Local optimizations

Consider the expression: $a + a \ast (b - c) + (b - c) \ast d$
Local optimizations

Common subexpressions (CSE)

• portion of expressions
• repeated multiple times
• computes same value
• can reuse previously computed value

Directed acyclic graph (DAG)

• program representation
• nodes can have multiple parents
• no cycles allowed
• exposes common subexpressions

Building a DAG for an expression

• maintain hash table for leafs, expressions
• unique name for each node — its value number
• reuse nodes found in hash table
Directed acyclic graphs

What about *assignment*?

- complicates detection of common subexpressions
- identical expression \rightarrow different value
- must ensure each *value* has a unique node

One solution - renaming

- add subscripts to variable names (e.g., $x \rightarrow x_i$)
- increment subscript of name if target (LHS) of assignment
- variables references use new subscript

Example

\[a_1 = a_0 + b_0 \]

Can apply to entire basic block
Directed acyclic graph example

<table>
<thead>
<tr>
<th>Code</th>
<th>After Renaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b + c)</td>
<td>(a_0 = b_0 + c_0)</td>
</tr>
<tr>
<td>(b = a - d)</td>
<td>(b_1 = a_0 - d_0)</td>
</tr>
<tr>
<td>(c = b + c)</td>
<td>(c_1 = b_1 + c_0)</td>
</tr>
<tr>
<td>(d = a - d)</td>
<td>(d_1 = a_0 - d_0)</td>
</tr>
</tbody>
</table>

![Directed acyclic graph example](image)
Common subexpressions

Going beyond basic blocks

- can no longer build DAGs
- must consider control flow

Examples

- possible kill

```plaintext
c = a+b
if (...)
a = ...
d = a+b
```

- possible gen

```plaintext
if (...)
c = a+b
d = a+b
```

We handle these conditions using data-flow analysis
Data-flow analysis

Data-flow analysis

- compile-time reasoning about the run-time flow of values in the program
- represent facts about run-time behavior
- represent effect of executing each basic block
- propagate facts around control flow graph

Formulated as a set of simultaneous equations

- sets attached to the nodes and edges
- lattice to describe relation between values
- usually represented as bit or bit vector

Limitations

- answers must be conservative
- often need to approximate information
- assume all possible paths can be taken
Data-flow analysis

Algorithm

1. build control flow graph (CFG)
2. initial (local) data gathering
3. propagate information around the graph
4. post-processing (if needed)

Example control flow graph

```plaintext
a = 1
if (b) then
  c = a+b
else
  b = 1
  c = a+b
...
```
Available expressions

Definition

- An expression is \textit{defined} at point p if its value is computed at p.
- An expression is \textit{killed} at a point p if one of its argument variables is defined at p.
- An expression e is \textit{available} at a point p in a procedure if every path leading to p contains a prior definition of e that is not killed between its definition and p.

Global common subexpression elimination

- If, at some definition point for $p = e$, e is available with name x, we can replace the evaluation with a reference to x.
- requires a global naming scheme
- natural analog to parts of value numbering
Available expressions

For a block b

- let $\text{GEN}(b)$ be the set of expressions defined in b and not subsequently killed in b.
- let $\text{KILL}(b)$ be the set of expressions killed in b.
- let $\text{IN}(b)$ be the set of expressions available on entry to b.
- let $\text{OUT}(b)$ be the set of expressions available on exit to b.

IN and OUT represent global information and can be calculated as:

\[
\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
\]

\[
\text{IN}(b) = \bigcap_{x \in \text{pred}(b)} (\text{OUT}(x))
\]

AVAIL is simply IN. Its calculation can be combined as:

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))
\]
Available expressions example

<table>
<thead>
<tr>
<th>Node</th>
<th>KILL</th>
<th>GEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a+b</td>
<td>∅</td>
</tr>
<tr>
<td>B</td>
<td>∅</td>
<td>a+b</td>
</tr>
<tr>
<td>C</td>
<td>a+b</td>
<td>a+b</td>
</tr>
<tr>
<td>D</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

\[
\text{AVAIL}(A) = \emptyset \\
\text{AVAIL}(B) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset \\
\text{AVAIL}(C) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset \\
\text{AVAIL}(D) = (\text{GEN}(B) \cup (\text{AVAIL}(B) - \text{KILL}(B))) \cap (\text{GEN}(C) \cup (\text{AVAIL}(C) - \text{KILL}(C))) \\
= (\{a+b\} \cup (\emptyset - \emptyset)) \cap (\{a+b\} \cup (\emptyset - \{a+b\})) = \{a+b\} \]
Solving data-flow equations

Iterative algorithm

```
change = true;
while (change)
    change = false;
    for each basic block  // faster in reverse PostOrder:
        solve data-flow equations for b
        if (old \( \neq \) new)
            change = true;
    end for
end while
```

Speed of solution

- node may change only if some predecessor changes
- try to visit node after all its predecessors
- reverse PostOrder propagates information quickly
- programs usually converge after 3–4 passes
- use bitvectors for more efficiency
PostOrder and reverse PostOrder

Step 1: PostOrder

main()
 count = 1;
 Visit (root);

Visit(n)
 mark n as visited
 for each successor s of n not yet visited
 Visit(s);
 PostOrder(n) = count;
 count = count + 1;

Step 2: Reverse PostOrder (rPostorder)

for each node n
 rPostOrder(n) = NumNodes - PostOrder(n)

Depth-first search \approx rPostOrder
Reaching definitions

- **The problem:** What are the assignments (or definitions) of a variable \(x \) that may reach a particular reference to \(x \)?

- **Why is this useful?**

Constant propagation:

\[
\begin{align*}
 &a = 1 \\
 &a = 2 \\
 &a = 2 \\
 &b = 3 \\
 &= a \\
 &= b
\end{align*}
\]

Loop invariant code motion:

\[
\begin{align*}
 &L: \\
 &a = a + 4 \\
 &b = 20 \\
 &c = b + a \\
 &if (...) goto L
\end{align*}
\]
Reaching definitions

- **A definition** of a variable x is a statement that assigns, or may assign, a value to x.

- A definition d **reaches** a program point p if **there exists** a path from the point immediately following d to p such that d is not killed along that path.

- $\text{REACH}(b)$ is the set of definitions reaching the entry of basic block b
- $\text{DEF}(b)$ is the set of **local definitions** in b that reach the end of b
- $\text{KILL}(b)$ is the set of variables killed by b

- **Equations:**

$$\text{REACH}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x)))$$

Best case for $\text{REACH}(b) = \emptyset$
Worse case for $\text{REACH}(b) = \{ \text{all definitions} \}$
Live variables

Definition:

- A definition d is live at program point p if the variable v defined by d may be used along some path in the program starting at p without being redefined between d and p.

- Otherwise, the definition is dead

Why is this useful?

- global analysis to locate dead assignments.

```plaintext
a =
b =
a =
b =
= a
= b
```
Live variables

• Slightly different, since information at basic block is based on what happens later in the program.
• A *backward* data-flow problem.

• \(\text{LIVE}(b) \) is the set of definitions live on exit from block \(b \).
• \(\text{KILL}(b) \) is as before.
• \(\text{USE}(b) \) is the set of locally exposed uses
• \(\text{succ}(b) \) is the set of basic blocks that are immediate successors of \(b \) in the control flow graph.

• Equations:

\[
\text{LIVE}(b) = \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x)))
\]

Best case for \(\text{LIVE}(b) = \emptyset \)
Worse case for \(\text{LIVE}(b) = \{ \text{all definitions} \} \)
What do these have in common?

\[
AVAIL(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))
\]

\[
\text{REACH}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{REACH}(x) - \text{KILL}(x)))
\]

\[
\text{LIVE}(b) = \bigcup_{x \in \text{succ}(b)} (\text{USE}(x) \cup (\text{LIVE}(x) - \text{KILL}(x)))
\]

- **Confluence Operator or Meet Function**: union or intersection
- **Behavior for block**: GEN and KILL
- **A direction**: forward (confluence over predecessors) or backward (over successors)
- **Best case set value**: \(\top \)
- **Worst case set value**: \(\bot \)

General equations:

\[
\text{IN}(b) = \land_{p \in \text{pred}(b)} \text{OUT}(p) \uparrow
\]

\[
\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
\]

\(\uparrow \) Reverse graph for backward problem.
Data-flow analysis frameworks

Use same framework for all data-flow problems

- given local information GEN, KILL
- start with some initial values for sets IN, OUT
- iterate through nodes in the flow graph, recompute transfer functions until sets stabilize

Framework has three components

- Domain of values: L
- Operator for combining values: \wedge
- A set of transfer functions ($L \rightarrow L$): \mathcal{F}

Usefulness of unified framework

- Defines a collection of properties that guarantee correctness, convergence;
- Can describe speed of convergence and precision of result for a family of analysis problems
- Can re-use code to solve new analysis problems
Data-flow lattices

Definitions

1. a lattice is a set L and a meet operation \land such that, $\forall a, b, c \in L$

 (a) $a \land a = a$ \hspace{1cm} \text{[idempotent]}
 (b) $a \land b = b \land a$ \hspace{1cm} \text{[commutative]}
 (c) $a \land (b \land c) = (a \land b) \land c$ \hspace{1cm} \text{[associative]}

2. \land imposes a partial order on L, $\forall a, b \in L$

 (a) $a \geq b \iff a \land b = b$
 (b) $a > b \iff a \geq b$ and $a \neq b$

3. a lattice may have a bottom element \bot

 (a) $\forall a \in L, \bot \land a = \bot$
 (b) $\forall a \in L, a \geq \bot$

4. a lattice may have a top element \top

 (a) $\forall a \in L, \top \land a = a$
 (b) $\forall a \in L, \top \geq a$
Data-flow lattices

Available expressions example:
let \(D = \{ x \mid x \subseteq \{ e_1, e_2, e_3 \} \}, \wedge = \cap \)

\[\top = \]

\[\perp = \]

Partial ordering \(\{ e_1, e_2 \} \) vs. \(\{ e_3 \} \)

Single lattice vs. one for each variable

\[\top = \]

\[\perp = \]
Data-flow lattices

How does this relate to data-flow analysis?

- choose a semi-lattice L to represent facts
- attach to each element of L a *meaning*
 each $a \in L$ is a distinct set of known facts
- with each node n, associate a *transfer function*
 $f_n : L \to L$ to model behavior of n
- propagate facts around the graph

Example – AVAIL

- semi-lattice is 2^E, where E is the set of all expressions computed
 \wedge is \cap, \bot is \emptyset, \top is E
- for a node n, f_n has the form $f_n(x) = D_n \cup (x - N_n)$
 where $D_n = GEN_n$ and $N_n = KILL_n$
- the underlying graph is the flow graph $G = (N, E, n_0)$
 n_0 is the entry node
Iterative algorithm

What about loops?

- circular dependencies between blocks
- can initialize solutions, then solve repeatedly

Example

\[c = a + b \]

L:

\[d = a + b \]
\[a = \ldots \]
\[\text{if (\ldots) goto } L \]

Termination

- goal is for solutions to converge to a \textit{fixed point}
- can stop once solutions stop changing
- is this guaranteed?
Monotonicity

- A framework \((D, \land, F)\) is monotone iff
 \[
 x \leq y \implies f(x) \leq f(y)
 \]
 i.e., a “smaller or equal” input to the same function will always give a “smaller or equal” output.

- Equivalently, monotone iff
 \[
 f(x \land y) \leq f(x) \land f(y)
 \]
 i.e., if merge input, then apply \(f\), result is “smaller or equal” to applying \(f\) individually and merging result.

- Intuitively, monotonicity means “smaller” input will not yield “larger” output.

- Monotone frameworks are guaranteed to converge and terminate (if lattice elements can only drop in information a finite number of times).
Quality of solution

Possible solutions

- perfect solution = meet over real paths taken during program execution
- meet-over-all-paths (MOP) = meet over potential paths in control flow graph
- maximal-fixed-point (MFP) = solution from iterative framework

Properties

- in general, MFP \leq MOP \leq Perfect Solution
- in some sense, MOP is best feasible solution
- MFP is unique, regardless of order of propagation
- a framework is distributive if \(f(x \land y) = f(x) \land f(y) \)
- for a distributive framework, MFP = MOP