Local optimizations

Consider the expression: $a + a \times (b - c) + (b - c) \times d$

Tree

```
+   *
  +   *
    +   -
      a   d
    *   -
      a   b
  *   *
    a   c
  -   -
    b   c
```

Directed acyclic graph

```
+   *
  +   *
    +   -
      a   d
    *   -
      a   b
  *   *
    a   c
  -   -
    b   c
```

Local optimizations

Common subexpressions (CSE)

- portion of expressions
- repeated multiple times
- computes same value
- can reuse previously computed value

Directed acyclic graph (DAG)

- program representation
- nodes can have multiple parents
- no cycles allowed
- exposes common subexpressions

Building a DAG for an expression

- maintain hash table for leafs, expressions
- unique name for each node — its *value number*
- reuse nodes found in hash table
Directed acyclic graphs

What about assignment?

- complicates detection of common subexpressions
- identical expression \rightarrow different value
- must ensure each value has a unique node

One solution - renaming

- add subscripts to variable names (e.g., $x \rightarrow x_i$)
- increment subscript of name if target (LHS) of assignment
- variables references use new subscript

Example

$$a_1 = a_0 + b_0$$

Can apply to entire basic block

Directed acyclic graph example

<table>
<thead>
<tr>
<th>Code</th>
<th>After Renaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b + c$</td>
<td>$a_0 = b_0 + c_0$</td>
</tr>
<tr>
<td>$b = a - d$</td>
<td>$b_1 = a_0 - d_0$</td>
</tr>
<tr>
<td>$c = b + c$</td>
<td>$c_1 = b_1 + c_0$</td>
</tr>
<tr>
<td>$d = a - d$</td>
<td>$d_1 = a_0 - d_0$</td>
</tr>
</tbody>
</table>
Common subexpressions

Going beyond basic blocks

- can no longer build DAGs
- must consider control flow

Examples

- possible kill

 \[
 \begin{align*}
 c &= a + b \\
 \text{if (\ldots)} & \quad \begin{align*}
 a &= \ldots \\
 d &= a + b
 \end{align*}
 \end{align*}
 \]

- possible gen

 \[
 \begin{align*}
 \text{if (\ldots)} & \quad \begin{align*}
 c &= a + b \\
 d &= a + b
 \end{align*}
 \end{align*}
 \]

We handle these conditions using data-flow analysis

Data-flow analysis

Data-flow analysis

- \textit{compile-time} reasoning about the \textit{run-time} flow of values in the program
- represent facts about run-time behavior
- represent effect of executing each basic block
- propagate facts around control flow graph

Formulated as a set of simultaneous equations

- sets attached to the nodes and edges
- lattice to describe relation between values
- usually represented as bit or bit vector

Limitations

- answers must be conservative
- often need to approximate information
- assume all possible paths can be taken
Data-flow analysis

Algorithm

1. build control flow graph (CFG)
2. initial (local) data gathering
3. propagate information around the graph
4. post-processing (if needed)

Example control flow graph

$$\begin{align*}
a &= 1 \\
\text{if (b) then} & \quad c := a+b \\
\text{else} & \quad b = 1 \\
& \quad c := a+b
\end{align*}$$

Available expressions

Definition

- An expression is defined at point p if its value is computed at p.
- An expression is killed at a point p if one of its argument variables is defined at p.
- An expression e is available at a point p in a procedure if every path leading to p contains a prior definition of e that is not killed between its definition and p.

Global common subexpression elimination

- If, at some definition point for $p = e$, e is available with name x, we can replace the evaluation with a reference to x.
- requires a global naming scheme
- natural analog to parts of value numbering
Available expressions

For a block b

- let $\text{GEN}(b)$ be the set of expressions defined in b and not subsequently killed in b.
- let $\text{KILL}(b)$ be the set of expressions killed in b.
- let $\text{IN}(b)$ be the set of expressions available on entry to b.
- let $\text{OUT}(b)$ be the set of expressions available on exit to b.

IN and OUT represent global information and can be calculated as:

$$\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$$

$$\text{IN}(b) = \bigcap_{x \in \text{pred}(b)} (\text{OUT}(x))$$

AVAIL is simply IN. Its calculation can be combined as:

$$\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))$$

Available expressions example

AVAIL(A) = \emptyset
AVAIL(B) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset
AVAIL(C) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset
AVAIL(D) = (\text{GEN}(B) \cup (\text{AVAIL}(B) - \text{KILL}(B))) \cap (\text{GEN}(C) \cup (\text{AVAIL}(C) - \text{KILL}(C)))
= (\{a+b\} \cup (\emptyset - \emptyset)) \cap (\{a+b\} \cup (\emptyset - \{a+b\})) = \{a+b\}
Solving data-flow equations

Iterative algorithm

change = true;
while (change)
 change = false;
 for each basic block // faster in reverse PostOrder:
 solve data-flow equations for b
 if (old ≠ new)
 change = true;
 end for
end while

Speed of solution

- node may change only if some predecessor changes
- try to visit node after all its predecessors
- reverse PostOrder propagates information quickly
- programs usually converge after 3–4 passes
- use bitvectors for more efficiency

PostOrder and reverse PostOrder

Step1: PostOrder

main()
 count = 1;
 Visit (root);

Visit(n)
 mark n as visited
 for each successor s of n not yet visited
 Visit(s);
 PostOrder(n) = count;
 count = count + 1;

Step 2: Reverse PostOrder (rPostorder)

for each node n
 rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search ≈ rPostOrder
Reaching definitions

- **The problem:** What are the assignments (or definitions) of a variable x that may reach a particular reference to x?

- **Why is this useful?**

Constant propagation:

\[
\begin{align*}
 &a = 1 \\
 &a = 2 \quad a = 2 \\
 &\quad b = 3 \\
 &\quad = a \\
 &\quad = b
\end{align*}
\]

Loop invariant code motion:

\[
\begin{align*}
 &L: \\
 &\quad a = a + 4 \\
 &\quad b = 20 \\
 &\quad c = b + a \\
 &\quad \text{if (\ldots) goto } L
\end{align*}
\]

Reaching definitions

- A **definition** of a variable x is a statement that assigns, or may assign, a value to x.

- A definition d **reaches** a program point p if there exists a path from the point immediately following d to p such that d is not killed along that path.

- $\text{REACH}(b)$ is the set of definitions reaching the entry of basic block b

- $\text{DEF}(b)$ is the set of *local definitions* in b that reach the end of b

- $\text{KILL}(b)$ is the set of variables killed by b

- **Equations:**

\[
\text{REACH}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x)))
\]

Best case for $\text{REACH}(b) = \emptyset$

Worse case for $\text{REACH}(b) = \{ \text{all definitions} \}$
Live variables

Definition:

• A definition \(d \) is live at program point \(p \) if the variable \(v \) defined by \(d \) may be used along some path in the program starting at \(p \) without being redefined between \(d \) and \(p \).

• Otherwise, the definition is dead

Why is this useful?

• global analysis to locate dead assignments.

\[
\begin{align*}
 a &= b \\
 b &= a \\
 a &= b \\
 b &= a \\
 &= b
\end{align*}
\]

Live variables

• Slightly different, since information at basic block is based on what happens later in the program.

• A backward data-flow problem.

• \(\text{LIVE}(b) \) is the set of definitions live on exit from block \(b \).

• \(\text{KILL}(b) \) is as before.

• \(\text{USE}(b) \) is the set of locally exposed uses

• \(\text{succ}(b) \) is the set of basic blocks that are immediate successors of \(b \) in the control flow graph.

• Equations:

\[
\text{LIVE}(b) = \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x)))
\]

Best case for \(\text{LIVE}(b) = \emptyset \)
Worse case for \(\text{LIVE}(b) = \{ \text{all definitions} \} \)
What do these have in common?

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))
\]

\[
\text{REACH}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x)))
\]

\[
\text{LIVE}(b) = \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x)))
\]

- **Confluence Operator or Meet Function**: union or intersection
- **Behavior for block**: GEN and KILL
- **A direction**: forward (confluence over predecessors) or backward (over successors)
- **Best case set value**: \(\top \)
- **Worst case set value**: \(\bot \)

General equations:

\[
\text{IN}(b) = \land_{p \in \text{pred}(b)} \text{OUT}(p)^\dagger
\]

\[
\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
\]

\(\dagger \) Reverse graph for backward problem.

Data-flow analysis frameworks

Use same framework for all data-flow problems

- given local information GEN, KILL
- start with some initial values for sets IN, OUT
- iterate through nodes in the flow graph, recompute transfer functions until sets stabilize

Framework has three components

- Domain of values: \(L \)
- Operator for combining values: \(\land \)
- A set of transfer functions \((L \to L) : \mathcal{F} \)

Usefulness of unified framework

- Defines a collection of properties that guarantee correctness, convergence;
- Can describe speed of convergence and precision of result for a family of analysis problems
- Can re-use code to solve new analysis problems
Data-flow lattices

Definitions

1. A lattice is a set L and a meet operation \land such that, $\forall a, b, c \in L$

 (a) $a \land a = a$ \hspace{1cm} [idempotent]

 (b) $a \land b = b \land a$ \hspace{1cm} [commutative]

 (c) $a \land (b \land c) = (a \land b) \land c$ \hspace{1cm} [associative]

2. \land imposes a partial order on L, $\forall a, b \in L$

 (a) $a \geq b \iff a \land b = b$

 (b) $a > b \iff a \geq b$ and $a \neq b$

3. A lattice may have a bottom element \bot

 (a) $\forall a \in L, \bot \land a = \bot$

 (b) $\forall a \in L, a \geq \bot$

4. A lattice may have a top element \top

 (a) $\forall a \in L, \top \land a = a$

 (b) $\forall a \in L, \top \geq a$

Available expressions example:

let $D = \{ x \mid x \subseteq \{e_1, e_2, e_3\}\}, \land = \cap$

\[
\top = \]

\[
\bot = \]

Partial ordering $\{e_1, e_2\} \text{ vs. } \{e_3\}$

Single lattice vs. one for each variable

\[
\top = \]

\[
\bot = \]
Data-flow lattices

How does this relate to data-flow analysis?

- choose a semi-lattice L to represent facts
- attach to each element of L a *meaning*
 each $a \in L$ is a distinct set of known facts
- with each node n, associate a *transfer function*
 $f_n : L \rightarrow L$ to model behavior of n
- propagate facts around the graph

Example — AVAIL

- semi-lattice is 2^E, where E is the set of all expressions computed
 \wedge is \cap, \perp is \emptyset, \top is E
- for a node n, f_n has the form $f_n(x) = D_n \cup (x - N_n)$
 where $D_n = \text{GEN}_n$ and $N_n = \text{KILL}_n$
- the underlying graph is the flow graph $G = (N, E, n_0)$
 n_0 is the entry node

Iterative algorithm

What about loops?

- circular dependencies between blocks
- can initialize solutions, then solve repeatedly

Example

```plaintext
    c = a+b
```

L:

```plaintext
d = a+b
a = ...
if (...) goto L
```

Termination

- goal is for solutions to converge to a *fixed point*
- can stop once solutions stop changing
- is this guaranteed?
Monotonicity

- A framework \((D, \land, F)\) is monotone iff
 \[x \leq y \implies f(x) \leq f(y) \]
 i.e., a “smaller or equal” input to the same function will always give
 a “smaller or equal” output

- Equivalently, monotone iff
 \[f(x \land y) \leq f(x) \land f(y) \]
 i.e., if merge input, then apply \(f\), result is “smaller or equal” to
 applying \(f\) individually and merging result

- Intuitively, monotonicity means “smaller” input will not yield “larger”
 output.

- monotone frameworks are guaranteed to converge and terminate (if lattice
 elements can only drop in information a finite number of times)

Quality of solution

Possible solutions

- perfect solution = meet over \textit{real} paths taken during program execution
- meet-over-all-paths (MOP) = meet over \textit{potential} paths in control flow
 graph
- maximal-fixed-point (MFP) = solution from iterative framework

Properties

- in general, \(\text{MFP} \leq \text{MOP} \leq \text{Perfect Solution}\)
- in some sense, MOP is best feasible solution
- MFP is unique, regardless of order of propagation
- a framework is \textit{distributive} if \(f(x \land y) = f(x) \land f(y)\)
- for a distributive framework, \(\text{MFP} = \text{MOP}\)