(B), inhand(B), S)).

%initially block a is not in hand
not (hol ds(i nhand(a), s0)).

%initially block a is not on table
not (hol ds(ontabl e(a), s0)).

% r obot grasps, waits, and noves
do(grasp(a), sO).

do(wai t, done(grasp(a), s0))

done(wait, done(grasp(a), s0))).

do(rmove(a)
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Behavior
Step Event
2 Add hol ds(i nhand(a), done(grasp(a), s0)) Grasp action

5 Add hol ds(i nhand(a), done(wait, done(grasp(a), s0))) Inertia
6 Addnot (hol ds(i nhand(a), done(nove(a),

done(wait, done(grasp(a), s0))))) Move
6 Add hol ds(ont abl e(a), done(nove(a),
done(wait, done(grasp(a), s0)))) Move

Note that inertia about the location of the block does not come into play when the agent grasps or moves the block.

Approach 2

In this example from [168], we do not use a situation-based representation since we have to reason about intervals.

Facts are taken to be true at times rather than in situations. This causes a difficulty for the general approach we have
here. We need to progress the whole world through each time interval. This is done through an applyInertia action.
Progressing the world is easier in the case of situations since the actions that led to the situation are explicit in the
representation of the situation itself.

We represent actions using three statements: one representing starting the action, one for the ending and one for the
effects of the action. The effects of the action are represented as a default that is preferred to inertia. We assume rather
unrealistically that the effects of the action are effected only at the end of doing the action. Inertia fulfills the same
role as before, but in this case it is expressed in time intervals.

Example

Consider a box, B, and a car, C, both of which are located in the city of Linkoping at time O, which represents the
beginning of the scenario. The box is not in the car at time 0. Two action types are considered, namely to load a box
into the trunk of a car, and to drive a car to a specified city. From time 8:15 to time 8:20 the box is loaded into the
car; fromtime 8:40 to time 11:15 the car isdriven to Sockholm. Question: where isthe box at time 13:00?

Answer: thebox isin Sockholm

Encoding

Note that inertia is now specified between two time intervals and we use a predicate t r ueAt to represent what is true
at particular times. This encoding is not the most perspicuous and could be improved. It does however, illustrate how
the logic can be used in cases like this.

% Inertia
nanmed(fif(and(applylnertia(Ti, Tj), trueAt(X, Ti)),
concl usi on(defcon(inertia(X, Tj), trueAt(X, Tj)))),
inertia(X, Tj)).
default(inertia(X, Tj)).

%
%% | oadi ng a box
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% starting the | oad
fif(start(load(X, Y), Ti), conclusion(started(load(X, Y), Ti))).

% endi ng the | oad
fif(and(end(load(X, Y), Tj),
started(load(X, Y), Ti)),
concl usi on(done(l oad(X, Y), Tj))).
%the effects of the |oad:
nanmed(fif (done(load(X, Y), Tj),
concl usion(defcon(loadln(X, Y, Tj), trueAt(in(X Y), Tj)))),
loadln(X, Y, Tj)).
default(loadln(X, Y, Tj)).
% we prefer this to inertia
prefer(loadlin(X, Y, Tj), inertia(not(in(X Y)), Tj)).

%
%% driving
% starting the drive
fif(and(start(drive(V, X Y), Ti),
trueAt (inCity(V, X), Ti)),
concl usion(started(drive(V, X, Y), Ti))).
% endi ng the drive
fif(and(end(drive(V, X Y), Tj),
started(drive(V, X Y), Ti)),
concl usi on(done(drive(V, X, Y), Tj))).
%the effects of the drive: we |leave the city we started out from
naned(fif (done(drive(V, X Y), Tj),
concl usi on(defcon(driveNotInGity(V, X Tj),
trueAt(not (inCity(V, X)), T)))),
driveNotInCity(V, X Tj)).
defaul t(driveNotInCity(V, X Tj)).
% we prefer this to inertia
prefer(driveNotInCity(V, X, Tj), inertia(inCty(V, X), Tj)).

if(trueAt(in(Q V), Tj),
prefer(driveNotInCity(V, X Tj), inertia(inCty(O X, Tj))).

%the effects of the drive: we reach the destination
named(fif(done(drive(V, X, Y), Tj),

concl usi on(defcon(drivelnGity(V, Y, Tj),

trueAt (indity(V, Y), Tj)))),

drivelnGty(V, Y, Tj)).

defaul t(drivelnCity(V, X Tj)).
prefer(drivelnCity(V, X, Tj), inertia(not(inGty(V, Y), Tj)).
if(trueAt(in(Q V), Tj),

prefer(drivelnCity(V, X, Tj), inertia(not(inGCity(Q Y), T)))).

%
% general rul e about contai nment
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fif(and(trueAt(in(X, Y), Ti),
trueAt(inCity(y, O, Ti)),
conclusion(trueAt(inGity(X, ©, Ti))).

fif(and(trueAt(in(X, Y), Ti),
trueAt(not(inCity(yY, Q), Ti)),
conclusion(trueAt(not(inCity(X, Q), Ti))).

% general rule about trueAt

fif(trueAt(not(X, T)), conclusion(not(trueAt(X, T)))).

%

% Initial conditions

trueAt (not (i n(box, car)), 0).

trueAt (inCty(car, |inkoping), 0).

%

% t he sequence of assertions that represents the scenario.

% We can assert themin the correct sequence or all at once. It is
% easier to understand if we assert themin the right order though.
/*

af (appl yl nertia(0, 815)).

af (start (1 oad(box, car), 815)).

af (appl yl nerti a(815, 820)).

af (end(| oad(box, car), 820)).

af (appl yl nerti a(820, 840)).

af (start(drive(car, |inkoping, stockholn), 840)).

af (appl yl nerti a(840, 1115)).

af (end(drive(car, linkoping, stockholm, 1115)).

af (appl yl nertia(1115, 1300)).

Behavior

‘We assert the actions above one at a time to illustrate how the answer is built.



Step
4
8
8
11
12
15
19
19
22
23
25
27
28
31
35
35
35
39
40
44
48
48
48
52
53
55
55
57
57
58
58
62
66
66
66
66
66

Event

Add appl yl nertia(0, 815)

AddtrueAt (inCity(car, |inkoping), 815)
AddtrueAt (not (i n(box, car)), 815)
Addstart (| oad(box, car), 815)

Addst arted(l oad(box, car), 815)

Add appl yl nerti a(815, 820)

AddtrueAt (inCity(car, |inkoping), 820)
AddtrueAt (not (i n(box, car)), 820)
Addend(| oad(box, car), 820)

Adddone(l oad(box, car), 820)

Deletet rueAt (not (i n(box, car)), 820)
AddtrueAt (i n(box, car), 820)

AddtrueAt (i nGity(box, |inkoping), 820)
Add appl yl nerti a(820, 840)

AddtrueAt (i nGity(box, |inkoping), 840)
AddtrueAt (inCity(car, |inkoping), 840)
AddtrueAt (i n(box, car), 840)

Addstart(drive(car, |inkoping, stockholnj,
Addstarted(drive(car, |inkoping, stockholmnm,

Add appl yl nertia(840, 1115)

AddtrueAt (inGity(box, |inkoping), 1115)
AddtrueAt (inGCity(car, |inkoping), 1115)

AddtrueAt (i n(box, car), 1115)

Addend(drive(car, linkoping, stockholm,

Adddone(drive(car, |inkoping, stockholn,
Deletet rueAt (i nCi ty(box, linkoping), 1115)
Deletet rueAt (i nCity(car, |inkoping), 1115)

AddtrueAt (not (inCity(car, |inkoping)),

AddtrueAt (inCity(car, stockholn), 1115)

AddtrueAt (not (i nCity(box, 1inkoping)),

AddtrueAt (inGty(box, stockholn), 1115)

Addappl yl nertia(1115, 1300)

AddtrueAt (inGty(box, stockholn), 1300)
AddtrueAt (inCity(car, stockholn), 1300)

AddtrueAt (i n(box, car), 1300)
AddtrueAt (not (i nCity(box, 1inkoping)),
AddtrueAt (not (inCity(car, |inkoping)),

Added to the KB

Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Added to the KB

Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
Derived by the logic
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Note that in this case, the logic is being used to reason about the trip. It can also be used as an on-board reasoner for
the trip, coming to believe and facts as the trip unfolds.

9.4.11 Reasoning with assumptions

There are a number of examples in the literature (see appendix XXX) where one has to assume a fact and reason based
on this assumption. The assumption may not always be explicit but the most convenient solution to the problem seems
to require that the assumption be made. Alma does not reason with assumptions and so this class of examples cannot
be done in our logic. Alma can be modified to deal with assumptions in the same way it does backward chaining
proofs currently and in that case these problems will be solvable. This is to be done in the future.
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9.4.12 Example

An example of one such problem is the Hiding Turkey scenario from [168].

The world is as in the Yale Shooting Problem with two additional fluents: deaf-turkey and hiding-turkey. If the turkey
is not deaf, then when gun is loaded it goes into hiding. Firing only kills turkey if it is not hiding.

Initially the turkey is alive, not hiding, and the gun is not loaded. It is unknown if turkey is deaf. The events are: load
gun; wait; fire.

The conclusion we want to reach is that either the turkey is deaf and dead or non-deaf and alive.

The solution of the problem seems possible if we can assume at the beginning that the turkey is deaf and find the
consequences for this, then assume that it is not deaf and find the new consequences. Since the turkey has to be deaf
or not-deaf, we can then get the results desired. However, this sort of reasoning is not available in Alma.

9.4.13 Diagnostic reasoning

Several examples of non-monotonic reasoning involve diagnosing problems. Diagnosis using the defaults asserted in
the logic has not been explored in our system. Using non-monotonic logic for diagnosis has been studied before.

[158] gives an account of diagnosis from first principles with in a non-monotonic setting. The approach is to use logic
to describe the system as a set of interacting components, each of which behaves correctly provided it is not abnormal.
Defaults are used to assume that none of the components is abnormal. Observations of the system are asserted as first
order sentences. If the observations are of a malfunctioning system, not all the components are normal, therefore some
of the defaults cannot be applied. The task then is to find those combinations of defaults that are not used so that the
extensions of the system entail the observations.

In our case, the assumption that all components are functioning normally will lead to a contradiction with the obser-
vation of a malfunction. The CR rule will revise the assumptions that the components are normal so that we regain
consistency. However, the simple ways we have of determining which defaults are not to hold might not be sophisti-
cated enough to determine the best diagnoses.

Another approach to the problem is described in [33]. In this work, non-monotonic reasoning is used to do abduction.
This can be used to diagnose problems and malfunctions. The approach is to convert the logical description of the
domain using predicate completion and inferring deductively the abductive conclusions based on this transformed
theory and the observations. This is similar to the minimization examples we have elsewhere and could be done in our
logic with the caveats expressed as regards minimization.

Example

This is example D4 of [104] (Lifschitz). It is ostensibly about actions but there is a diagnostic reasoning/abduction
component to it.

Assumptions:

o After an action is performed, things normally remain as they are.
o When the robot grasps a block, the block will normally be in the hand.
o When the robot moves a block onto the table, the block will normally be on the table.

e Moving a block that is not in the hand is an exception to this rule.
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o Initially block A was not on the table.

o After the robot moved A to the table and then waited, A was on the table.
Conclusions
o Initially A was in the hand.

To deduce this conclusion, the logic needs to infer what should be the case for the block to be on the table after the
moves. We do not want to specify special defaults for that. The logic should make use of the defaults specifying the
effects of actions to do that. This would require using the defaults in the backward direction which the rules for default
application don’t support currently.

9.4.14 Minimization

Minimization problems involve the logic deducing that all members of a class except for the known exceptions have
some property. For example, assume that the reasoner knows that birds usually fly and that penguins usually don’t
fly, and this is all it knows about flying birds. Minimization causes the reasoner to assert that all birds except for
penguins fly. Similarly, if the reasoner knows that penguins usually swim but Joe and Fred are penguins that don’t,
then minimization will lead it to conclude that all penguins except for these two swim.

There are two sorts of examples that deal with minimization of predicates. One kind are those examples where one
is interested in computing the truth of some formula and minimization of defaults is simply a way of doing so, as in
circumscription. In the second kind, minimization is the objective of the reasoning.

In the first case, we can solve the problems without doing explicit minimization by translating them to our formalism.
Instead of circumscribing a formula, we use it in an appropriate default and the same problems can be solved.

In the second case, the logic can be programmed to do the minimization using the meta-reasoning capabilities of Alma.
However, it is not clear that this is a behavior one would necessarily want in a general non-monotonic logic since it
implies that we already know all the relevant information. Going back to the birds and penguins example, asserting
that all birds except for penguins fly seems to be reasonable only if we have some assurance that we know all of the
possible counterexamples to the default. This seems to be rarely the case. Indeed, a characteristic of non-monotonicity
is uncertainty and we should expect exceptions to any default [51]. Therefore explicit minimization is not a property
that we want a non-monotonic logic to have.

Our logic does do minimization in the case of exceptional subsets. It can be programmed to minimize based on
individuals in the same way. This last feature has not been implemented yet however.

Example

This is example B1 from [104]

Assumptions:

e Animals normally do not fly.
o Birds are animals.
e Birds normally fly.

e Ostriches are birds.
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o Ostriches normally do not fly.
Conclusions

e Animals other than birds do not fly.
o Birds other than ostriches fly.

e Ostriches do not fly.

If the assumptions are all that is true about the world, then the conclusions seem reasonable, but that is not the case.
Bats are animals that fly and penguins are birds other than ostriches that do not fly.

Encoding

This behavior is not part of the default reasoning rules of our logic. However, Alma can be used to specify this sort of
computation. This is what was done here. This required a fair amount of prolog code to manipulate the defaults and
other formulas.

% ani mal s usually do not fly

named(fif (ani mal (X), concl usion(defcon(ani mal sDontFly(X), not(flies(X))))),
ani mal sDont Fl y( X)) .

def aul t (ani mal sDont Fl y( X)) .

% birds are ani mal s

i f(bird(X), animal(X)).

% birds normally fly
nanmed(fif (bird(X), conclusion(defcon(birdsfly(X), flies(X)))), birdsfly(X)).
defaul t (birdsfly(X)).

% prefer(birdsfly(X), animalsDontFly(X)).

% ostriches are birds

i f(ostrich(X), bird(X)).

% ostriches nornmally do not fly.

named(fif(ostrich(X), conclusion(defcon(ostrichesdontfly(X), not(flies(X))))),
ostrichesdontfly(X)).

defaul t (ostrichesdontfly(X)).

fif(and(find_exceptions(X),

and(defaul t (Y),
eval _bound(is_an_exception(Y, Z, X, [X Y]))),
concl usi on(exception(Y, Z, X))).

% exception(Y, Z, X) neans that the forrmula naned Y says that the cpndition
% Z is an exception to the default named X

%that is, it is consistent for the antecedent of X and Z to be true but
% in those cases, the default X fails.
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fif(and(find_qualification(D),
eval _bound(qualify_default(D, Q

9.4.15 Miscelaneous

There are some miscellaneous problems that do not seem to fit in any of the categories above. These include reasoning
with inconsistent justifications, and reasoning about integers.

9.5 Conclusion

We have presented an example from each category of a proposed test suite for non-monotonic logic implementations
and have shown how our logic performs in that suite. There is a lot of work that needs to be done on the test suite to
improve its usefulness, this being only the first sketch of such a tool. We have also shown that our logic performs as
expected in a large variety of examples, however, there still are classes of examples that it has difficulty with. That too
is scope for future work. More examples of the problems in the test-suite and more results of out logic are found in
the appendices.



Chapter 10

A design for mistake handling in agents

In this chapter we present a design for an agent that reasons and acts in a changing world with incomplete and uncertain
information.

The previous chapters were concerned with more limited agents which could be implemented with relatively simple
algorithms. We now relax some of the simplifying assumptions used earlier and the algorithms have to be designed
accordingly. We need to make more of the representations and procedures explicit and declarative. This makes the
system more flexible and capable, but also more complex and less efficient.

The benefits we expect include the ability to handle a large range of mistakes and errors without having to explicitly
have a solution for every possible mistake. Especially interesting is the ability to predict that an action or plan that the
agent has decided to execute is mistaken before any actions are taken in the world. This however comes at the cost
of greater complexity and slower execution. We consider how this can be mitigated by a hybrid procedural/logical
system where the logic only intervenes in the operation of the system in case of errors.

Although such a system has not been implemented yet, we conjecture that Alma provides representations and reasoning
processes that will facilitate such an implementation. Verifying this is part of future work.

We start by looking at some examples and at how these differ from the kinds of examples we were considering earlier.
‘We next consider what that entails for the representation of the world. We will need more complex representations to
map to the more complex structure of the world now. The reasoning processes too need to be changes to make them
more capable. We consider those in the following section.

10.1 Examples

We use the following examples to illustrate some of the behavior the logic is designed to model.

1. At 10:00 the agent decides that a file is an obsolete version of its work and so it deletes it. At 10:01 it realizes
that the file was in fact the latest version. But now it can’t undelete the file.

In contrast to the mistaken beliefs considered earlier, the actions in this case are not easily reversible. And
the solution to the mistake might involve other actions in the world. This has to be specified in the domain
specifications.

2. At 10:00 the agent observes that the light is red, so it decides not to cross the road. At 10:02, the agent observes
that the light is green and it crosses the road. It was not a mistake not to cross at 10:00 because the agent was
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not mistaken in believing that the light was red because the light was indeed red and it changed to green later.

The world changes and the agent is aware that it did, so the earlier decision based on the previous state of the
world was not mistaken even though the information then contradicts the current beliefs.

3. At 10:00 the agent observes that an apple is red. At 10:01 it observes that that apple is black, and concludes that
it is rotten and decides to throw it away later. At 10:02 it realizes that the ambient light color changed to green
at 10:01. So the apple was in fact red and the decision to throw it away is mistaken. Since it has not done so yet,
it just removes its intention to throw away the apple.

In this case the world initially changes without the agent being directly aware of it. The perception it has then
conflicts with earlier ones and it decides that the new beliefs are correct and plans to act accordingly. The agent
later realizes that there was a change in the world and therefore that the perception was mistaken. It then has
to undo the intention. Here we see that beliefs believed to be mistaken might be found not to be mistaken with
more information later. The earlier determination of a mistake is itself mistaken.

4. At 10:00 the agent observes the dog in the yard and at 10:01 it lets the cat out in the street believing the dog to
still be in the yard. At 10:02 the agent observes the dog in the street. At some point between these two times the
dog left the yard and the cat is not safe. The agent does not know whether the dog was in the yard at 10:01 so it
may have been a mistake to believe that the dog was in the yard then and it may have been a mistake to let the
cat out.

In this case the agent assumes that the world does not change and takes an action based on this assumption. Later
observations imply that that action may have been mistaken. The observations are not sufficient to determine
exactly whether they had been mistaken or not but prudence recommends that that possibility be taken into
account.

5. At 10:00 the agent learns that Tweety is a bird, so he infers that Tweety flies. At 10:10 the agent observes that
Tweety is a penguin, so Tweety does not fly. The agent was mistaken about Tweety’s flying as from 10:00.

The facts in the world in this case do not change. The knowledge of the world that the agent has changes. The
agent reasons that this is the case and therefore that its earlier decisions were mistaken.

10.1.1 Differenceswith the non-monotonic reasoner
We see in these examples that there are interesting interactions between:

1. How facts in the world change.
2. How the beliefs of the agent change.
3. The various relations between the beliefs of the agent and the state of the world.
4. The irreversibility of actions.
5. The knowledge by the agent of how some facts in the world change.
These interactions are not present in a purely logical agent, so the algorithms devised earlier about mistaken beliefs

are not likely to be applicable here. There are three main areas of difference between this and the previous reasoner.
These concern the causes of the mistake, the effects of the mistake and the fact that the agent is now situated in time.

The agent now reasons about facts that change truth value in time while it is reasoning. This contrasts with the previous
case where the facts asserted did not typically change. All the relevant information to the problem was presented at the
start of the computation. The agent in that case could see time as just another variable that did not have any relation to
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its reasoning. This has consequences for the representation and inference in the agent. The fact that the reasoning is
time-situated becomes important now.

The causes of mistakes in the previous case were mainly due to a lack of information or of computing resources on
the part of the agent. In this case, the world can change, making the determination of mistakes more complex. The
agent cannot assume the world is constant and so to determine whether a belief is mistaken, it has to determine what
was true in the world at the time it made the decision. Depending on how the world changed, an apparent error may
or may not be a mistake. If the change in belief corresponded to a change in the world, there was no mistake. We can
no longer automatically associate a contradiction with a mistaken belief.

The effects of the mistake are also different now. In the previous case, the only effects of the inference rules were to
add and delete formulas from the KB. These are easily reversible. However, an agent that is acting in the world, will
execute actions that are not so easily reversible. The undoing of the results of a mistake need to be more carefully
considered since some actions are irreversible.

The result of these factors is that the representation of facts differs from that in the previous cases, and the handling of
mistakes is made more explicit and less procedural. There is a need to extend the framework of the previous chapter
to address these issues.

10.2 Representation

The possibility that the world might change and the fact that the agent reasons in time lead to the need for a different
representation. These representations are useful for agents that deal with mistakes in general. Such an agent has to
represent:

o Bdiefsin time Explicitly representing beliefs allows mistaken beliefs to be detected and represented. If beliefs
are not explicit, there is a limited set of responses possible to failures. If the beliefs are represented in such a way
that they can be related to the times at which they are held, it becomes possible to detect mistakes in the past.
This can be important since mistakes in the past can influence current beliefs, intentions and actions. Otherwise,
the agent seems limited to responding to the immediate detection of a mistake if it does not have the ability to
track mistakes in the past.

e Actions, observations, plans, intentionsThis is the converse of the above. Without representation of intentions,
actions, observations and plans, the agent is limited to working with mistaken beliefs as we have seen earlier.

o Relation between events and beliefs The events that the agent observes or produces should be related to its
beliefs so that it can keep track of the state of the world and for its actions to be reasoned about.

o Relation between truth and beliefsIf the agent cannot distinguish between truth (as it perceives it) and beliefs
(old ones), it can’t detect mistakes. The truth the agent perceives is itself a belief, but at a different time.

o Expectations Expectations help the agent discover that its actions did not have the desired effect and detect
mistaken actions. If the agent has no expectations of the results of its actions, it becomes harder to detect and
identify mistakes.

These representations need not be explicitly present in all agents that handle failures—they can be present to a degree.
The flexibility of the agent to deal with mistakes will depend on the form of these representations. The efficiency of
the agent is likely to be affected by those factors too.

We present the design of these representations for our agent next.
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10.2.1 Representing beliefsin time

A major difference between the problem we address here and the reasoning presented previously (even for the reason-
ing about action examples) is that in the present case, the agent reasons in time, at the same time as the facts in the
world could be changing. In the previous case, the reasoner was outside the changing time and reasoned about it.

The formulas in the KB should therefore represent the changing world. As the world changes, various formulas in the
KB become true and false and we would like the KB to reflect these changes. If the light is red now and something
like LightColor(Red) is in the KB, when the light changes to green we would like that that formula to be replaced
by LightColor(Green). The representation used to represent that the light is now red will affect the computation of
the logic.

We consider two approaches: explicitly representing the time at which the formula is taken to be true in the formula
itself and not representing the time.

Explicitly representing time

This alternative explicitly represents the time at which a fact is taken to be true in the KB. The facts are taken like
eternal facts [152].

Three ways of doing this are:

e Adding an argument representing time to all predicates that are liable to change truth value over time. That
argument represents the time at which the predicate is true so that LightColor(Red, 11 : 01) means that the
lightis red at 11:01.

e Another way is to use a H olds predicate to represent that a fact holds and to represent facts as terms instead of
predicates, for instance Holds(LightColor(Red), 11 : 01). Here LightColor is not a predicate anymore.

o A third way related to the above is to use a modal operator with the appropriate rules of inference so that
LightColor(Red)@11 : 01 means that the light is red at 11:01.

If the light turns green at 11:02, the agent does not make the mistake of believing that it is red at that time (although
other kinds of mistake are possible). All the agent knows is that the light was red at 11:01. However if the light does
not change, the agent has to infer that the light does stay the same color for each time step. This can be done using a
projection default like LightColor(c,t) — LightColor(c,t + 1).

The problem with this approach is the amount of computation that is required to advance the facts in the KB to later
times. There are likely to be many such facts in the KB and it becomes very expensive to have to infer that they do not
change. All three approaches have the same problem.

Another problem with these approaches is that the KB can get very large with all the history of the agent explicitly
represented at all times.

Indexical formulas

An alternative approach is to take all formulas in the KB to be indexical with respect to time. If a formula LightColor(red)
is in the KB at 10:00, then that means that the agent believes that LightColor(red) is true at 10:00. As time moves
to 10:01 and this formula is still in the database, the agent believes that the light is red at 10:01 too. The advantage
of this approach is that we do not need to infer that things stay as they are. The assumption that things usually do
not change is built into the system. The disadvantage is that since we do not explicitly project the beliefs, we may
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have false beliefs. For example, if the light changes at 10:01, the KB will still contain LightC'olor( Red) which is a
mistake. The mistaken beliefs can lead to mistaken actions or generate contradictions that need to be reasoned about.
In this case, we also know that LightColor(Red) < —LightColor(Green) and observe LightColor(Green), we
would obtain a contradiction.

Another shortcoming of this approach is that it does not keep a history of the beliefs in the KB as the previous ones
do. This is not a problem with Alma since it does maintain a history of the reasoning that is accessible from within
Alma.

The gain in efficiency of the indexical approach depends on the extent to which formulas change truth value. If
formulas change their truth value with great frequency, we might be better off with explicitly computing their truth
value at every step. It seems however that most formulas will retain their truth value for reasonable lengths of time.
This approach also simplifies the syntax of the logic and the inference rules required. This is the approach adopted
here and is in keeping with the ideas behind active logic. Indexical representation are generally more efficient than
explicit ones [164, 19].

10.2.2 Representing actionsand observations

Since the agent is situated in time, it should be aware of events occurring in the world. The time at which these events
occurs is important for determining the truth of the beliefs of the agent. If the agent does not know when it observed
that the light is red and when it observed that it is green, it might have some trouble knowing what color the light
is now. This makes mistake determination hard too. The representation for events does therefore need to include
temporal information. We do this by adding a time argument to events.

Observations are represented as Observe(¢,t) where ¢ is the fact observed and ¢ is the time at which it was ob-
served. This is not necessarily the time at which the fact became true. For instance, the light color can change
at 10:00 but the agent may only observe the new color at 10:01. Examples: Observe(Light(Green), 10 : 00),
Observe(Start(race), 10 : 01).

Actions that the agent undertakes have to be expressed in the KB. We assume this is done in a similar way to the
Carne predicates so that we have Doing(A,T), Done(A,T) and Error(A,T) which represent that the action has
been started, has completed or has failed, respectively.

10.2.3 Representing therelation between eventsand beliefs

These events, including observations, need to be converted into beliefs about the world for the agent to reason about
them. From the above observation, we need to be able to obtain LightColor(Green) in the KB. This could be done
through a default like

Observe(¢,t) — ¢

We assume here that the observations of the agent are usually veridical. If the conditions are such that this is not the
case, we need formulas expressing these conditions. An example of this is when the ambient color changes as earlier.

These are defaults because there are situations where what is apparent from our observations is not true. For instance
if the agent has its red and green receptors switched, if it sees green, it is really red. We could express that as
Observe(LightColor(Green),t;) A RedGreenSwitch — LightColor(Red). This default should be preferred to
the previous one and that preference can be asserted in the KB, or it can be derived through specificity.

This is just like any other default and belief. Note that this representation implies that the fact that ¢ has been observed
at t cannot be mistaken but the inference from the raw observation to facts about the world can be mistaken.
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10.2.4 Preferences

Preferences have been defined previously as relations between defaults and are asserted in the KB as part of the
description of the domain and cannot be changed or augmented later. In the current situation, we need to relax some
of these constraints.

In the example about the traffic lights, the light changed from red to green and we would like the agent to prefer the
later observation. This can be most easily described by a preference for the later observations than preferences for
defaults. Note that we would like to state that if two observations conflict, the agent is to prefer the later one. If we
were to assign preferences to defaults, we would have to do so using the observation—belief default in the previous
section. The representation then gets more complex. The preference for the later observations is also a default since
we do not always prefer the latest observation.

We therefore generalize the notion of preference to allow preference to be a relation between any two formulas, not
just defaults. The preferences can be computed by the agent using default and non-defeasible formulas. The use of
defaults means that the preferences can be themselves mistaken and therefore lead to a mistaken response. When this
is detected, the preference has to be repaired and following that, the initial contradiction (or possible contradiction) has
to be repaired too. This is greatly simplified by the explicit assertion of mistakes and the reasoning to the resolution
of the mistakes. If these are not represented, it becomes harder to undo mistakes that may involve several previous
undoes.

10.25 Propertiesof predicates

As seen above, we would like to express that for some observable facts, a later fact is preferred to an earlier one. For
instance, if the traffic lights are observed at 10:00 to be red and at 10:02 to be green, then we want to prefer the latter
to the former. This need not always be the case, however.

We could assert formulas to assert the preferences for each predicate of that sort, for example

Observe(LightColor(z),t;)AObserve(LightColor(y),t; )At; < tjAz # y — Prefer(Observe(LightColor(y),t;), Observe(Lig

This would be part of the domain description and would be part of the description of traffic lights. But doing things
this way is not efficient since we are likely to have a large number of similar formulas for many of the things we can
observe. Further, this seems to be a property of observations rather than of the particular fact observed.

Since this is likely to be a property of a large number of predicates, a more economical solution is to assert that as a
property of the predicate and use that to derive the above formulas. This is not necessary, but makes representing the
domain more convenient.

PreferLater(Observe(z,t))

PreferLater(¢) A ¢(Zi, t;) A d(Tj,t;) Aty < tj — Prefer(o(T7,t;), ¢(T5, ;)

10.2.6 Plans, intentions, actions

Plans, intentions and actions have to be represented in the agent if it is to reason about these. We could use any
representation of intentions, plans and actions that can be expressed within this framework for example that in [151].
Although we could reason about executing the plan and even about building the plan in the logic, this sort of compu-
tation may be better done in a specialized plan execution or planning system.
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Assuming that there is an external plan execution system that does the planning and plan execution that the agent
reasons about, the degree of detail of the logical representation must be determined. This relates to the choice of
whether to represent all steps of a plan or whether some plans although they consist of many steps, can be seen as
atomic from the point of view of the logic. The choice made will determine the range of mistakes the agent can
handle, the degree of control of the logic over the agent’s action and also the efficiency of the reasoning. This is
another instance of the flexibility/efficiency tradeoff. Having a large amount of detail about the plan and its execution
enables the logic to react to a potentially larger range of mistakes, and to repair mistakes more effectively however the
amount of reasoning required will be greater too.

10.2.7 Truth and bedliefs

To detect mistakes and to reason about them, the agent has to distinguish between its past beliefs, what it now takes to
have been true in the past and its current beliefs. The agent might have thought, a year ago, that salon.com was a good
investment and bought stock in it. With the company now delisted, it realizes that it had been wrong at that time. It
needs to distinguish between its belief a year ago, and what it now believes was the case a year ago.

As mentioned above, we will represent a current belief that ¢ simply as ¢. A belief that ¢ at time ¢ is represented as
Bel(¢,t0). A belief that —¢ was in fact true at ¢ is represented as Holds(—¢, ). Note that this seems to revert to
the explicit representation of time. This is the case but this representation is used for past facts, and mainly for those
past facts that were mistaken.

Bel facts cannot be mistaken when they are about past beliefs—they only involve a lookup of the history to verify what
the agent believed at that time. H olds facts, however, are subject to change. At the agent might have believed ¢ but
it can later change its mind and believe that at that time ¢ was not true. This allows the agent to assert = H olds(, ).
This belief can itself be mistaken and the belief now of the truth at that time can change again so that we get at %5,
Holds(¢,10). This generates a contradiction that must be resolved, presumably by preferring the later information.

We now present some useful relations between these formulas.

First of all, usually anything that is in the database now is something that the agent believes is true now so:
¢ A Now(t;) — Holds(¢,t;)
Recall that Now(t;) is available in the active logic.

Usually what is believed is taken to be true

Bel(¢,t;) — Holds(¢,t;)
However these two are rather weak defaults and if there is any evidence that ¢ does not hold, these defaults are
defeated.

An axiom that does hold though is the following:
Now(t;) A ¢ — Bel(é,t;)

This represents that the agent is not mistaken about the history of its reasoning. If ¢ is in the KB at #;, the agent
believes ¢ at ;.

As mentioned above in the discussion on representations of time, Holds requires an explicit expression of inertia
which is not necessary if we represent facts indexically:

Vit Holds(¢,tg) Ao <t — Holds(¢,t)



147

This too is a rather weak default and a change in the world will change what holds.

The agent can believe only one of ¢ or —¢ holds at any time so we have:

Holds(¢,t) — —Holds(—¢,t)

And also
Holds(—¢,t) — —Holds(¢, )

The converse of this does not hold though since the agent might not know anything about some formula. We could
have =Holds(¢,t) A =Holds(—¢,t). This is not incoherent since H olds represents the belief of the agent as to what
was the case, not what was the case.

The time always holds at that time:
Holds(Now(t),t)

These relations allow for contradictions that involve Holds formulas: that is contradictions about the agent’s beliefs
about what held in the past.

Holds is useful not only to help identify mistakes but also to reason about facts (and not the agent’s beliefs) in the
past. For instance, the agent may have believed that the light was green at 10:00 but now realizes that it was red, so it
can reason that it was illegal for it to have crossed the road at that time and that doing so was a mistake. This suggests
that the formulas used for reasoning indexically should be usable to reason about the past through Holds. We can
transform formulas about the present to formulas about the past, which we call the Holds-anal og of the formulas using
the following procedure.

Given a formula ¢,

1. If ¢ contains Now(t), if there is no V¢ at the front of the formula, add it. For each literal L of the formula that
is not a Holds or Observes or Bel or N ow formula, convert that formula into Holds(L,1).

2. If ¢ does not contain Now(t), then for a new variable s, add Vs in the front of ¢. For each literal L of the
formula that is not a Holds or Observes or Bel or Now, convert that formula into Holds(L,t).

If a formula is true, then its Holds-analog is true too. For instance, Light(Red) — IllegalT'oCross becomes
Vt Holds(Light(Red),t) — Holds(IllegalToCross,t). Given the Holds-analog, the agent can reason about the
past in the same way as it reasons about the present. This enables the agent to correct its past views.

10.2.8 Expectations

Since the agent is supposed to reason about actions and execute them, it needs to assert and reason about expectations
about the results of its actions. If the agent executes an action at 10:00 with the expectation that ¢ is true at 10:03 and
it observes that —¢ is the case at this time, the agent should realize that this means that the action failed. This should
then trigger repair actions.

The representation for expectations must facilitate this. We represent expectations using the H olds predicate so that
if the agent asserts that Holds(¢, 10 : 03), and it is now 10:00, this is interpreted as an expectation by the agent that
¢ will be true at 10:03, or that come 10:03, ¢ will be true. This relation can be expressed as:

Holds(¢,t;) A Now(t;) — ¢ (10.1)

Using formula 10.1 will, by default, result in ¢ being asserted at 10:03. If the agent’s prediction is correct, this assertion
reflects the world. If this prediction is not correct, it will observe or infer from other observations that —¢ and this can
be recognized as a failed prediction.
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10.2.9 Mistakes

Recall the definition of mistake: if Bel(¢,t) A =Holds(¢,t) then Mistake(d,1).

Mistakes now need to be explicitly represented because unlike the case of mistaken beliefs, we do not have the
regularity of the situations which enables mistake handling to be compiled in procedures. We need to represent the
mistaken object—a belief, intention or action, and the time that this mistake was made.

The explicit representations also facilitates reasoning about multiple mistakes and mistakes of mistakes as described
above.

10.3 Reasoning

An agent that forms beliefs and acts in an uncertain and dynamic world needs to have processes that reason about
various aspects of the representation presented above. Some of the more prominent kinds of reasoning are

¢ Detecting and identifying mistakes This is the first step in handling mistakes. The agent must minimally detect
that there has been a mistake. The range of mistakes it can detect and the accuracy with which it can identify
the cause of the mistake will determine its performance and flexibility.

e Propagating mistakes Once a mistake has occurred, it is useful for the agent to determine what other objects
might be mistaken. The degree to which that is done will influence the coherence of the behavior of the agent.
An agent which believes that ¢ was mistaken, yet does not believe that doing action A is not mistaken A even
though the only reason to do it was ¢ can seem to act incoherently.

¢ Undoing the consequences of mistakesOnce a mistake is propagated, the agent should consider a repair of the
consequences of the mistake.

Once again, agents can have these sorts of reasoning processes to various degrees. In particular situations, a very
limited capability in one or more of the classes can be adequate and can indeed be the best solution considering the
resources available and the time available for reaction. We discuss some of these factors in greater detail below in the
context of our agent design.

10.3.1 Reasoning about intentions, plansand actions

Since the agent plans and acts, an issue is whether the behavior of the agent is to be generated from logical computa-
tions. Since the plans, intentions and actions are to be represented in the logic, this seems to be possible. However,
deciding what actions to take based on logic is likely to be slow and inefficient. This is especially problematic in
domains where the agent needs to respond to changes in the world with reasonable speed.

A solution to this problem may be to execute the plans that the agent has in a plan execution system but have the
actions and decisions taken by the system reflected in the logic and giving the logic the possibility to intervene in the
operation of the plan execution for instance by adding or deleting intentions in the plan execution system. The logic
should be kept informed, for instance, of the adoption of plans, the start of execution of actions, whether these actions
succeed or fail and so on. Some details of that can be found in [151] and can make use of abilities as that of Carne
discussed above. This approach gives the speed of the plan execution system with the flexibility of the logic. As long
as there are no mistakes, the plan execution system is in control and the computations are efficient. Once there is a
mistake, the logic can come in which enhances the flexibility of the system to deal with unexpected events. If the plans
are designed to deal with a set of errors, the logic can then only come in in cases of unanticipated errors or when it can
infer that an error has occurred before its consequences are manifested in the world.



149

10.3.2 Reasoning about what holds

We have seen that for each formula describing the world, we will also have the Holds-analog of that formula. The
reasoning with the Holds should be identical to the reasoning without it. To do that we have a set of inference rules
similar to those for the first order logic that instead of being about formulas ¢ are about formulas Holds(¢,t) and
apply only when the times are identical. The modus-ponens rule would look like:

Holds(¢,t), Holds(¢ — 1, 1)
Holds(v,1)

We will also need to detect contradictions in the Holds formulas. However, no special rules are needed since from
Holds(—phi,t) we get ~Holds(¢,t) from above.

10.3.3 Overview of reasoning about mistakes

Just as the representations for dealing with mistakes in this case have to be enhanced from those in the previous case,
so do the reasoning procedures. The overall view is similar to the one before except that now, we make more of the
actions of the procedures explicit and record them in the KB so that they can be reasoned about later.

The high-level view of handling a mistake is as follows:

1. The fact that there is a mistake is signaled by a contradiction.
2. The contradiction is resolved if possible by preferences.

3. The cause of the mistake is determined and is asserted.

Once these mistakes are asserted, the response to each mistake comes into play. This involves the following:

1. Undo the mistake.
2. Verify whether the consequences of the mistake are mistaken and assert so if that is the case.

3. Verify whether the mistaken formula was also mistaken at a previous step and assert so if true.

Undoing a mistake depends on the kind of mistake we are considering. Beliefs, intentions and actions have different
ways of being undone. The information about how to undo intentions and actions has to be asserted as part of the
domain description. Some details of the process follow.

10.3.4 Detecting and identifying mistakes

The logic depends on direct contradictions to detect that there has been a mistake. We need to ensure however that
contradictory information does get represented as direct contradictions in the KB. The sources of mistakes can be
beliefs and observations that are not consistent, or actions or expectations that fail. Another source of information
about mistakes is the failure of actions. This can be noticed either by a failure notification by the action execution
mechanism, or by an observation that the predicted consequences of the action do not hold in the world. Each of these
combinations should be detectable as a direct contradiction.

Mistakes among the current beliefs are easily detected with the contradictions among indexical representations. Mis-
takes in the past are detectable through contradictions among the H olds assertions and failed actions can be determined
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through contradictions between the expectations of executing the action and observations when these are connected to
facts about the present or the past. Mistaken actions can also be detected through the assertion of F'azled predicates
as a result of doing the action.

Distrusting contradictands

As soon as a contradiction is detected, the contradictands and their consequences are distrusted by Alma so that they
do not derive new contradictands. This is done by asserting distrust(¢) for the formula. The contradiction detection
rule makes the formulas distrusted and propagates the distrust to its consequences. This prevents the bad effects of this
contradiction from spreading into the KB and the logic can then have some time to reason about which contradictand
is true without more mistakes being made. This is similar to the reaction in the mistaken beliefs case.

Preferences

Identifying the mistake in this case is harder because the preferences are no longer fixed and the logic cannot prevent
contradictions involving formulas with preferences between them. The preferences may have to be computed after a
contradiction is detected. This makes the contradiction resolution rule differ from that in the case of mistaken beliefs.
While it is in principle possible to compile the various inferences needed to identify the contradiction into complicated
preference formulas for the observations, this is likely to result in a large number of complex formulas.

In the mistaken belief case, we limited the kinds of contradictions that we would consider by assuming that all prefer-
ences are known beforehand. This results in the agent not applying a less preferred default if a more preferred one has
been applied, and also removing a less preferred default application if a more preferred default is being applied. The
result is that none of the contradictions obtained involved any pair of defaults with preferences between them. This is
not necessarily the case anymore. A contradiction can be derived even though there is a preference relation between
the defaults involved. If that was not known at the time that the defaults in question was being applied.

The logic needs to be able to compute some preferences at the time we get the contradiction, especially for prefer-
ences between observations that occur at different times. The preferences can be inferred from axioms and defaults
that describe the domain so that this preference is flexibly specified. This is more conveniently computed using the
backward search facility of Alma. Once there is a contradiction that involves a group of defaults, we can try to prove
a preference relation between every pair of defaults.

I dentifying the mistake

Once the contradiction is asserted in the KB, the logic tries to find preferences that will solve the problem. This is
done by looking for preferences between pairs of defaults, each of which supports one of the contradictands. Since we
have a record of the reasoning and the derivations are available, this is possible although possibly complex. Once this
is found, the identity of the preferred contradictand is asserted in the KB. In the mean time neither both contradictands
are distrusted and can draw no new conclusions. The KB also contains the fact that both contradictands cannot
be preferred. This causes a contradiction if there are conflicting preferences and the presence of that contradiction
triggers further action—this is then meta-meta reasoning. Active logics are designed to represent and reason with
multiple meta-levels so this is not a problem. The less preferred formula is taken to be the cause of the contradiction
and this too is asserted in the KB. The cause is asserted to be mistaken and inference rules to handle the mistake come
into play.

However, we need not always find one preference in the defaults. There maybe none, or there maybe conflicting ones.

No preferences If there are no preferences to resolve the contradiction, then there is no resolution and the conse-
quences of the contradictions remain distrusted.
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Conflicting preferences If there are conflicting preferences, a contradiction will be generated between the preferred
contradictand formulas and these preferences will have no effect on the original formulas until that contradiction is
resolved.

10.3.5 Undoing mistaken actions

Actions can be divided into actions taken in the outside world and actions on the KB. These actions may need to be
undone in the event of a mistake and the undoing may also need to be undone. The approach taken here is to assert in
the KB all the actions taken and to use the record of the derivations and of the consequences of formulas to undo these
actions.

Beliefs and intentions are represented as formulas in the KB and so undoing an addition of a belief consists in deleting
the belief. Intentions may additionally have consequences outside the logic and these are explicitly undone in a similar
way to undoing actions. The undoing of external actions is specified in the domain description and undoing them
consists in doing the repair actions specified.

Undoing KB actions

‘We now discuss the actions the logic does in the KB and the way these are undone. The actions of interest are additions,
deletions and distrusts.

Addition Adding a formula to the KB is done automatically by the inference rules and is not explicitly represented in
the KB. When an inference rule application needs to be undone, we simply delete the conclusion of the rule from the
KB and assert that that formula has been deleted. The application of the rule and its results is recorded in the KB.

Deletion When a formula is added to the KB of the form Delete(¢), ¢ is removed from the KB, formulas of the form
Delete(t)) for each 1) that derives from ¢ are added to the KB. If there are multiple derivations for a consequence of
the mistaken formula, the derivation from the mistaken formula is removed. If there are no more derivations left, the
consequence itself is removed. This approach is similar to that used in TMS [43].

Deletions are undone when Undo(Delete(¢)) is added to the KB. This results in ¢ being added and Undo(f) being
added to the KB where # are formulas of the form Delete(«) that derive from Delete(¢).

Distrust When a formula of the form Distrust(¢) is added to the KB, ¢ is removed from the set of formulas that
can be used for inferences and formulas of the form Distrust(i) are added to the KB for each ¢ that derives from ¢
through one inference rule application.

If Undo(Distrust(¢)) is added to the KB, the reverse process occurs: ¢ is made available for inference and for each
formula of the form Distrust(6) that derived (in one step) from Distrust(¢), Undo(Distrust(¢)) is added to the
KB. In case we distrust a deletion or a distrust, we undo these actions.

Undoing external actions

Since the actions done by the logic are few and predefined, we can have inference rules to undo them. For actions
taken in the outside world however, the undoing has to be specified in the domain specification.

Recall that the formula that triggers an action A at time ¢ is represented as Do(A,t). An inference rule will cause A
to be executed at ¢ and asserts the status of the action in the KB (Doing, Done, Failed). A can be a primitive action or
a plan. The expected outcome of executing the action is computed by the logic and is also asserted in the KB.
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Undoing an action can involve the doing of some other action. For instance:
Undo(Do(Delete File(one.tex), 10 : 00)) — Do(Recover(one.tex, 10 : 00))

To undo the deletion of a file at some time, we attempt to recover a copy of the same file at that time. Formulas like
that have to be asserted in the KB as part of the domain axiomatization.

If that recovery is later found to be mistaken, we end up with Undo(Undo(Do(DeleteF'ile(one.tex, 10 : 00)))).
This results in that file being deleted once again.

10.3.6 Propagating mistakes

In the above, we have considered how to detect and locate the cause of the mistake. The cause is labeled as being
a mistake. In this section we discuss propagating the “mistake” label to other formulas and to other times. We will
express this as an inference rule to propagate mistakes. Further, the determination that there has been a mistake can
itself be mistaken so that the logic should be able to undo the effects of that mistake too.

Propagating to consequences

If ¢ is mistaken and we know that 1) was derived from ¢, if there are no other reasons for believing ), that too should
be mistaken because the logic believes that 1) holds but it does not. This too is similar to the TMS approach. In this
way, we can propagate mistakes to consequences so these consequences too can be undone. Note the difference with
the NMR case where we deleted all the consequences immediately. In this case, the deletion is done more deliberately
with each step of the process recorded in the KB because it might involve undoing old mistakes or external actions.

Propagating to the past

Once we know that there is a mistake at some time, in addition to propagating the mistake to its consequences, we are
interested in knowing whether there was the same belief at an earlier time and whether this was then mistaken.

Computing Mistaken(¢,t;) requires the logic to find Bel(¢,t;) and = Holds(¢,t;). While it is straightforward to
compute Bel, computing H olds requires the logic to reason about what it now believes to have been true at ¢;, even if
it did not believe it at that time.

The approach is to use the Holds-analog axioms and rules to infer whether =~ Holds(¢,t;). This will be the case if
Holds(—¢,t;) and ¢ is not preferred to —¢. Since Holds(—¢,t) — —Holds(¢,t), deriving Holds(—¢, ) is one way
of proving = Holds(¢,1).

While the Holds axioms and rules allow us to infer whether the consequences of an axiom or default hold if the
premises do, it does not help for those formulas that are not derived from others: those that are axioms and are in the
KB at the start of the computation and those that are observed in the world.

Some of the difficulties associated with this is that some of these formulas that are true at some point may become
false later and conversely, formulas that are true now, may have been false earlier. This makes the computation of what
holds dependent on knowing what changed in the world.

If, for instance, we know at 10:00 that Tweety is a bird and at 10:10 come to know it is a penguin, we will initially think
that Tweety flies and later think that Tweety does not fly. We were mistaken about Twety flying at 10:00 before we
learned that Tweety is a penguin because we believed a fact that did not hold. The fact that we learned that Tweety is a
penguin later and that we could not have possibly derived that Tweety is a penguin initially does not change anything
to the fact that we had made a mistake. Any actions we might have taken based on the mistaken belief, for example
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dropping Tweety off a cliff, is likely to have bad consequences. Therefore it is not sufficient to know when we knew
the relevant facts but also when these facts were true in the world. The logic needs to know that the fact that Tweety is
a penguin is not one that suddenly becomes true after the fact that Tweety is a bird.

On the other hand, there are situations where a fact does change in the world and where we can assume that the logic
is aware of the change as soon as it happens. For instance, the logic might see that the light is red and reasons that it
should not cross the street. Later it notices that the light is green and so it can cross. This does not mean that it had
made a mistake in not crossing earlier because the light did change from red to green because at that time it thought it
was red and it was indeed red.

For the agent to be able to reason in this way about what was true in the world at what time, it needs to know how
facts change in the world. For instance, that penguinness is not something that typically changes; or that traffic lights
typically change and that we typically notice it the moment they change. This sort of information needs to be specified
when describing the domain.

The fact that penguinness tends not to change can be expressed as

Yzt Penguin(z) — Holds(Penguin(z),t)

In the case of observations, we want to express the fact that if the light has been observed to change from red to green,
then before the change it was not green.

Vt; Observe(Light(Red),t; ) AObserve(Light(Green),t; )At; <t; — Vipt; < tp <t; — —Holds(Light(Green),ty)

Before we observed the light to be red, it could very well have been green, so we don’t want to express that the light
cannot be green before we observe it.

There are other similar properties that we may want to express of various classes of predicates. This can be unwieldy if
expressed separately for all the predicates. If the logic allows quantification over predicate names as mentioned above,
then such sentences can be expressed more compactly.

These sorts of axioms enable us to determine whether a formula holds at some time in the past and therefore whether
there was a mistake.

10.3.7 Anexample

The following examples can clarify this approach. Assume that at 10:00 the agent observes that Tweety is a bird and
therefore concludes that it flies. It later observes that Tweety is a penguin and decides that Tweety does not fly and that
it was a mistake for it to believe that Tweety flies. The determination of the mistake is done using the contradiction
and a preference for penguins not flying. We can represent this as follows:

Time Event Belief

10:00 Observe(Bird(Tweety), 10 : 00) Bird(Tweety)

10:05 Flies(Tweety)

10:10  Observe(Penguin(Tweety), 10 : 10)  Penguin(Tweety)

10:15 —Flies(Tweety)

10:20 Mistake(Flies(Tweety))

The agent needs to determine whether the inference that Tweety flies at 10:05 was mistaken. It believed F'lies(Tweety)
at that time. To determine whether that held, it verifies whether, given what it knows now, Tweety did fly at 10:05. A
possible derivation is as follows:
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1. Observe(Penguin(Tweety), 10 : 10) From observations
2. Vt,¢ Observe(¢,t) — ¢

3.  Penguin(Tweety) 1,2

4. VYt Penguin(z) — Holds(Penguin(z),t) Axiom

5.  Holds(Penguin(Tweety), 10 : 05) 3,4

6. Vz Penguin(z) — —Flies(x) Default

7. Vz Holds(Penguin(z),t) — Holds(—Flies(z),t) 6

8. Holds(Flies(Tweety), 10 : 05) 5,7

The logic can therefore conclude that it was a mistake to believe that Tweety flies at 10:05. Note that Yzt Penguin(z) —
Holds(Penguin(z),t) has to be added in the domain description to assert that if anything is a penguin, it is always
one.

10.3.8 Repair

Repairs of mistakes involves undoing the effects of the mistakes. Information for undoing actions in the world are
specified as part of the domain description. Logical actions on the KB are undone using rules as mentioned above.

Once the logic has determined that a belief was mistaken, it needs to repair it. The action can be undone by asserting
Undo(A,t) and letting the appropriate domain-specific inference rules and axioms come into play. Undo(A,1) can
be asserted in the KB simultaneously with the propagation of the mistake. It can be added to the KB once a formula is
found to be mistaken.

In the case of mistaken actions, the undo predicate applied to the action call will cause the appropriate inference rule
to undo the results of the action if it has already been executed according to the undo information that is part of the
domain description.

10.4 Related work

The problem of agents that act in uncertain dynamic worlds has been addressed in work in planning and plan execution.
We review some of these systems and discuss their approach to the factors that we found are useful in handling with
mistakes.

104.1 CNLP—Conditional planning

Conditional planners, as opposed to classical planners [56], recognize that the world is uncertain and that the planner
has limited information about the world. The uncertainty is present not only in the world, but also in the results of
actions. These factors make failures in plans inevitable. The solution that conditional planners implement is to build
plans that have actions that can observe the world. Based on these observations, different paths can be taken. The
observations could, for instance, verify that the conditions that a prior step of the plan was supposed to have set up
hold. If they don’t, that implies a mistake in the plan and the plan can be designed to produce sequences of actions to
deal with that mistake.

CNLP [139] is such a conditional planner that develops plans that account for foreseen uncertainties. It was seen as
the first step towards the development of a decision theoretic non-linear planner. The observations made during plan
execution are to be used to select which actions are executed. The active detection of failures means that replanning at
runtime for those errors is not necessary.

The plans that CNLP produces are trees with the outcome of each observation generating a subtree that gets to the goal
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given that observation. The result of this is that the size and complexity of the plans generated increase exponentially
with the number of observations. This problem can be mitigated by skipping unlikely combinations of observations.

Since CNLP is a planner, we will discuss the behavior of an agent executing a CNLP plan.

o Bedliefs Beliefs are not explicitly represented. They are implicit in the state of the plan. As new information is
observed and new actions taken, the state changes. So we can see the beliefs as being in time. However there is
no history.

e Actions Actions and plans are represented in the structures of the plan. They cannot be reasoned about by the
executing agent. Intentions are not explicitly represented either.

e Eventsto beliefs The observations cause an immediate change in the state of the system. This can be seen as
the system believing the observations.

o Bedliefstotruth There is no notion of truth separate from that of beliefs.
e Mistakes From the above, mistakes are not explicitly represented. They are implicitly detected and acted upon.

o ExpectationsNo expectations are explicitly represented in the system. However, the observations done and the
branch in the plan reflects expectations in the planner as to the state of the world.

o Detection and identification Mistakes can be detected by observations. Not all observations imply a mistake
has occurred and the mistakes are not identified any further.

o Propagation Mistakes are not explicitly represented and are not propagated either.

e Undoing The results of a mistake can be undone through the branch taken. This can be done if needed by the
planner but is not necessary.

All possible states of the world and outcomes of actions have to be handled in the plan. Repairs to mistakes are
represented in a branch of the plan. Since all the reasoning and explicit representation is done in the planner, this
leaves the executor with little flexibility. If the world and its contingencies are just as predicted by the planner, the
system will work efficiently and solve all problems. However, if there is an unexpected event, the agent executing the
plan is likely to fail if it has no further resources. Note that this can be a first step in a layered approach that has means
of dealing with unexpected failures.

10.4.2 C-BURIDAN-probabilistic contingent planner

C-BURIDAN [45] is a probabilistic planner based on BURIDAN [96] which senses the world and takes actions
depending on the outcome of the sensing action, in a way similar to CNLP. The major difference with CNLP is that the
world is described with a probability distribution over the states and the actions have probabilistic outcomes. The goals
are similarly achieved at some degree of probability. Sensing actions also produce observations with some probability
attached which allows the modeling of noisy sensors. The plans produced by C-Buridan also allow paths to split at
conditions but contrary to CNLP, these can merge later which reduces the size of the plan produced.

C-Buridan also makes a distinction between the changes an action makes in the world and the changes it makes to the
knowledge of the agent. Actions made in the world change the probability that the consequences of the action are true.
Observation actions however, do not change the world but provide evidence for the state of the world. This changes
the probability of variables of interest through Bayes’s rule [136].

C-BURIDAN has very similar characteristics as CNLP as it is also a conditional planner. The main point of interest
here is that the probabilistic representation makes explicit the uncertainty in the world. In our approach, uncertainty
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is represented as defaults. In this case, the degree of uncertainty is taken into account while building plans. The avail-
ability of probabilistic information can allow for finer-grained judgments of the source of mistakes. It also facilitates
diagnosis of problems though the use of Bayesian nets. However C-BURIDAN does not use these facilities to reason
about mistakes, it is still a conditional planner which produces a plan that is meant to be executed at run time with no
further reasoning.

1043 MRG—planningwith failure

MRG [186] is a system that allows one to represent and reason about plans and to to build a wide range of kinds
of planners. The language of MRG allows failure and success of plans to be expressed and reasoned about which
allows control structures that react to failures. The plans in this case can contain the basic operations that deal with
failure. MRG can produce planners that are reactive—that react immediately to an event such as a failure, or conditional
planners, or deferred planners that interleave plan formation and execution.

The main construct for dealing with failure is the expression ¢ f fail o then [ else . This says that if « fails, the plan
is to do [ else . This is used to define other constructs that express for example, that the planner should try an action,
and if that fails, to fail the plan or to execute an action only on failure of a previous action.

Giunchigliaet al [68] aim to provide a theory to represent and reason about actions and plans that are not guaranteed to
succeed. The plans and failures that are expressed in the MRG language are reasoned about in the MT* language that
is a meta-theory of MRG. Plans in MRG become terms in MT*. The language of MT* relates plans to the conditions
that hold after the plan is executed. MT* allows one to assume that an action succeeds or fails and compute the
consequences of the success or failure of the plan.

MRG allows the development of planners that handle failures in a variety of ways. Failures are explicitly represented
and that allows them to be handled more flexibly than purely reactive systems. Meta-reasoning is also possible in MT*
which should make the system more flexible. However, there does not seem to be much reasoning about failures at
run-time. This makes the agents that execute plans produced by MRG similar to the above cases. Reasoning about
the failure to find its source, for instance, does not seem possible. MT* does reason about failures and plans but is
a separate meta-language and is not available to the agent when the plan is executing. The focus here is more on
planning and reasoning about plans produced rather than executing plans and reasoning about the execution as we do.

10.4.4 ESL—cognizant failures

ESL [62] is a language for encoding execution knowledge in agents. It coordinates the actions of a reactive component
and a deliberative component that generates plans. ESL handles contingencies based on the concept of cognizant
failures. This states that systems should be designed to detect failures when they occur so that it can respond appro-
priately.

There are two main constructs for handling contingencies in ESL: a way to specify that there has been a failure (FAIL)
and a way to associate a kind of failure to a recovery procedure. Guardian tasks monitor constraints and generate
a failure if the constraints are violated. Calling FAIL starts the appropriate recovery procedure. Some possibilities
for recovery are retries and aborts. Failures can be propagated to more general recovery procedures if they cannot be
handled at the level they are called.

ESL is similar to the conditional planners in that it handles errors when they occur with precomputed responses and
just like the previous systems, there are specific conditions that the agent monitors to detect failure. The knowledge of
what can be a failure is compiled into the choice of observations to be made.

However ESL has interesting features that seem to make it more general. Failures are explicitly represented by the
FAIL form, although the failures possible are preset by the planner. The response to the failure can vary according to
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the situation since recovery procedures that fail propagate the failure to more general handling procedures. There is
therefore some sort of propagation of errors, although not in the same sense as we discussed. This can make the range
of errors handled larger than if the system had just one response to errors and adds some flexibility to the response.

1045 3APL-Failuresand recovery

A general analysis of failures and some abilities needed to deal with failures are presented in [81]. The 3APL language
facilitates building agents that handle failures.

The capabilities required for agents that operate in changing environments are seen to be: to monitor the environment,
to deliberate, to accept goals and plan for them, to recover from failures and to modify plans in response to changes in
the environment.

The reasons for failure are seen to be limited knowledge and limited control of the environment. Three kinds of failures
are listed: opportunity failures, ability failures and plan failures. Opportunity failures occur when the current situation
prevents the plan from succeeding. Ability failures result from the agent not having an ability that is assumed to be
available. Plan failures occur when no plans can be produced or inadequate plans are produced to achieve the goals.
The responses to failures are to replan, to repair the plan or to drop some of the goals.

The 3APL [80] language is an agent programming language meant for BDI [155] agents and represents goals, rules
and beliefs. 3APL is meant to provide the basic architecture for an agent, with the possibility of different capabilities
being built into the agent. It specifies the control, application of rules to goals and execution of actions. The rules
are used to find ways to achieve goals and can modify the goals themselves. The control operates in a sense-plan-act
cycle.

Failures or success of actions is assumed to be entered to the system through robot sensors. There are two mechanisms
to deal with failures: the disruption mechanism and the interrupt mechanism. The disruption mechanism monitors a
goal 7,,. If a condition ¢ holds, the monitored goal is replaced by a recovery goal ¢,.. In the interrupt mechanism, the
monitored goal is not removed but is interrupted by a goal ;.

This paper has an interesting discussion of the capabilities needed for an agent which takes a different approach to the
one we take here which is more related to the representation and reasoning abilities of the agent. The analysis of the
kinds of failures possible are also interesting and could be used to engage different forms of response, although that
does not seem to be done.

There are similarities between this and the previous systems in that the mechanisms to deal with failures are limited.
The conditions for failure and the goal that they relate to have to be explicitly specified initially. It does not seem
possible for the system to make general observations about the world and from these reason that there may be a failure
without these linkages having been precomputed by the designer of the plan. The system is a general framework in
which various modules can be added so that there can be a module that reasons about failures and modifies the plans
or goals as a response to that. It is not clear however, how well these can be integrated with the system.

10.4.6 Phoenix—Analyzingfailurerecovery
In [85], failure recovery components for the planner for the Phoenix system are described, together with procedures
used to debug the planner. We will focus on the first aspect.

Failures are seen to be caused by actions not having their intended effects, changes in the world and inadequacies of
the planner. Failures are detected as events that preclude the successful completion of a plan.

The purpose of failure recovery is to repair plans as efficiently as possible. This transforms the bad state the system
is in to a good state. This requires the planner to have a model of what to do in every situation. Automated recovery
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from failures involves two layers of the planner: a reflex layer that uses pre-programmed actions and a deliberation
layer that coordinates actions and replans the goals.

Failures are classified by what is known to have blocked the execution. There is no effort made to find the cause of
the failure. The recovery effort tries various recovery methods until one works. The applicable recovery methods are
selected from a library of methods based on the cause of the error as the system can determine it. The repair methods
make simple changes to the plan, for instance retrying the action or trying a different action.

Similarly to ESL, this approach allows for the fact that the repair for the error may be mistaken by trying all the
possible repairs until one succeeds. Although inadequacies in the planner can be seen as mistaken beliefs, the system
does not explicitly reason with beliefs or detects mistakes from them or propagates them to actions. Here too, like in
the previous approaches, the plan is supposed to contain all the information that is going to be relevant to the agent.
There is no flexibility for the agent to do reasoning to preempt errors or discover new ones if these have not been
precompiled into the plan by the agent.

10.4.7 CIRCA-Detecting and Reactingto failures

Different classes of “unhandled” states are classified in [7] which also describes a planner that tests for and responds
to these states. CIRCA combines a planner with a plan execution system with a reactive mechanisms. The question
addressed is to detect when the agent is in an unexpected state and how to react to that.

There is a variety of states that the planner can find itself in: handled-states from which the planner can reach the goal,
dead-end states from which the goal is not reachable, removed states which are those states that the planner did not
consider for lack of resources, and imminent failure states which are states that are unreachable given the plan but that
would lead to failure if they were reached. The handled-states and the dead-end states are in the planned-for class of
states. The agent needs to recognize when it reaches any of the other states that it did not plan for and respond to that.

CIRCA control plans are represented as cycles of test-action pairs (TAPs). So TAPs have to be built to recognize that
the agent is in one of the unexpected states and to act to try to get to a planned-for state. Recognizing that it is in an
unplanned state is done by a set of tests that is derived from the ID3 algorithm [154]. The various unexpected states
are found during the planning process and their class determined. These are input to the ID3 algorithm which then
gives the minimal tests for those classes of states. The response to unhandled states is to replan. When that is not
possible, the agent fails.

This presents an interesting approach to detecting the class of failures and an interesting classification of failures.
However, just as the other approaches, it assumes that the planner does know all the possible failures that can occur.
The replanning on failure can be seen as reasoning when the failure occurs. The reasoning does not however find the
cause of the mistake or propagate mistakes or tries to undo possible bad consequences of the mistakes. But that may
not always be necessary.

10.4.8 Cypress—planning, reasoning and acting

The Cypress project [191] develops agents that operate in dynamic and uncertain environments. This requires the agent
to deal with unexpected changes in the world. They should be able to adapt their activities to the new situations. Part
of this is the ability to modify plans when they are running. The Cypress system provides a framework for building this
kind of agent. Cypress is built from the SIPE-2 planner [192], the PRS-CL execution system [64] and the GISTER-CL
system for reasoning about uncertainty [179].

The SIPE-2 planner can plan for conditional actions, resource assignments and can modify plans during execution.
The GISTER-CL system does evidential reasoning that is used during generation.
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The PRS-CL system represents the current beliefs about the world (in a DB), a set of goals and the intentions of the
agent. It also has a set of predefined procedures that specify what to do in response to events in the world or when
a new goal is added. The environment is observed through the DB. The procedures can test for conditions, wait for
events and can modify the beliefs, intentions and goals of the agent. PRC-CL can also request that the planner modify
plans.

A test goal fails if the condition tested does not hold and the executor does not have procedures to make it true.
Similarly, an achievement goal fails if the condition that is to be made true does not hold and no action applies to
do so. In cases of failure, the plan is to be aborted and a replan request is issued. In the mean time, those plans and
intentions not related to the failure proceed as usual.

Note that the failure of a goal occurs after there are no procedures in the executor that will react to the failure. Beliefs
are not seen to fail

This system seems the closest to an agent that can reason, act and repair its failures flexibly in the world. The most
interesting features are the explicit representation of beliefs, the explicit representation of intentions and goals that
can be manipulated by the plans themselves, and the possibility to apply reactive responses to failures as well as
replanning.

As the systems seen earlier, the failures CYPRESS detects are through conditions in the world that are predetermined
by the planner. It does not seem that it can infer mistakes from general observations. The system does not explicitly
represent beliefs as mistaken either, although it could modify its DB in response to mistakes. The reasoning module
is only used to build plans and does not directly affect the state of the executor. However it seems that an appropriate
reasoning module attached to the DB could do the sorts of reasoning we are interested in and have direct access to the
plan execution by modifying the intentions and goals of the agent.

10.4.9 Exceptionsin agent systems

We now consider work about exceptions in agent systems rather than in single agents. [91] proposes that instead of
individual agents handling errors in multi-agent systems, there should be specialized agents for that purpose. This is
based on a claim that such a division of labor allows for the separation of generic and reusable exception-handling
behaviors from the domain-dependent problem solving behaviors. The problem solving agents then do not need to
handle failures but there needs to be a standard interface language and the agents need to be self-aware and self-
modifiable.

For errors to be detected, there is a need for a model of the normal behavior of the agent. The exception-handling agents
are informed of this and of the failure modes that are known to occur with that normal behavior. They then set up
sentinels to monitor for these conditions. The failure modes are derived from a taxonomy of problem solving behaviors
with associated failure modes. The exception-handling agent maps the problem solving agents to this taxonomy to
derive their failure modes. These failure modes can have associated with them scripts that generate the sentinels that
look out for those failures.

The failure is diagnosed by matching the symptoms that occurred to a taxonomy of possible diagnoses based on
symptoms. These are heuristic hypotheses of the diagnosis and need not be correct. Once one or more possible
diagnoses are found, plans are generated to deal with the error. These come from a database of known generic error
resolution strategies. There too, many plans are possible. The system tries these strategies and backtracks if they fail.

This case is also one where the detection, diagnosis and reaction to failures is precompiled into the agent. The
difference is that we now have a specialized and presumably general failure detecting and repairing agent that does not
depend on the domain. An interesting aspect of this solution is that the failures are diagnosed before being repaired
instead of immediately applying a repair based on some observed conditions. Another interesting aspect is that the
problem-solving agents are required to be self-aware and self-modifying. It is not clear what these entail, but these are
powerful abilities for the problem solving agents to have and may be used for these agents to repair their own failures
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too. The purpose of these abilities seems to be so that the failure agents can change the behavior of the problem-
solving agents to correct failures that are detected. It is also unclear what happens if the failure agents themselves fail.
This approach depends mainly on a well-defined taxonomy of agent architectures, probable failures, symptoms and
diagnoses. So it can only be done with well known agents in well known environments. New failures don’t seem to
be handled by the system.

10.4.10 Broker teamsfor fault tolerance

[95] considers brokers in a multi-agent system that can handle failures by working as a team. Restorative maintenance
goals are introduced that allow new brokers to be started when any one of them fails.

Brokers [38] are used to accept requests from agents, locate agents and route requests to the appropriate agents and so
a failure of a broker has to be repaired quickly. The failures considered here could be any of the sorts of failures in
distributed systems, including failures of the agent, of the network and so on.

The solution proposed is to use a team of brokers that allow recovery from multi-agent failures and maintain a specific
number of brokers running even though some might fail. This is done by adding an appropriate plan to the library of
plans available to the brokers.

The approach here is similar to several of the other approaches seen above. On detection of an error, a repair is
done, seemingly without trying to diagnose the source of the error. In this case as in the previous one, failure solving
behaviors are seen as just another plan that the agents apply. This is suitable as the errors do not apply to the agents
that detect the errors themselves but to other agents. The fact that these agents are now in a team seems to make the
ability of the agent to repair itself less important as long as not all of the agents fail at the same time because of an
error in their specifications.

10411 Summary

The above are an interesting range of systems that deal with failures with varying degrees of generality. The main
difference between these systems and our proposal is that the systems do deal with incompleteness and uncertainty,
but they seem to assume that there is no incompleteness in the knowledge of the planner. That is that the planner knows
all that can be incomplete or uncertain in the world during execution and can take care of these conditions explicitly.
If it does not, the plan is likely to fail. This problem seems to be noticed though in the conditional planners where
there are no branches in the plan for conditions that are judged to be very unlikely. In these cases, the designers seem
to accept that the agent will fail.

There are great advantages to be gained by the planner precomputing possible mistakes and responses to them and
compiling these into a plan. The alternative for the agent to try to resolve these problems at runtime or by replanning
at runtime is very costly for mistakes that can occur frequently. However, the cases that slip though should not be
ignored.

The CYPRESS system does catch those cases by replanning when there are no possible responses to a failure. The
replanning takes into account the current state of the world and therefore may come up with a plan if more likely to
succeed. However this system, just like the others (except for the Klein system) does not attempt to find the cause of
the problem and try to repair all the mistaken consequences. Once again, if the planner knows all the ways the world
could be, this could be encoded into the response to the failure.

A problem is that the systems do not have an ability to reason about themselves. The MT* system does do meta-
reasoning, but this is about the object system and does not occur during execution. CYPRESS can modify its own
intentions and goals and could be seen as doing meta-reasoning, but that seems to be limited in the scope of what is
possible because there is typically no reasoning but just the application of procedures which have limited flexibility.
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The meta-reasoning ability of Alma on which our system is based allows meta-reasoning and a greater ability for the
system to modify its beliefs, intentions and goals while it is executing actions.

Another issue is that of time-situatedness. All the systems we have seen are time-situated. However, they do not have
a history. This limits the reasoning about mistakes that they can do. They cannot, for instance reason back in time to
the cause of a current mistake and find the possible mistaken consequences of that. This ability can be important if the
agent takes actions in the world as these are meant to do.

More basic than meta-reasoning or time-situatedness is the problem of reasoning. Most of these systems do no logical
reasoning during execution. They simply follow their plans and do replanning in some cases. As mentioned before,
we can see planning as a form of reasoning but it lacks the generality of logical reasoning. This can result in a lack
of flexibility in the agent. The 3APL system seems to allow for reasoning while the system is executing, however it is
not clear how that is to be done and what the results could be. We do not believe that logical reasoning should be the
only form of reasoning that should be done. However, not doing any of it restricts the flexibility and the adaptability
of the agents

These systems all have very attractive properties and are capable in more or less strictly defined conditions. However
they seem to lack the flexibility needed to act in the world in a human-like way. One of the problems, we suggest is
the lack of reasoning, and meta-reasoning in these systems. The solution is not to move to a 100% logical reasoning
scheme without any of the procedural techniques discussed of theses systems. As mentioned earlier, he solution may
be using logic as a safety net to catch those errors that precomputed procedures cannot handle, for example by adding
our type of logical reasoning to the DB of the Cypress system.

10.5 Futurework

The above was a rather detailed sketch of the design of an agent that detects and handles its own mistakes while
reasoning and acting in a dynamic and uncertain world which the agent only knows incompletely. This requires more
work to get to the point where one could implement such an agent and use this to validate the ideas presented here. In
addition to this, more work is needed on the more general aspects of mistakes.

We have earlier provided our definition of mistakes and a few properties that were useful for developing agents that
react appropriately to mistakes. However, it is not likely that these are all the properties of interest. We need to do
more work to axiomatize mistakes. Having a better axiomatization of mistakes can enable agents to react to mistakes
in a more intuitive way.

One possibility for this is a classification of mistakes according to properties of the domain in which the agent operates
and the capablities of the agent itself. Such a classification could make it easier to define the spectrum of mistakes and
the capabilities agents need to handle them appropriately.

An aspect of the representation that has not been pinned down is that of actions and plans in the agent and how these
representations will interact with whichever planner and plan execution architecture the logic is associated with. This
work to some extent depends on the representations of the planner and the plan executor chosen. Some work along
those lines has been done earlier [151]. The interaction between the logic and the procedural reasoner is not only
a problem of having the right data representation, but also one of keeping multiple representations of the same data
consistent. The logic will also need to have access to and be able to modify the structures of the plan execution system
as necessary. A system like PRS (see above) seems attractive in that PRS has a database that can be used to influence
the operation of the agent and this database could serve as a means to transfer information from the logic to the plan
executor.

An aspect of mistakes that needs more work is their diagnosis. Up to now, we have been diagnosing mistakes based
on the defaults and preferences used. This is adequate for the simpler cases of mistaken beliefs, but it is not clear
it is sufficient in cases that there are more complex relations between the defaults and preferences and where these
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relations are time sensitive. In that case it seems that the simple procedures we use for finding mistakes will not be
sufficient and we will need to adopt more general diagnosis procedures (see the diagnosis section of the test suite). An
advantage of our logic is that it facilitates meta-reasoning, so it is capable of diagnosing itself.

Finally, the ideas presented will be validated to the extent that they improve the behavior of agents in some “real”
domain. This leads to the problem of what domain to use to test our system. There are several criteria that the domain
should satisfy. One of them is that it should not be a toy-domain but on the other hand, it should not be so complex as
to be impossible to handle. It would further be useful if the complexity of the domain could be easily varied. It should
be easy to run experiments in the domain and it should be interesting enough for people to work in it. A domain that
seems ideal is that of computer games [1, 98, 97]. These are different from games like chess where one only needs
reasoning—they require agents with a mixture of fast reactions and reasoning to solve problems and puzzles. Some
current games, Quake and Half-Life, for instance, provide SDKs (software development kits) [176, 35] that allow one
to program different environments and different monsters. The programmable environments allows one to change the
complexity of the domain. The monsters in Half-Life, for instance seem to be simple plan execution systems [34]
that can sense and act in the environment and have a “think” proedure that is called periodically. This provides an
interesting environment to program and test our mistake handling algorithms as well as to explore the effectiveness of
reasoning as opposed to acting reactively or procedurally.

10.6 Conclusion

‘We have sketched a rather detailed account of the sort of logic one would need to respond in a reasoned way to mistakes
in the case the agent takes actions taken in the world. The realization that there has been a mistake in either the beliefs
or some actions can enable the system to compute that other beliefs, intentions or actions are mistaken. This can be
used to prevent inappropriate actions from being executed or can trigger a repair of the inappropriate actions already
taken. The ability to notice and reason flexibly about mistakes in this way is a useful attribute for an agent to have if it
is to operate in a dynamic world about which it has incomplete and uncertain information.

We may not yet be at the point where we could implement a system that behaves like the traffic controller mentioned
in the beginning, but we think we are on the right track, and that we can implement a better monster.
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Conclusions and future work

We have shown how it is possible to build systems that detect their own failures and respond to them appropriately.
This approach has been tested in some aspects of language processing and of commonsense reasoning. There is a
need for Al systems to exhibit such a behavior if they are to act flexibly in the world. We believe that the approach we
presented here will be an important part of the design of such systems.

The principal contributions of this work are:
o The design and implementation of Alma/Carne, a general-purpose active logic reasoner. Alma/Carne is time-
situated, tolerates contradictions and provides facilities for meta-reasoning. Alma/Carne has been used in a

number of applications. We believe that Alma provides the representational and inferential resources required
for an agent to detect and handle its own mistakes.

e The design and implementation of an algorithm implemented in Alma that automatically detects and handles
mistaken beliefs in a domain-independent way. This was successfully tested on a large subset of a test-suite of
non-monotonic reasoning examples collected from the literature.

o Algorithms for and implementations of systems for detecting and responding to mistakes in natural language
processing applications. These were used for computing presupposition projection and implicature cancellation
in cases not properly handled by previous algorithms.

Futurework

The more important problems to be worked on in the future include:

e Axiomatizing the properties of mistakes and their relations to the beliefs of an agent and to the state of the world.
o Allowing a variety of systems of inference rules to be used in Alma, not just resolution.

o Devising heuristic and meta-reasoning techniques to control inference in Alma to keep space and time usage
reasonable.

o Extending the range of examples handled by the presupposition projection and implicature cancellation systems.

o Formalizing a semantics for the system that handles mistaken beliefs (chapters 7 and 8) and characterizing the
behavior of the system with respect to the semantics.

163
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o Implementing techniques derived from experiments on human non-monotonic reasoning to deal with mistakes
and verifying the degree to which these model human behavior.

e Augmenting the test-suite for non-monotonic reasoning so that it tests a greater variety of behaviors of non-
monotonic systems, including temporal ones.

o Refining the design of the agent that detects and handles mistaken beliefs, intentions and actions, implementing
one such agent, and testing it in various domains including that of computer games.



Appendix A

Test suite

We now list the examples of non-monotonic reasoning collected from the literature. This is the beginning of a test
suite for non-monotonic logic implementations. There are 12 categories of tests, each category requiring similar
capabilities of the reasoner. Within each category though, some examples are simpler than others. The categories are:
1. Simple default application; 2. Multiple consistent defaults; 3. Multiple inconsistent defaults with explicit or implicit
preferences; 4. Multiple inconsistent defaults with no preference between them; 5. the Closed World Assumption;
6. Epistemic reasoning; 7. Reasoning about names; 8. Reasoning about action; 9. Reasoning with assumptions; 10.
Diagnostic reasoning; 11. Minimization; and 12. Miscellaneous problems.

The problem that were expressed in some specific formalism have all been translated to English sentences since we do
not presuppose any formalism. We also have added sentences as necessary to make the examples complete.

A.1 Simpledefault application
These are basic examples of applying a single default and obtaining the conclusion of that default.

1. The prototypical application of non-monotonicity: Birds typically fly
Tweety isa bird
We conclude that Tweety flies

2. Source: [5]
Illustration of prototypical reasoning.
Typically children have (living)parents.
3. Source: [104]
Example LB-A1': basic default reasoning Assumptions:
e Blocks A and B are heavy.
e Heavy blocks are normally located on the table.

e A is not on the table.

Conclusions

'LB-XX refer to Lifschitz benchmark problems.
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e B is on the table.

This illustrates that even though heavy blocks are usually on the table, we do not always conclude that. In this
case we know non-defeasibly that A is not on the table, so the default does not apply in this case. In addition,
the non-application of the default to A does not affect its application to B.

. Source: [104]
Example LB-A2 illustrates that irrelevant information does not affect the application of the default.

Assumptions:

e Blocks A and B are heavy.
e Heavy blocks are normally located on the table.
e A is not on the table.

e Bisred.
Conclusions
e B is on the table.
The fact that B is red does not affect its being on the table.

. Source: [5]

If someone has a birthday, their friends give them gifts.
It isthe birthday of Tweety.

Joeis Tweety' s friend.

Does Joe give Twesty a gift?

. Source: [5]
An illustration of “no-risk reasoning”.

In the absence of evidence to the contrary, assume that the accused isinnocent
If Tweety is accused, is he innocent?

. Source: [5]
An example of “best guess reasoning”.

I know that there are some shopping centersin my city, and some of them are open on Sundays but | don’t know
which oneis. On a Sunday | would simply drive to the closest one though | do not have any evidence that it will
be open. It is simply the more convenient conjecture | can make.

. Source: [157]
This illustrates expressing exceptions.

Few Americas are socialists.
Tweety is America-n.
I's Tweety socialist?

. Source: [157]
This illustrates handling incomplete knowledge.

Whenever X is a person, then in the absence of information to the contrary, assume that home-town(x) = Palo
Alto.

Tweety isa person.

Where does Tweety live?
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10. Source: [5]
This illustrates the use of non-monotonic logic in law.

According to German law, a foreigner isusually expelled if they have committed a crime. One of the exceptions
to this rule concerns political refugees. Tweety and Joe are foreigners and have committed a crime.

Tweety isa political refugee.

I's Tweety expelled?

Is Joe expelled?

11. This is an extended example from [17]which uses epistemic concepts to do nonmonotonic reasoing. The epis-
temic ideas do not seem central to these examples so they were represented in our logic using the usual default
approach.

Germanstypically drink beer is interpreted as:
Vo German(z) A M DrinksBeer(z) — DrinksBeer(z)

With
German(peter)

We want to derive DrinksBeer(Peter).

A.2 Multipleconsistent defaults

In this case, there are several defaults in the logic that apply and are not inconsistent with each other. This does not
cause any contradictions but the interactions (or lack of interaction) between the several defaults can be interesting.

1. Source: [104]
Example LB-A3 illustrates that an object being an exception to one default does not make it exceptional for
other defaults.

Assumptions:

e Blocks A and B are heavy.

Heavy blocks are normally located on the table.

Heavy blocks are normally red.
e A s not on the table.

e B is not red.
Conclusions

e B is on the table.
e Aisred.

2. Source: [5]

Usually | go fishing on Sundays unless | wake up late. When | am on holidays | usually wake up late. Suppose
itis Sunday and I am on holidays. We expect either default to apply.
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Source: [5]
This is an illustration of undesirable joint consistency.

If I may assume that the weather will be bad, I’ take my sweater.
If | may assume that the weather will be good then I'll take my swimsuit

We should be cautious and take both. The desired answer seems to be derivable by assuming the premises of
both defaults are true, but that is inconsistent.

Source: [161]

Reiter and Criscuolo offer a set of examples that exemplify various interactions between defaults. Some of
these cases involve inconsistency among the defaults, but we list all of them here to keep the examples together.
In all these examples, we assume that typically As are Bs, and typically Bs are Cs. Each example adds more
conditions:

Typically Asare Bs. Typically Bsare Cs. NoAisaC

Typically Asare Bs. Typically Bs are Cs. All Asare Cs

Typically Asare Bs. Typically Bs are Cs. Typically As are Cs

Typically Asare Bs. Typically Bs are Cs. It is not the case that As are typically Cs

Typically Asare Bs. Typically Bs are Cs. Typically Bs are not As. It is not the case that As are typically Cs.

Typically Asare Bs. Typically Bs are Cs. Typically As are not Cs

Typically Asare Bs. Typically Bs are Cs. Typically Bs are not As. Typically As are not Cs.

Source: [161]
This set of examples is similar to the above except that instead of assuming that “Typically As are Bs”, we
assume “All As are Bs”. This will make a difference in cases where there is a conflict that involves that default.

Assume: All As are Bs and typically Bsare Csand No AisaC.

Assume: All As are Bs and typically Bs are Csand All Asare Cs.

Assume: All As are Bs and typically Bs are Cs and Typically As are Cs.

Assume: All As are Bs and typically Bs are Csand It is not the case that As are typically Cs.

Assume: All Asare Bsand typically Bs are Csand Typically Bs are not As. It isnot the case that Asare typically
Cs.

Assume: All As are Bs and typically Bs are Cs and Typically As are not Cs.
Assume: All As are Bs and typically Bs are Cs and Typically Bs are not As. typically As are not Cs.
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A.3 Multipleinconsistent defaults

In these cases, there are several defaults that could apply because their antecedents are true, but they cannot apply
jointly. The main problem then is to have the right ones apply. There are two main classes of problems: those in which
the preferences between the defaults are explicitly represented in the problem and those in which it is not. In the latter
cases, the logics will have to infer the preferences or these could be added explicitly.

A.3.1 Explicit preferences

We first have some examples that can be resolved using a single preference between a pair of defaults.

1. Source: [17]
This is a version of the Nixon diamond where a preference is stated between the defaults.

Republicans are typically not pacifists.
Quakers are usually pacifists.
Nixonisa republican.

Nixon is a quaker.

We prefer the first default to the second.

2. Source: [17]

Consider the following theory:
Sudentsare typically not married.
Adultsare typically married.

Peter isa student.

Peter isan adult.

Is Peter married?

In this case there is no preference and there is not way to choose. If we also say that Adultsthat are not students
are married we should derive that Peter is not married.

3. Source: [17]
A variation of the above is the following:
Sudentsare typically not married.
Adultswho are not students are typically married.
Bearded people are typically students.
Bearded people are typically adults.
Peter isan bearded.

‘We want to derive that Peter is not married.

This time the facts that Peter is a student and an adult are obtained through defaults.

4. Source: [17]
Here we have several levels of preference:

(a) Tweety is a bird, Tweety is a penguin, Tim is a Penguin, Tim flies.
(b) Penguins typically don’t fly.
(c) Birds typically fly.

The higher the index, the higher the preference for the formula. We want to conclude that Tweety does not fly.
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5. Source: [104]
Benchmark LB-A4 involves “possible exceptions”.

Assumptions:

e Blocks A and B are heavy.
e Heavy blocks are normally located on the table.

e A is a possible exception to this rule.
Conclusions
e B is on the table.

6. Source: [104]
Benchmark LB-A9. There is a preference for Mary’s testimony. Assumptions:
o Jack asserts that block A is on the table.
e Mary asserts that block A is not on the table.

o When Jack asserts something he is normally right.

When Mary asserts something she is normally right.

e Mary’s evidence is more reliable than Jack’s.
Conclusions
e Block A is not on the table,

7. Source: [104]
Benchmark LB-A10 generalizes the default that Jack and Mary are normally right. Assumptions:

o Jack asserts that block A is on the table.
e Mary asserts that block A is not on the table.
o When people assert something they are normally right.

e Mary’s evidence is more reliable than Jack’s.
Conclusions
e Block A is not on the table,

8. Source: [17]
Here the defaults at level T1 are to be preferred to those at T2 and those at T2 to those at T3.

T1 Hansattack Peter.
Peter injures Hans.

T2 If x attacksy, then y acts in self-defense.
If x actsin self-defense, x is not guilty.

T3 If xinjuresy, x isguilty

We want to conclude that Peter is not guilty.
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10.

11.

12.

Source: [5]
This is a belief revision example with different degrees of entrenchment.

Sciliansare normally hotheaded.
Blonde persons are normally not hotheaded.

Fiora, a sicialinais hotheaded, Johanna a blonde German is not and Rachel a blonde sicilianis.

In this last set of examples, we have longer chains of preferences.

Source: [17]

In this case, there are several preferences and these are conditional on other facts.

Usually one hasto go to a project meeting.
Thisrule does not apply if oneis sick, unless the sickness is only a cold.
Theruleisalso not applicableif oneis on vacation.

Does Joe have to go to the meeting if

e He is happy.
o He is sick.
e He has a cold.
e He is on vacation.
e He is on vacation and has a cold.
Source: [108]
This extends the Tweety example with more defaults and preferences.

Things normally don’t fly.

Birds are not normal things.

Birds typically fly.

Ostriches and penguins are abnormal birds.
Ostriches and penguins typically don't fly.
Osdtriches, canaries and penguinsare birds.
Birds are typically feathered.

The species are digoint.

Given that Tweety is a canary and Joe an ostrich, what can we conclude?

Source: [17]

This example formalizes frame systems in a logic.

(a) Cars typically have 4 wheels.

(b) Cars typically have 5 seats.

(c) Cars typically have 4 cylinders.

(d) Sportscars typically have 2 seats.

(e) Sportscars typically have 6 cylinders.
(f) All sportscars are cars.

(g) Speedy is a sportscar.
We also have the following preferences:

5<3,4<2{6,7}<{1,2,3,4,5}

We need to derive that Speedy has 2 seats, 6 cylinders and 4 wheels.
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A.3.2 Multipleinconsstent defaultswith implicit preferences

In this group of examples, the preferences are not explicitly stated in the problem. The reasoner should be able to
derive those. These are essentially the same as the above set except that the preferences are not explicit here.

1. Source: [5]
Bill isa high school dropuot. Tyupically high school dropouts are adults. Typically adults are employed

2. Source: [17]

The SPD believes that people should work |ess but not for less money.
The LAF, a subgroup of the SPD believes that we need to work less, and get |ess money.
Company owner s think that people should work more for less money.

What are the opinions of someone who is

e In the SPD.
In the LAF.

A company owner.

e A company owner in the SPD.

e A company owner in the LAF.

3. Source: [54]

Molluscsare normally shell bearers.
Cephal opods must be Molluscs but normally are not shell bearers.
Nautili must be Cephal opods and shell-bearers.

‘We should be able to derive that

e Given a nautilus, it is a cephalopod, a mollusc, and a shell-bearer.

o A cephalopod not known to be a nautilus is a mollusc with no shell.

4. Source: [183]
Elephants are typically gray.
Royal elephantsare e ephants but are not typically gray.
Circus elephants are royal elephants.
Clydeisa circus el ephant.

Is Clyde gray? What if we add the statement that Clyde is an elephant?

A.4 Multipleinconsistent defaultswith no preference

In this set of examples, we have a set of defaults that have inconsistent consequences and there is no implicit or explicit
preference among any of the defaults.

1. Source: [161]
The Nixon diamond is perhaps the simplest sucha case. Typically republicans are not pacifists.
Typically quakers are pacifists.
John is both a quaker and a republican. Is John a pacifist?
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2. Source: [183]
In this variant there is an extra inference one must make to conclude that Nixon is not pacifist.

Quakers are typically pacifists.

Pro-defense people are typically not pacifists.
Republicans are typically pro-defense.

Nixon is both a quaker and a republican.

Is Nixon a pacifist?

3. Source: [157]

Assume a person’s hometown is that of his’her spouse.
Assume a person’s hometown iswhere his/her employer islocated.
Mary’s spouse lives in Toronto, her employer isin Vancouver.

Where does Mary live?
4. Source: [17]

Dogsor birds are pets.

Dogsaren't birds.

Pets are usually dogs.

Snging thingsare usually birds.

Given that Joe sings, we want to conclude that it is a bird and a pet. The answer should not change if we also
assert that Joe is a pet.

5. Source: [113]
The lottery paradox is the same kind of problem: there are a number of defaults that are inconsistent with other
knowledge.

Alottery is held with 1 million participants, including our friend John, The odds of John’s winning are so low
that we infer by default that he won'’t. Yet by the same token we can infer that none of the other 999,999 members
will win, which contradicts our knowledgethat at least one person must win.

A.5 Closed World Assumption

The example here illustrates the closed world assumption.

Source: [156]

There are 4 teachers: a, b, ¢, d.
There are 3 students: A, B, C.
ateaches A, b teaches B, ¢ teaches C and a teaches B.

‘Who does not teach B?

A.6 Epistemicreasoning

Epistemic and auto-epistemic reasoning have been used as one way to formalize non-monotonic logics. In this sec-
tion we list examples that use knowledge about what the agent knows explicitly. Examples in the literature that are
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formalized in auto-epistemic logic but could be equally formalized in a different way are not presented.

1. Source: [5]

Are the Rolling Stones giving a concert in Newcastle next week?
No, because otherwise | would have heard about it.

If we later buy the newspaper and find: “ The concert of the century: The Rolling stones in Newcastle next
week!” . The conclusion should change.

2. Source: [104]
Example LB-E1

Assumptions:
e Block A is on the table
Conclusions
o It is not known whether B is on the table.

3. Source: [104]
Example LB-E2

Assumptions:
e at least one of the blocks A, B, is on the table.
Conclusions

o It is not known whether A is on the table.

o It is not known whether B is on the table.

4. Source: [104]
Example LB-E4

Assumptions:

o Blocks that are not known to be heavy are on the table.
e Block A is heavy.

Conclusions

e Block B is on the table.

A.7 Reasoning about names

This set of examples involves issues surrounding uniqueness of names. Once again the usual nonmonotonic reasoning
mechanisms are used but in this case, a distinction has to be made between names and the objects they name.

1. Source: [104]
Example LB-C1

Assumptions:
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o Different names normally denote different objects

o The names “Ray” and “Reiter” denote the same person.

o The names “Drew” and “McDermott” denote the same person.
Conclusions

e The names “Ray” and “Drew” denote different people.

2. Source: [104]
Example LB-C2

Assumptions:

o Different people normally have different fathers.
o Joseph and Benjamin have the same father.

e Gaius and Tiberius have the same father.
Conclusions
o Joseph and Gaius have different fathers.

3. Source: [52]
Tom'stelephone number isthe same as Sue's.
Bill’stel ephone number is 555-1234.
Mary’s telephone number is not 555-1234.
All the people are different form each other.

Is Tom’s telephone number 555-1234? Is Tom’s telephone number the same as Mary’s?

A.8 Reasoning about action

There are several such examples in the literature, represented in different formalisms, mainly situation based or interval
based. The same nonmonotonic behavior is used in both sorts of examples. Our logic gives the results expected.

1. The following examples are from [104]

Assumptions:

o After an action is performed things normally remain as they are.

e Any time a robot grasps a block, the block will be in the hand.

e If a block is in the hand then, after the robot moves it to the table, the block will be on the table.
o Initially block A is not in the hand.

o Initially block A is not on the table.

Conclusions
o After the robot grasps block A, waits, and then moves it onto the table, the block will be on the table.

2. In this example, the representation involves exceptions to the action specifications.

Assumptions:
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After an action is performed things normally remain as they are.

When the robot grasps a block, the block will be in the hand.

o When the robot moves a block onto the table, the block will normally be on the table.
e Moving a block that is not in the hand is an exception to this rule.

o Initially block A is not in the hand.

o Initially block A is not on the table.

Conclusions
o After the robot grasps block A, waits, and then moves it onto the table, the block will be on the table.

3. This example seems to be problematic since it states that a block is on the table iff it is not on the floor. However,
the block can also be in the hand.

o After an action is performed, things normally remain as they are.

o A block is on the table, if and only if it is not on the floor.

o When the robot grasps a block, the block will be normally in the hand.

o When the robot moves a block onto the table, the block will normally be on the table.
e Moving a block that is not in the hand is an exception to this rule.

o Initially block A is not in the hand.

o Initially block A is on the floor.

Conclusions
o After the robot grasps block A, waits, and then moves it onto the table, the block will not be on the floor.
In these examples from [168]. The representation in this case is interval rather than situation based.

4. The Yale shooting scenario.

The world consists of:

o Two truth valued features specifying whether the gun is loaded and whether the bird is alive.
e Actions: load gun, fire gun, wait.
The effect of loading is that the gun is loaded. If gun is loaded at beginning of firing, then bird is dead at the end
of firing and the gun is unloaded, otherwise firing has no effect.
Initially, the bird alive and the gun not loaded.
Events: load gun, wait, fire.

Conclusion: the bird is not alive.

5. The Stockholm delivery scenario.

Consider a box, B, and a car, C, both of which are located in the city of Linkoping at time O, which represents
the beginning of the scenario. The box is not in the car at time 0. Two action types are considered, namely to
load a box into the trunk of a car, and to drive a car to a specified city. From time 8:15 to time 8:20 the box is
loaded into the car; fromtime 8:40 to time 11:15 the car isdriven to Siockholm.

Question: where is the box at time 13:00?
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6. Therainy day shooting scenario.

Consider a world similar to the Yale shooting scenario with three propositional features: a ('Fred isalive'), 1
(Thegunisloaded), p (It israining’). There is one action Fire whose effect is to unload the gun if it was
loaded and of killing Fred iff the gun was loaded. The rain does not affect these outcomes, and therain itself is
not affected. Assume that in the case that Fred is alive and the gun is loaded, the action takes two time units,
where the gun becomes unloaded in the first and Fred dies in the second timestep. In other cases it takes just
one timestep.

If it is raining and the gun is loaded and fires, does Fred die?

7. Source: [108]

Unless something prevents it, x ison y in the situation that results from the action move(x, y).
If either x or y isnot a block, that prevents the move.

If X or yisnot clear, that prevents a move.

If yistoo heavy, that prevents a move.

Given blocks A and C, we want to conclude that we can move A to C in situation SO.

A.9 Reasoningwith assumptions

There are a number of examples in the literature where one has to assume a fact and reason based on this assumption.
The assumption may not always be explicit but the structure of the problem seems to require that.

1. Source: [104]
‘We need to assume that Mary’s evidence is more reliable to come to the conclusion. Assumptions:
o Jack asserts that block A is on the table.
e Mary asserts that block A is not on the table.
o When people assert something they are normally right.

Conclusions
o If Mary’s evidence is more reliable than Jack’s then block A is not on the table.
2. Source: [168]

Thehiding turkey scenario This involves making assumptions in the context of reasoning with action.

The world is as the Yale Shooting Scenario with two additional fluents: deaf turkey; hiding turkey. If the turkey
is not deaf, then when gun is loaded it goes into hiding. Firing only Kkills turkey if it is not hiding.

Initially the turkey is alive, not hiding, and the gun is not loaded. It is unknown if turkey is deaf.

The events are: load gun, wait then fire.

The conclusion we want to reach is that either the turkey is deaf and dead or non-deaf and alive.
3. Source: [168]

Theferryboat connection scenario

The world consists of a motorcycle having positions: “ On Island Fyen” , “ At ferryboat landing”, “ On ferry-
boat” , “ In Jutland” .

Initially motorcycle is driving along a road on island Fyen, in direction of the ferryboat landing. The ferryboat
departs at 23:01. the last time for arrival is 23:00. If motorcycle is on board at 23:01, it will arrive in Jutland
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between 23:45 and 23:50 otherwise it stays. The motorcycle reaches the landing sometime between 22:55 and
23:05.

Conclusion: at 23:55, motorcycle is either at the landing or in Jutland.

4. Source: [168]

TheRussiaturkey scenario

The world is the same as in the Yale Shooting Scenario with an additional action: spinning the gun chamber.
The effect isthat the gun may be randomly unloaded after that action.

Initially the gunis unloaded, the turkey is alive.
The events are: 1oad the gun, spin the chamber, then fire.
There are two possible conclusions:either the gun gets unloaded and there is no change after firing or there is no
change from spinning, and the turkey is dead.
5. Source: [168]
Thefurniture assembly scenario

The world consists of a furniture kit with two features. whether it is assembled and whether if containsinstruc-
tions. The action is assembling the kit. If kit was unassembled this takes 20 minutes if instructions included,
otherwise it takes 60 minutes.

Initially the kit is unassembled and it is not known whether the instructions are included.
There are two possible conclusions: the instructions are included and the kit is assembled in 20 minutes, or the

instructions are not included and kit is assembled in 60 minutes.

6. Source: [17]
This is a reasoning by cases example: Italianslike wine.
Frenchmen likewine.
Johnisltalian or John isa Frenchman.

‘We want to conclude that John likes wine.

A.10 Diagnosis/explanation reasoning

Several examples of nonmonotonic reasoning involve diagnosing problems or require explanations to be inferred for
some events.

1. Source: [104]
Example LB-D4. This requires the reasoner to infer the conditions at the beginning of the sequence of actions
given the outcomes. Assumptions:
o After an action is performed, things normally remain as they are.
o When the robot grasps a block, the block will normally be in the hand.
o When the robot moves a block onto the table, the block will normally be on the table.

Moving a block that is not in the hand is an exception to this rule.

Initially block A was not on the table.
o After the robot moves A to the table and then waited, A was on the table.

Conclusions
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o Initially A was in the hand.

2. Source: [104]
Example LB-D5. Assumptions:
o After an action is performed, things normally remain as they are.
o When the robot grasps a block, the block will normally be in the hand.
o When the robot moves a block onto the table, the block will normally be on the table.
e Moving a block that is not in the hand is an exception to this rule.
o Initially block A was not on the table.
o Initially block A was not in the hand.

o After the robot grasped some block and then moves some block onto the table, A was on the table.
Conclusions

o The block that was grasped was A
o The block that was moved to the table was A.

3. Source: [104]

Example LB-D6. Assumptions:

o After an action is performed, things normally remain as they are.
o When the robot grasps a block, the block will normally be in the hand.
o When the robot moves a block onto the table, the block will normally be on the table.
e Moving a block that is not in the hand is an exception to this rule.
o Initially block A was not on the table.
o Initially block A was not in the hand.

o After the robot performed 2 actions. A was on the table.
Conclusions

o The first of the two actions was grasping A.

o The second of the two actions was moving A to the table.

4. Source: [104]
Example LB-D8. Assumptions:

o After an action is performed, things normally remain as they are.
o When the robot moves a block to another location, the block will be normally at that location.

o After the robot moved a block to Location 1 and then to Locations2, the block changed its color.
Conclusions
o The block changes its color only once, either after the first move or after the second.

5. Source: [104]
Example LB-D9. Assumptions:
o When the robot moves a block to another location, the block will be normally at hat location.

o After the robot moved block A onto the table, and then moved block B onto the table, at most one of the
blocks a, B was on the table.
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Conclusions
o After the two actions were performed, exactly one of the blocks A, B was on the table.

. Source: [104]
Example LB-D10 Assumptions:
o After an action is performed, things normally remain as they are.
o When the robot moves a block to another location, the block will be normally at that location.

o After the robot moves block A to location 1, block B change color.
Conclusions
o Block B would have changed its color if the robot had moved A to location 2.

. Source: [104]
Example LB-D11 Assumptions:
o When two actions are performed concurrently, their effects are normally combines.

o After a block is moved to another location, it is normally at that location.
Conclusions

o After block A is moved to Location 1 and block B is concurrently moved to location2, A will be at location
1 and B will be at location 2.

. Source: [168]
The Stanford murder mystery.

The world is the same as that for the Yale shooting scenario. The turkey is initially alive and the events are to
fire the gun and to wait. The result is that the turkey is dead at the end of the firing. We want to conclude that
the gun was initially loaded and that the turkey was not alive at the end of the firing.

A.11 Minimization

These examples have to do with inferring an explicit minimization of a predicate. There are two sorts of minimization
here: minimizing by instances and minimizing by subsets. In the first case, we know of some objects that don’t satisfy
a default and in the second, we know of subsets of a set of objects that don’t satisfy the default. The inference desired
is to qualify the default with these exceptions. We can also have combinations of these two cases.

This sort of reasoning is commonly found in circumscription where one minimizes predicates before using the mini-
mizes predicates to make inferences.

Subsets

1. Source: [104]

Assumptions:

¢ Animals normally do not fly.
o Birds are animals.
o Birds normally fly.

e Ostriches are birds.
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o Ostriches normally do not fly.
Conclusions

¢ Animals other than birds do not fly.
o Birds other than ostriches fly.
e Ostriches do not fly.
2. Source: [104]
Assumptions:
¢ Animals normally do not fly.
o Birds are animals.
o Birds normally fly.
e Bats are animals.
e Bats normally fly.
o Ostriches are birds.

o Ostriches normally do not fly.
Conclusions

o Animals other than birds and bats do not fly.
o Birds other than ostriches fly.
o Bats fly.

Ostriches do not fly.

3. Source: [104]
This example is similar to the above. In this case, the exceptions are specified by defaults.

Assumptions:

o Quakers are normally pacifists.

e Republicans are normally not pacifists.
Conclusions

o Quakers who are not republicans are pacifists.
e Republicans who are not Quakers are not pacifists.
4. Source: [104]

From the same set of examples, this time there is a property (politically active) for which transitivity must apply.
However this is not something that we would like to do generally.

Assumptions:

o Quakers are normally pacifists.

Republicans are normally hawks.

Pacifists are normally politically active.

Hawks are normally politically active.

Pacifists are not hawks.

Conclusions



5.

10.

o Quakers who are not republicans are pacifists.
o Republicans who are not Quakers are hawks.

o Quakers, Republicans, Pacifists, Hawks are politically active.

In the following cases we consider minimization in terms of instances.

Source: [104]
Assumptions:

e Blocks A and B are heavy.
e Heavy blocks are normally located on the table.

e A s not on the table
Conclusions
o All heavy blocks other than A are on the table.

Source: [104]
Assumptions:

e Blocks A and B and C are heavy.
e Heavy blocks are normally located on the table.

e At least one of A, B is not on the table
Conclusions

e Cis not on the table.

o Exactly one of A, B is not on the table.
In this case we need to specify that exactly one block does not satisfy the default.

Source: [104]
Assumptions:

e Heavy blocks are normally located on the table.

o At least one heavy block is not on the table.
Conclusions
o Exactly one heavy block is not on the table.

Source: [104]
Assumptions:

e Block A is on the table.
Conclusions
e About any block other than A it is not known whether it is on the table.

Source: [108]
In this circumscription we want to minimize the extent of block as above:

If we know that A, B and C are blocks, we want to conclude that the only blocks are A, B and C.
Source: [108]

If we know that either A or B isa block, we want to conclude that the only block is A or the only block is B.
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A.12 Miscellaneous

The problems in this category include reasoning with inconsistent justifications, reasoning with counting, and reason-
ing about integers that don’t fit well in the previous categories.

In this set we collect examples that do not fit well in any of the other sets.

1.

Source: [5]

This example is about the joint consistency of justifications.

By default arobot’sarm (a or b) isusableunlessit isbroken; further we know that either a or b isbroken. Given
thisinformation, we do not expect both a and b to be usable. (Poole)

Source: [104]

Assumptions:

e Block A is heavy
e Heavy blocks are normally located on the table.

o At least one heavy block is not on the table.
Conclusions
e A s on the table.

Source: [104]
Assumptions:

o After an action is performed, things normally remain as they are.
o When a person accepts a job offer from some employer, he will be employed by that employer.
o If Bill is offered a job at Berkeley or at Stanford when he is unemployed, he will accept it.

o Bill is currently unemployed.
Conclusions

o After Bill is offered jobs at Berkeley and Stanford at two different instants of time, he will be employed
either by Berkeley or by Stanford.

Source: [52]
This is an example of reasoning with inconsistency.
Jx N(z) AVy (N(y) — & # succ(y))
Vz N(z) — N(suce(z))
Vay suce(z) = suce(y) — z =y
If we circumscribe N we get a contradiction.

In [145] we have this reasoning episode:

Tweety is a bird; so (I may as well assume) Tweety can fly; but Tweety is an Ostrich and so cannot
fly after all; my belief that Tweety could fly was false, and arose from my acceptance of a plausible
hypothesis. Do all birds that may fly (as far as I know) in fact fly? No, that’s just a convenient rule
of thumb.



Appendix B

Test results

We tested our non-monotonic logic on the test suite presented in appendix 11. We illustrated in detail an instance of
the execution of our logic with a problem of each class of the test suite in chapter 9. We here give a fuller account
of the problems that were solved and those that were not and some brief comments on intereting problems. The
axiomatization of these problems are available at our website. Also available there is the possibility to “replay” our
solutions to these problems. Note that the problems are identified by their index in the test suite.

The logic we have described earlier solves a wide range of problems in the literature in the expected way. Most of the
problems it does not solve belong to two categories that would need more facilitied in the logic or in Alma before they
can be solved. Their solution is not precluded by the logic—it is only a matter of more work.

B.1 Simpledefault application

Problems A.1.1-A.1.4 were straightforwardly solved in a way similar to A.1.3. The other problems in this category
are similar to these and were not attempted.

B.2 Multiple consistent defaults

Problems A.2.1-A.2.10 were solved. Problems A.2.11-A.2.17 were similar to and simpler than A.2.4-A.2.10 and
were not attempted.

B.21 ProblemA.2.3

We have three axiomatizations of A.2.3. In the first representation of the problem, we introspect to see whether we
know that the weather is bad or not. If we don’t, we take both sweater and swimsuit. If we do know that the weather is
bad though, we take the sweater and if it is good, we take the swimsuit. However this solution tests for the three cases
of not knowing anything, knowing the weather is bad and knowing that the weather is not bad separately and has an
explicit solution for each case. This is not desirable.

In the second representation, we take both the sweater and the swimsuit by default, but if the weather is bad, we don’t
take the swimsuit, and if the weather is good, we don’t take the sweater. In this case, not knowing anything about the
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weather intially leads to taking both sweater and swimsuit. But then, these imply that it the weather is both good and
not good which results in a contradiction and we take neither.

In the third representation, we interpret the “if [ may assume P” clause by the failure to introspect the negation of P.
If we don’t introspect that the weather is not bad, we can assume that the weather is bad; and if we fail to introspect
that the weather is not bad, we assume it is not bad. But if we know that the weather is bad, we cannot assume that
it is not bad. Similarly for the weather being not bad. From these explicit assumptions, we infer what to take. This
representation works as intended: if we don’t know whether the weather is bad or not, we take both sweater and
swimsuit. But if we then learn (or learn initially) that the weather is bad, we don’t take the swimsuit.

B.22 ProblemA.2.7

In this problem we want to deny that As are typically Cs, which is different from asserting that As are typically not
Cs. The difference is apparent if we have an object that is an A but not a B. In the first case, there is no conclusion
whereas in the second case we assert that the object is not a C.

The denial is represented by a default that has as antecedent the conjunction of the conditions under which we usually
derive that an object which is an A is a C. The consequent of the default then asserts that that the object is not a C.
This causes a contradiction which results in suspending belief about the object being a C. Since the antecedent of this
denying default will only be derivable when the fact that the object is a C is derived, we do not get the problem of
asserting spurious negations as above. A shortcoming of this solution is that it needs us to know all the ways in which
one can go from knowing an object is an A to knowing itis a C.

B.3 Multipleinconsistent defaults

All the problems in this section were solved, except for A.3.A.3.1.6 and A.3.A.3.1.6 which were similar to the others
and not attempted.

B.3.1 Multipleinconsistent defaultswith implicit preferences

All the problems here, except for A.3.?7?.4 were solved. That problem was similar to the others and not attempted.

B.4 Multipleinconsistent defaultswith no preference

All the problems in this section, except for A.4.3 were correctly solved. A.4.3 involves two defaults, the first that
a person lives where her employer is and second that a person lives where her spouse lives. In the case of Mary,
her employer and spouse are in different cities. The desired result is that Mary lives either in the employer’s or the
spouse’s town. Our logic does not conclude anything about where Mary lives (we also state that a person can’t live in
two places).

B.5 Closed World Assumption

The only problem here was solved in the expected way.
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B.6 Epistemic reasoning

All the problems in the A.6 category were solved using Alma’s introspection ability.

B.7 Reasoning about names

This set of examples involves issues surrounding uniqueness of names. Once again the usual nonmonotonic reasoning
mechanisms are used but in this case, a distinction has to be made between names and the objects they name. All but
A.7.3 were solved. That was similar to the previous ones and was not attempted.

B.8 Reasoning about action

All the examples in this section were solved except for A.8.?? which is similar to A.8.4. Our approach worked equally
well for the situation and the event based representations.

B.9 Reasoning with assumptions

Alma does not support reasoning with assumptions, therefore none of the problems in this section were solved. These
could be attempted after that sort of reasoning is added to Alma.

B.10 Diagnosisgexplanation reasoning

Our non-monotoniclogic and Alma perform a very simple form of diagnosis to find the causes of a contradiction. This
is not sufficient for the usual problems in diagnosis encountered in the literature. These problems could be solved in
our framework using the metalogical prediated and operatores available. However, the algorithms for doing that need
to be implemented.

B.11 Minimization

These examples have to do with inferring an explicit minimization of a predicate. There are two sorts of minimization
here: minimizing by instances and minimizing by subsets. In the first case, we know of some objects that don’t satisfy
a default and in the second, we know of subsets of a set of objects that don’t satisfy the default. The inference desired
is to qualify the default with these exceptions. We can also have combinations of these two cases.

This sort of reasoning is commonly found in circumscription where one minimizes predicates before using the mini-
mizes predicates to make inferences.

An example of the first kind: if birds usually fly, but we know that the birds anna and bob don’t, then we infer that all
birds fly except if they are anna or bob. In the second case, if we know that usually birds fly but that sick birds and
penguins don’t, then we infer that all birds fly except for penguins and sick birds.
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This is not a sort of inference that we would generally like to make because typically, we cannot know when we have
found all the exceptions and the universally quantified formula we infer is likely to be false. However, in cases that we
do think we know all the exceptions, we can make that jump.

Note that this involves explicitly asserting that all odjects except for the exceptions satisfy the default. Without this as-
sertion, a nonmonotonic logic should be able to infer every instance of the assertion by simply using its nonmonotonic
inference. Here though, we want to assert that fact explicitly.

This sort of inference requires that we reason not with, but about the defaults. It involves finding all the exceptions to
the defaults (we know of), then qualifying the defaults with these exceptions.

In parallel with the two kinds of minimization mentioned above, we have two kinds of exceptions: 1. instance
exceptions which are objects that satisfy the antecedent of the default but not the consequent 2. subset exceptions
which are identified by formulas that imply the antecedent and do not satisfy the consequent. In the example above,
knowing that Bird(Anna)A—Flies(Anna) allows us to conclude that Anna is an exception to the birds flying default
(the same applies for Bob). Similarly, Penguin(z) — —Flies(z) and Penguin(X) — Bird(X) is sufficient for us
to conclude that penguins are an exception to the default (the same applies for sick birds).

Once we have obtained the set of exceptions, we use them together with the default to generate the quantified
generalization. Continuing the example, if the default is Bird(X) — Flies(X), we should get in the first case:
Bird(X) A X # Anna A X # Bob — Flies(X). In the second case: Bird(X) A =Penguin(X) A =Sick(X) —
Flies(X).

Implementing such an inference is possible in Alma since we can reason about the formulas in the knowledge base.
However doing so it not straightforward as it involves several steps of computation to first of all detect and gather all
the exceptions and secondly to take the default apart to assemble the qualified generalization. We have implemented
this only for the case of exceptional subsets. A lot of the computation is done in the prolog helper programs.

To generate the qualified generalization, we first request that Alma find the exceptions to the defaults, and once this
is done, we generate the generalization. Note that he same mechanism of finding the exceptions can be used to find
specificity preferences.

A.11.1 and A.11.2 were solved. A.11.3 and A.11.4 are somilar to these and were not attempted. The other examples
are minimization by instances. More prolog code needs to be written to solve these. This will be similar to the code
written for the subset minimization. Once this is done, these problems too, are expected to be solved.

B.12 Miscellaneous

A.12.1 was solved as our logic is sensitive to any inconsistency, whether it is in the antecedents or in the conclusions.
In this case, since neither broken(a) nor broken(b) can be derived, neither conclusion is asserted. The issue of
consistency of the antecedents does not come into the picture here. A.12.2 was not solved because of problems with
axiomatizing “at least” in our logic. A.12.4 was not solved as it explicitly required circumscription and while the
reasoning A.12.?? can be partially reproduced, not all of it can since that required reasoning about the defaults which
this logic does not do, although that is possible in Alma.



Appendix C

Alma/Carne manual

Active logics [46, 48] have the following characteristics:

o they are situated in time
o they maintain a history
o they tolerate contradictions

o they enable meta-reasoning to be done

These characteristics make active logics suitable for use in various domains including time situated planning and
execution [133, 151], reasoning about other agents’ reasoning [47], discourse context updating [76], computation of
Gricean implicatures [141], representation of meta and mixed-intiative dialog [ 144, 4].

For each of the domains above, it has typically been the case that when implemented, a new special purpose active
logic had to be programmed. This document describes the implementation of a general-purpose active logic engine
called Alma (Active Logic MAchine). The aim is that it should be possible to specify and execute any active logic
using the language of Alma.

It is usually not sufficient to compute consequences of an active logic, we want the execution of the logic to be sensitive
to the outside world and to have the logic affect the outside world. This is made possible by a procedure execution
system called Carne that runs in conjunction with Alma. This document describes the Alma-Carne system.

After an overview of the Alma-Carne system, details of Alma are presented. First a description of Alma, then the
method of running Alma and finally an account of the implementation. The same information is then presented for
Carne. The next section describes some applications of the Alma-Carne system. The last two sections discuss the
current bugs and the future development of the system. The appendices include a keyword reference and illustrations
of running Alma-Carne.

The latest version of the complete manual can be found at http://www.cs.umd.edu/projects/active/ Alma/manual.html.
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