Local optimizations

Consider the expression: \(a + a \cdot (b - c) + (b - c) \cdot d \)

Directed acyclic graph

What about assignment?
- complicates detection of common subexpressions
- identical expression \(\rightarrow \) different value
- must ensure each value has a unique node

One solution - renaming
- add subscripts to variable names (e.g., \(x \rightarrow x_i \))
- increment subscript of name if target (LHS) of assignment
- variables references use new subscript

Example
\[
\begin{align*}
a_1 &= a_0 + b_0 \\
a &= b + c \\
b &= a - d \\
c &= b + c \\
d &= a - d
\end{align*}
\]

Can apply to entire basic block

Directed acyclic graph example

<table>
<thead>
<tr>
<th>Code</th>
<th>After Renaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b + c)</td>
<td>(a_0 = b_0 + c_0)</td>
</tr>
<tr>
<td>(b = a - d)</td>
<td>(b_1 = a_0 - d_0)</td>
</tr>
<tr>
<td>(c = b + c)</td>
<td>(c_1 = b_1 + c_0)</td>
</tr>
<tr>
<td>(d = a - d)</td>
<td>(d_1 = a_0 - d_0)</td>
</tr>
</tbody>
</table>
Common subexpressions

Going beyond basic blocks

- can no longer build DAGs
- must consider control flow

Examples

- possible kill

  ```
  c = a + b
  if (...) 
  a = ...
  d = a + b
  ```

- possible gen

  ```
  if (...) 
  c = a + b
  d = a + b
  ```

We handle these conditions using data-flow analysis

Data-flow analysis

Data-flow analysis

- compile-time reasoning about the run-time flow of values in the program
- represent facts about run-time behavior
- represent effect of executing each basic block
- propagate facts around control flow graph

Formulated as a set of simultaneous equations

- sets attached to the nodes and edges
- lattice to describe relation between values
- usually represented as bit or bit vector

Limitations

- answers must be conservative
- often need to approximate information
- assume all possible paths can be taken

Data-flow analysis

Algorithm

1. build control flow graph (CFG)
2. initial (local) data gathering
3. propagate information around the graph
4. post-processing (if needed)

Example control flow graph

![Control Flow Graph](image)

Available expressions

Definition

- An expression is *defined* at point \(p \) if its value is computed at \(p \).
- An expression is *killed* at a point \(p \) if one of its argument variables is defined at \(p \).
- an expression \(e \) is available at a point \(p \) in a procedure if every path leading to \(p \) contains a prior definition of \(e \) that is not killed between its definition and \(p \).

Global common subexpression elimination

- If, at some definition point for \(p = e \), \(e \) is available with name \(x \), we can replace the evaluation with a reference to \(x \).
- requires a global naming scheme
- natural analog to parts of value numbering
Available expressions

For a block b

- let $\text{GEN}(b)$ be the set of expressions defined in b and not subsequently killed in b.
- let $\text{KILL}(b)$ be the set of expressions killed in b.
- let $\text{IN}(b)$ be the set of expressions available on entry to b.
- let $\text{OUT}(b)$ be the set of expressions available on exit to b.

IN and OUT represent global information and can be calculated as:

$$\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$$

$$\text{IN}(b) = \bigcap_{x \in \text{pred}(b)} (\text{OUT}(x))$$

AVAIL is simply IN. Its calculation can be combined as:

$$\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))$$

Available expressions example

Solving data-flow equations

Iterative algorithm

change = true;
while (change)
change = false;
for each basic block // faster in reverse PostOrder:
solve data-flow equations for b
if (old \neq new)
change = true;
end for
end while

Speed of solution

- node may change only if some predecessor changes
- try to visit node after all its predecessors
- reverse PostOrder propagates information quickly
- programs usually converge after 3-4 passes
- use bitvectors for more efficiency

PostOrder and reverse PostOrder

Step 1: PostOrder

- main()
 - count = 1;
 - Visit (root);

- Visit(n)
 - mark n as visited
 - for each successor s of n not yet visited
 - Visit(s);
 - PostOrder(n) = count;
 - count = count + 1;

Step 2: Reverse PostOrder (rPostorder)

for each node n
 - rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search \approx rPostOrder
Reaching definitions

- **The problem:** What are the assignments (or definitions) of a variable x that may reach a particular reference to x?
- **Why is this useful?**

Constant propagation:

```
<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = 1</td>
</tr>
<tr>
<td>a = 2</td>
</tr>
<tr>
<td>b = 3</td>
</tr>
<tr>
<td>= a</td>
</tr>
<tr>
<td>= b</td>
</tr>
</tbody>
</table>
```

Loop invariant code motion:

```
L:
a = a + 4
b = 20
c = b + a
if (...) goto L
```

Equations:

\[\text{REACH}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x))) \]

Best case for $\text{REACH}(b) = \emptyset$
Worse case for $\text{REACH}(b) = \{ \text{all definitions} \}$

Live variables

Definition:

- A definition d is **live** at program point p if the variable v defined by d may be used along some path in the program starting at p without being redefined between d and p.
- Otherwise, the definition is **dead**

Why is this useful?

- global analysis to locate dead assignments.

```
<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a =</td>
</tr>
<tr>
<td>b =</td>
</tr>
<tr>
<td>a =</td>
</tr>
<tr>
<td>b =</td>
</tr>
</tbody>
</table>
```

Slightly different, since information at basic block is based on what happens later in the program.

A backward data-flow problem.

Equations:

\[\text{LIVE}(b) = \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x))) \]

Best case for $\text{LIVE}(b) = \emptyset$
Worse case for $\text{LIVE}(b) = \{ \text{all definitions} \}$
What do these have in common?

\[
\begin{align*}
\text{AVAIL}(b) &= \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x))) \\
\text{REACH}(b) &= \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x))) \\
\text{LIVE}(b) &= \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x)))
\end{align*}
\]

- Confluence Operator or Meet Function: union or intersection
- Behavior for block: GEN and KILL
- A direction: forward (confluence over predecessors) or backward (over successors)
- Best case set value: \(T \)
- Worst case set value: \(\bot \)

General equations:

\[
\begin{align*}
\text{IN}(b) &= \wedge_{p \in \text{pred}(b)} \text{OUT}(p) \\
\text{OUT}(b) &= \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
\end{align*}
\]

† Reverse graph for backward problem.

Data-flow analysis frameworks

Use same framework for all data-flow problems

- Given local information GEN, KILL
- Start with some initial values for sets IN, OUT
- Iterate through nodes in the flow graph, recompute transfer functions until sets stabilize

Framework has three components

- Domain of values: \(L \)
- Operator for combining values: \(\wedge \)
- A set of transfer functions (\(L \rightarrow L \)): \(F \)

Usefulness of unified framework

- Defines a collection of properties that guarantee correctness, convergence;
- Can describe speed of convergence and precision of result for a family of analysis problems
- Can re-use code to solve new analysis problems

Data-flow lattices

Definitions

1. a lattice is a set \(L \) and a meet operation \(\wedge \) such that, \(\forall a, b, c \in L \)

 - (a) \(a \wedge a = a \) \([\text{idempotent}]\)
 - (b) \(a \wedge b = b \wedge a \) \([\text{commutative}]\)
 - (c) \(a \wedge (b \wedge c) = (a \wedge b) \wedge c \) \([\text{associative}]\)

2. \(\wedge \) imposes a partial order on \(L \), \(\forall a, b \in L \)

 - (a) \(a \geq b \Leftrightarrow a \wedge b = b \)
 - (b) \(a > b \Leftrightarrow a \geq b \) and \(a \neq b \)

3. a lattice may have a bottom element \(\bot \)

 - (a) \(\forall a \in L, \bot \wedge a = \bot \)
 - (b) \(\forall a \in L, a \geq \bot \)

4. a lattice may have a top element \(T \)

 - (a) \(\forall a \in L, T \wedge a = a \)
 - (b) \(\forall a \in L, T \geq a \)

Available expressions example:

\[
\begin{align*}
\text{let } D &= \{ x \mid x \subseteq \{e_1, e_2, e_3\} \}, \text{ } \wedge = \cap \\
T &= \\
\bot &= \\
\end{align*}
\]

Partial ordering \(\{e_1, e_2\} \text{ vs. } \{e_3\} \)

Single lattice vs. one for each variable

\[
\begin{align*}
T &= \\
\bot &= \\
\end{align*}
\]
Data-flow lattices

How does this relate to data-flow analysis?

- choose a semi-lattice L to represent facts
- attach to each element of L a meaning
- each $a \in L$ is a distinct set of known facts
- with each node n, associate a transfer function $f_n : L \rightarrow L$ to model behavior of n
- propagate facts around the graph

Example – AVAIL

- semi-lattice is 2^E, where E is the set of all expressions computed
 $\land \in \set{\land, \bot}$ is \emptyset, T is E
- for a node n, f_n has the form $f_n(x) = D_n \cup (x - N_n)$
 where $D_n = \text{GEN}_n$ and $N_n = \text{KILL}_n$
- the underlying graph is the flow graph $G = (N, E, n_0)$
 n_0 is the entry node

Iterative algorithm

What about loops?

- circular dependencies between blocks
- can initialize solutions, then solve repeatedly

Example

$c = a+b$

L:

$d = a+b$

$a = \ldots$

if (...) goto L

Termination

- goal is for solutions to converge to a fixed point
- can stop once solutions stop changing
- is this guaranteed?

CMSC 430
Lecture 14, Page 21

Monotonicity

- A framework (D, \land, F) is monotone iff
 $x \leq y$ implies $f(x) \leq f(y)$
 i.e., a “smaller or equal” input to the same function will always give
 a “smaller or equal” output
- Equivalently, monotone iff
 $f(x \land y) \leq f(x) \land f(y)$
 i.e., if merge input, then apply f, result is “smaller or equal” to
 applying f individually and merging result
- Intuitively, monotonicity means “smaller” input will not yield “larger”
 output.
- monotone frameworks are guaranteed to converge and terminate (if lattice
 elements can only drop in information a finite number of times)

Quality of solution

Possible solutions

- perfect solution = meet over real paths taken during program execution
- meet-over-all-paths (MOP) = meet over potential paths in control flow
 graph
- maximal-fixed-point (MFP) = solution from iterative framework

Properties

- in general, MFP \leq MOP \leq Perfect Solution
- in some sense, MOP is best feasible solution
- MFP is unique, regardless of order of propagation
- a framework is distributive if $f(x \land y) = f(x) \land f(y)$
- for a distributive framework, MFP = MOP

CMSC 430
Lecture 14, Page 22

CMSC 430
Lecture 14, Page 24