A scanner must recognize various parts of the language’s syntax.

Input is separated into *tokens* based on lexical analysis.

\[x = x + y; \]

becomes

\[<\text{id}, x> = <\text{id}, x> + <\text{id}, y> ; \]
A scanner must recognize various parts of the language’s syntax.

Some parts are easy:

white space
 some combination of $<$ and $>$ and tab

keywords and operators
 specified as literal patterns — do, end

comments
 opening and closing delimiters — /* · · · */
Specifying patterns

Other parts are much harder:

identifiers

 alphabetic followed by k alphanumerics
 ($, \$, \&, \ldots$)

numbers

 integers — 0 or digit from 1-9 followed by
digits from 0-9
 decimals — integer “.” digits from 0-9

We need a powerful notation to specify these patterns.
Regular expressions

Regular expressions represent languages.
Languages are sets of strings.
Operations include *Kleene closure*, *concatenation*, and *union*.

<table>
<thead>
<tr>
<th>Regular expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>{ "a" }</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(a)(b)</td>
<td>{ "ab" }</td>
</tr>
<tr>
<td>(a)*</td>
<td>{ "", "a", "aa", ... }</td>
</tr>
<tr>
<td>(a)+</td>
<td>{ "a", "aa", ... }</td>
</tr>
</tbody>
</table>

We assume *closure*, *concatenation*, *union* as the order of precedence.

\[ab \mid cd^* = (ab) \mid (c(d^*)) \]

\[= \{ "ab", "c", "cd", "cdd", ... \} \]

\[a(bc)^* = \{ "a", "abc", "abcbc", ... \} \]
Recognizers

From a regular expression, we can construct a deterministic finite automaton (dfa).

Recognizer for identifier:

\[
\text{identifier} \\
\text{letter} \rightarrow (a \mid b \mid c \mid \ldots \mid z \mid A \mid B \mid C \mid \ldots \mid Z) \\
\text{digit} \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9) \\
\text{id} \rightarrow \text{letter} (\text{letter} \mid \text{digit})^*
\]
Code for the recognizer

char ← next_char(); done ← false;
state ← S0; /* code for S0 */
token_value ← "" /* empty string */
while(not done) {
 class ← char_class[char];
 state ← next_state[class,state];
 switch(state) {
 case S1: /* building an id */
 token_value ← token_value + char;
 char ← next_char(); break;
 case S2: /* accept state */
 token_type ← identifier;
 done ← true; break;
 case S3: /* error */
 token_type ← error;
 done ← true; break;
 }
} }
return token_type;
Two tables control the recognizer.

<table>
<thead>
<tr>
<th>char_class:</th>
<th>$a - z$</th>
<th>$A - Z$</th>
<th>$0 - 9$</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>letter</td>
<td>letter</td>
<td>digit</td>
<td>other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter</td>
<td>S1</td>
<td>S1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>digit</td>
<td>S3</td>
<td>S1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>other</td>
<td>S3</td>
<td>S2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

To change languages, we can just change tables.
Improved efficiency

Table driven implementation is slow relative to direct code. Each state transition involves:

1. classifying the input character
2. finding the next state
3. an assignment to the state variable
4. a branch
5. a trip through the case statement logic

We can do better by “encoding” the state table in the scanner code.

1. classify the input character
2. test character class locally
3. branch directly to next state

This takes many fewer instructions per cycle.
Faster scanning

token_type ← error;
char ← next_char();
class ← char_class[char];
if (class != letter)
 return token_type;

S1: token_value ← char;
char ← next_char();
class ← char_class[char];
if (class == other) goto S3;

S2: token_value ← token_value + char;
char ← next_char();
class ← char_class[char];
if (class != other) goto S2;

S3: token_type = identifier;
return token_type;
Nondeterministic finite automata

What about the regular expression \((a \mid b)^*abb\) ?

State Start has \(\epsilon\) transition to S1.

State S1 has multiple transitions on a!

\[\Rightarrow \text{nondeterministic finite automaton (nfa)}\]

Different definition for accept

A nfa accepts \(x\) if and only if there is some path through the transition graph from the start state to an accepting state such that the labels along the edges spell \(x\).
What is the relationship between a nfa and a dfa?

dfa is special case of nfa

1. no ϵ transitions
2. single-valued transition function

dfa can be simulated on a nfa

- obviously

nfa can be simulated on a dfa

- simulate sets of simultaneous states
- possible exponential blowup
Constructing a *dfa* from a regular expression

regular expression (RE) \rightarrow nfa

build *nfa* for each term, connect them with ϵ moves

nfa \rightarrow dfa

construct the simulation, using the “subset” construction

dfa \rightarrow regular expression

construct $R_{ij}^k = R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$
Converting regular expressions to \textit{nfas}

Build two-state automaton for atomic regular expression \texttt{a}, with \texttt{a} as the edge.

Compose automata as follows:

- concatenate

- union

- Kleene closure
Subset construction algorithm

Input: \(nfa \ N \)
Output: \(dfa \ D \) with \(Dstates \) and \(Dtran \) that accepts same language
Method: let \(s \) be a state in \(nfa \) and \(T \) a set of states,
using the following definitions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)-closure((s))</td>
<td>Set of (nfa) states reachable from (nfa) state (s) on (\varepsilon)-transitions alone.</td>
</tr>
<tr>
<td>(\varepsilon)-closure((T))</td>
<td>Set of (nfa) states reachable from some (nfa) state (s) in (T) on (\varepsilon)-transitions alone.</td>
</tr>
<tr>
<td>move((T,a))</td>
<td>Set of (nfa) states to which there is a transition on input symbol (a) from some (nfa) state (s) in (T).</td>
</tr>
</tbody>
</table>
Subset construction (cont)

state $Start = \varepsilon\text{-closure}(s_0)$

add $Start$ unmarked to $Dstates$

while \exists an unmarked state T in $Dstates$

mark T

for each input symbol a do

$U = \varepsilon\text{-closure}(\text{move}(T,a))$

if U is not in $Dstates$ then

add U to $Dstates$ unmarked

$Dtran[T,a] = U$

endfor

endwhile

Each state in D corresponds to a set of states in N.

Up to $2^{|N|}$ possible states in D.

$\varepsilon\text{-closure}(s_0)$ is the start state of D.

A state is an accepting state in D, if one or more of the states it represents in N is accepting.
Example subset construction

\(nfa \) for \(a^*b \)

\[
\begin{align*}
\text{MOVE}(,) &= \{ \} \\
\epsilon\text{-closure}() &= \{ \} = \\
\text{MOVE}(,) &= \{ \} \\
\epsilon\text{-closure}() &= \{ \} = \\
\text{MOVE}(,) &= \{ \} \\
\epsilon\text{-closure}() &= \{ \} = \\
\text{MOVE}(,) &= \{ \} \\
\epsilon\text{-closure}() &= \{ \} = \\
\text{MOVE}(,) &= \{ \} \\
\epsilon\text{-closure}() &= \{ \} = \\
\end{align*}
\]
Building minimum-state *dfas*

Important theoretical result

Every regular language is recognized by a minimum-state dfa that is unique up to state names.

Look for states that can be *distinguished* from each other (i.e., end up in accepting/nonaccepting state for identical input).

dfa state minimization algorithm

- construct initial partition of states into accepting and non-accepting states
- successively refine partition by splitting a group G into smaller groups if states in G have transitions to different groups
 (two states x, y are in same group *iff* for all input symbols a x and y have transitions to same group)
- update transition edges, remove dead states

Theorem 3.10, pages 67–71 in Hopcroft and Ullman’s book *Introduction to Automata Theory, Languages, and Computation*
Example minimal *dfa* construction

dfa for a*b from *nfa*

Initial partition

- **accepting** = \{ \} =
- **non-accepting** = \{ \} =

Split groups

\[
\begin{align*}
(state, input) & = group \\
(S, a) & = \\
(T, a) & = \\
(S, b) & = \\
(T, b) & =
\end{align*}
\]

Minimal *dfa*
Issues

Complexity Tradeoffs

For regular expression r and input x

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>nfa</td>
<td>$O(</td>
<td>r</td>
</tr>
<tr>
<td>dfa</td>
<td>$O(2^{</td>
<td>r</td>
</tr>
</tbody>
</table>

Other approaches

- generate dfa directly from regular expression
- two stack simulation of nfa
- “lazy” construction of dfa
So what is hard?

Language features that can cause problems:

reserved words
- PL/I had no reserved words
- if then then then = else;
- else else = then;

significant blanks
- FORTRAN and Algol68 ignore blanks
- do 10 i = 1,25
- do 10 i = 1.25

string constants
- special characters in strings
 - newline, tab, quote, comment delimiter

These problems can be swept under the rug (avoided) by intelligent language design.
Lexical errors

What is a lexical error?

- 1234G6
- illegal character

What should the scanner do?

- report the error
- try to correct it?

Error correction techniques

- minimum distance corrections
- hard token recovery
- skip until match
How bad can it get?

1 INTEGERFUNCTIONA
2 PARAMETER(A=6,B=2)
3 IMPLICIT CHARACTER*(A-B)(A-B)
4 INTEGER FORMAT(10),IF(10),DO9E1
5 100 FORMAT(4H)=(3)
6 200 FORMAT(4)=(3)
7 DO9E1=1
8 DO9E1=1,2
9 IF(X)=1
10 IF(X)H=1
11 IF(X)300,200
12 300 CONTINUE
13 END

C this is a comment

$ FILE(1)

14 END
Summary

Scanners

• break up input into tokens
• catch lexical errors
• difficulty affected by language design

Issues

• input buffering
• lookahead
• error recovery

Scanner generators

• tokens specified by regular expressions
• construct DFA to recognize language
• highly efficient in practice