Bottom-up parsers

Properties
- start with input string, end with start symbol
- apply productions in reverse to input, replacing right-hand side (rhs) of production with lhs nonterminal
- final result is a rightmost derivation, in reverse.
- bottom-up parsers can use current stack and lookahead to choose production
- one type of bottom-up parsers called LR(k) are more powerful than LL(k) parsers because they can see the entire rhs before choosing a production

Definitions
- the handle is defined as the combination of
 1) rhs to be replaced, and 2) its position
- replacement step is called a reduction

Bottom-up parsing example

Consider the grammar

1. \(S ::= a \ A \ B \ e \)
2. \(A ::= A \ b \ c \)
3. | \(b \)
4. \(B ::= d \)

and the input string \(abbcde \).

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>(abbcde)</td>
<td>3,2 (A (\leftarrow) b)</td>
</tr>
<tr>
<td>3</td>
<td>(aAbcde)</td>
<td>2,4 (A (\leftarrow) A b c)</td>
</tr>
<tr>
<td>2</td>
<td>(aAde)</td>
<td>4,3 (B (\leftarrow) d)</td>
</tr>
<tr>
<td>4</td>
<td>(aABe)</td>
<td>1,4 (S (\leftarrow) a A B e)</td>
</tr>
<tr>
<td>1</td>
<td>(S)</td>
<td>—</td>
</tr>
</tbody>
</table>

The problem is deciding when and which rhs to reduce.

Shift-reduce parsing

Shift-reduce parsers
- one approach to bottom-up parsing
- are simple to understand
- have a simple, table-driven, shift-reduce skeleton
- encode grammatical knowledge in tables

A shift-reduce parser has just four canonical actions:

1. **shift** — next input symbol is shifted onto the top of the stack
2. **reduce** — right end of handle is on top of stack;
 - locate left end of handle within the stack;
 - pop handle off stack and push appropriate non-terminal lhs
3. **accept** — terminate parsing and signal success
4. **error** — call an error recovery routine
Skeleton parser

```java
class SkeletonParser {
    public void parse() {
        push(s0);
        token = next_token();
        repeat forever {
            s = top of stack;
            if action[s, token] = "shift si" then {
                push token
                push si
                token = next_token();
            } else if action[s, token] = "reduce A := β" then {
                pop 2 * | β | symbols
                s = top of stack
                push A
                push goto[s, A]
            } else if action[s, token] = "accept" then {
                return
            } else {
                error()
            }
        }
    }
}
```

This takes \(k\) shifts, \(l\) reduces, and 1 accept, where \(k\) is the length of the input string and \(l\) is the length of the reverse rightmost derivation.

Example parser

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>$</td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>E</td>
</tr>
<tr>
<td>$</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>id + id $</td>
<td>shift 3</td>
</tr>
<tr>
<td>0</td>
<td>3 id</td>
<td>reduce P3 (T := id)</td>
</tr>
<tr>
<td>0</td>
<td>T 2</td>
<td>+ id $</td>
</tr>
<tr>
<td>0</td>
<td>T 2 + 4</td>
<td>id $</td>
</tr>
<tr>
<td>0</td>
<td>T 2 + 4 id $</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>T 2 + 4 T 2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>T 2 + 4 E 5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>E 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Shift-reduce parsing

Definitions

- A **right-sentential form** is any string that may occur in a legal rightmost derivation.
- A **viable prefix** of a right-sentential form is any prefix that does not continue past the right end of its rightmost handle.

Shift-reduce parsers

- Operator precedence define precedence between operands to guide reductions.
- \(SLR(1) = LR(0) + FOLLOW\) construct DFA for recognizing viable prefix, use FOLLOW to guide reductions.
- \(LR(1)\) — construct DFA for recognizing viable prefix, storing lookahead information in DFA.
- \(LALR(1)\) — construct DFA for recognizing viable prefix, propagating lookahead information in DFA.

LR(1) grammars

Informally, we say that a grammar \(G\) is LR(1) if we can find the sequence of handles for a reverse rightmost derivation using at most 1 token of lookahead past the end of the handle.

Properties

- Virtually all context-free programming language constructs can be expressed in an LR(1) form.
- LR grammars are the most general grammars that can be parsed by a non-backtracking, shift-reduce parser.
- Efficient shift-reduce parsers can be implemented for LR(1) grammars.
- LR parsers detect an error as soon as possible in a left-to-right scan of the input.
- LR grammars describe a proper superset of the languages recognized by LL (predictive) parsers.
LR(0) items

An LR(0) item is a string \([\alpha]\), where
\[\alpha \] is a production from \(G\) with \(\bullet\) at some position in the rhs

The \(\bullet\) indicates how much of an item we have seen at a given state in the parse.

\([A ::= \bullet X Y Z]\) indicates that the parser is looking for a string that can be derived from \(X Y Z\)

\([A ::= X Y \bullet Z]\) indicates that the parser has seen a string derived from \(X Y\)
and is looking for one derivable from \(Z\)

LR(0) Items (no lookahead)

\(A := X Y Z\) generates 4 LR(0) items.

1. \([A ::= \bullet X Y Z]\)
2. \([A ::= X \bullet Y Z]\)
3. \([A ::= X Y \bullet Z]\)
4. \([A ::= X Y Z \bullet]\)

LR(0) machine

Definitions

- closure of \([A ::= \alpha \bullet B \beta]\) contains itself and any items of form \([B ::= \bullet \gamma]\), repeat for new items.

- goto\((X)\) of \([A ::= \alpha \bullet X \beta]\) contains the closure of \([A ::= \alpha X \bullet \beta]\).

LR(0) DFA construction

1. begin with closure of start symbol \([S ::= \bullet \alpha]\)
2. for each state, calculate goto\((X)\) for all grammar symbols \(X\), generating states
3. repeat step 2 for all newly generated states

Properties

- states in the DFA are sets of LR(0) items
- states represent viable prefixes of productions
- to recognize viable prefixes of language, save state of current production on stack when reducing new nonterminal

The Grammar

\[
\begin{align*}
P_1 & : E ::= T + E \\
P_2 & : | T \\
P_3 & : T ::= id
\end{align*}
\]

The Augmented Grammar

\[
\begin{align*}
P_0 & : S' ::= E \\
P_1 & : E ::= T + E \\
P_2 & : | T \\
P_3 & : T ::= id
\end{align*}
\]

Example LR(0) states

\[
\begin{align*}
S_0: & \ [S' ::= \bullet E], \quad S_1: \ [S' ::= E \bullet] \\
 & \ [E ::= \bullet T + E], \quad [E ::= \bullet T] \\
 & \ [T ::= \bullet id] \\
S_2: & \ [E ::= T \bullet + E], \quad S_3: \ [T ::= id \bullet] \\
 & \ [E ::= T \bullet] \\
S_4: & \ [E ::= T \bullet \bullet E], \quad S_5: \ [E ::= T + E \bullet] \\
 & \ [E ::= T + E], \quad [E ::= \bullet T] \\
 & \ [T ::= \bullet id]
\end{align*}
\]
LR(1) items

We can build SLR parsers using LR(0) items and FOLLOW information. But, we can get more powerful parsers by keeping track of lookahead information in the states of the LR parser.

An LR(k) item is a pair \([\alpha, \beta]\), where

- \(\alpha\) is a production from \(G\) with a * at some position in the rhs
- \(\beta\) is a lookahead string containing \(k\) symbols (terminals or \texttt{eof})

LR(1) items

- example: \([A ::= X \cdot YZ, a]\)
- several LR(1) items may have the same core
 - \([A ::= X \cdot YZ, a]\)
 - \([A ::= X \cdot YZ, b]\)
 - we represent this as \([A ::= X \cdot YZ, \{a, b\}]\)

LR(1) lookahead

What’s the point of all these lookahead symbols?

- carry them along to allow us to choose correct reduction when there is any choice
- lookaheads are bookkeeping, unless item has * at right end.
 - in \([A ::= X \cdot YZ, a]\), \(a\) has no direct use
 - in \([A ::= XYZ \cdot, a]\), \(a\) is useful
- allows use of (non-invertible) grammars where productions have the same rhs

The point

For \([A ::= \alpha \cdot, a]\) and \([B ::= \alpha \cdot, b]\), we can decide between reducing to \(A\) and to \(B\) by looking at limited right context!

LR(1) machine

Definitions

- closure of \([A ::= \alpha \cdot B\beta, a]\) contains itself and any items of form \([B ::= \cdot \gamma, \text{FIRST}(\beta a)]\), repeat for new items.
- goto(X) of \([A ::= \alpha \cdot X \beta, a]\) contains the closure of \([A ::= \alpha X \cdot \beta, a]\).

LR(1) DFA construction

1. begin w/ closure of start symbol \([S ::= \cdot \alpha, \texttt{eof}]\)
2. for each state, calculate goto(X) for all grammar symbols X, generating states
3. repeat step 2 for all newly generated states

Properties

- \([A \rightarrow X \cdot YZ, \alpha] \Rightarrow \) have recognized \(X \& Y Z\) would be valid
- \([A \rightarrow X \cdot YZ, \alpha] \Rightarrow [Y \rightarrow \cdot \beta, \gamma] \& [Y \rightarrow \cdot \delta, \eta]\) are also valid, where \(\gamma, \eta \in \text{FIRST}(Z\alpha)\)
- recognizing \(Y\) takes parser to \([A \rightarrow XY \cdot Z, \alpha]\)

Example LR(1) states

\begin{align*}
S_0: & \quad [S' ::= \cdot E, \texttt{, }$], \\
& \quad [E ::= \cdot T + E, \texttt{, }$], \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
& \quad [E ::= \cdot T, \texttt{, }$], \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
& \quad [T ::= \cdot \texttt{id} +], \quad \text{FIRST}(\epsilon \texttt{ + E }$) = + \\
& \quad [T ::= \cdot \texttt{id}, \texttt{, }$] \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
S_1: & \quad [S' ::= E \cdot, \texttt{, }$] \\
& \quad [E ::= T \cdot + E, \texttt{, }$], \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
& \quad [E ::= T \cdot, \texttt{, }$] \\
S_2: & \quad [E ::= T \cdot + E, \texttt{, }$], \\
& \quad [E ::= T \cdot, \texttt{, }$] \\
S_3: & \quad [T ::= \texttt{id} \cdot, +] \\
& \quad [T ::= \texttt{id} \cdot, \texttt{, }$] \\
S_4: & \quad [E ::= T + E \cdot, \texttt{, }$], \\
& \quad [E ::= T + E, \texttt{, }$], \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
& \quad [E ::= T, \texttt{, }$], \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
& \quad [T ::= \cdot \texttt{id} +], \quad \text{FIRST}(\epsilon \texttt{ + E }$) = + \\
& \quad [T ::= \cdot \texttt{id}, \texttt{, }$] \quad \text{FIRST}(\epsilon \texttt{ }$) = \$ \\
\end{align*}
LR(1) table construction

The Algorithm

1. if S appears on rhs of production, create augmented grammar G' by adding $S' ::= S$
2. construct the collection of sets of LR(1) items for G'
3. State i of the parser is constructed from I_i

(a) if $[A ::= a \cdot b] \in I_i$ and goto(I_i, a) = I_j, then set action[i, a] to "shift $j". ($a$ must be a terminal)
(b) if $[A ::= a \cdot a] \in I_i$, then set action[$i, a$] to "reduce $A ::= a".$
(c) if $[S' ::= S \cdot \text{eof}] \in I_i$, then set action[$i, \text{eof}$] to "accept".
4. If goto(I_i, A) = I_j, then set goto[i, A] to j
5. All other entries in action and goto are set to "error"
6. The initial state of the parser is the state constructed from the set containing the item $[S' ::= S \cdot \text{eof}].$

Example ACTION and GOTO tables

The Augmented Grammar

P0	$S' ::= E$
P1	$E ::= T + E$
P2	$T ::= t$
P3	$T ::= id$

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S_0</td>
<td>shift 3</td>
</tr>
<tr>
<td>S_1</td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td></td>
</tr>
<tr>
<td>S_4</td>
<td></td>
</tr>
<tr>
<td>S_5</td>
<td></td>
</tr>
</tbody>
</table>

The "reduce" actions are determined by the lookahead entries in the LR(1) items.

What can go wrong?

Multiply actions may exist in the ACTION table.

Two cases arise

shift/reduce

This is called a shift/reduce conflict. In general, it indicates an ambiguous construct in the grammar.

- can modify the grammar to eliminate it
- can resolve in favor of shifting

classic example: dangling else

reduce/reduce

This is called a reduce/reduce conflict. Again, it indicates an ambiguous construct in the grammar.

- often, no simple resolution
- parse a nearby language

classic example: PL/I call and subscript

Resolving conflicts

Precedence and associativity can be used to resolve shift/reduce conflicts in ambiguous grammars.

- same precedence & right associative, or higher precedence ⇒ shift
- same precedence & left associative, or lower precedence ⇒ reduce

Advantages:

- more concise, albeit ambiguous, grammars
- shallower parse trees ⇒ fewer reductions

⇒ a simpler expression grammar

<expr> ::= <expr> * <expr>
| <expr> / <expr>
| <expr> + <expr>
| <expr> - <expr>
| (<expr>)
| *<expr>
| id
| num
Operator precedence parsers
Another approach to shift-reduce parsing is to use operator precedence.
Given $S \Rightarrow^\ast \alpha S_1 S_2 \beta$, there are three possible precedence relations between S_1 and S_2.

1. S_1 in handle, S_2 not (S_1 reduced before S_2) $S_1 > S_2$
2. both in handle (reduced at same time) $S_1 = S_2$
3. S_2 in handle, S_1 not (S_2 reduced before S_1) $S_1 < S_2$

A handle is thus composed of:

$\langle >$, $< = >$, $< = >$, ...

To decide whether to shift or reduce, compare top of stack with lookahead (ignoring nonterminals):

- Shift if $<$ or $=$
- Reduce if $>$

Left end of handle is marked by first $<$ found

Error recovery in shift-reduce parsers
The problem
- encounter an invalid token
- bad pieces of tree on stack

We want to parse the rest of the file

Restarting the parser
- find a restartable state on the stack
- move to a consistent place in the input
- print an informative message (line number)

Yacc’s error mechanism
- designated token error
- valid in any production
- when an error is discovered, pops the stack until error is legal

Error recovery example

```
stmt_list : stmt
           | stmt_list ; stmt
```

can be augmented with error

```
stmt_list : stmt
           | error
           | stmt_list ; stmt
```

this should
- throw out the erroneous statement
- synchronize at “;” or “end”
- invoke yyerror("syntax error")

Other “natural” places for errors
- all the “lists”
- missing parentheses or brackets
- extra operator or missing operator
LR(1) grammars

Informally, we say that a grammar G is LR(1) if we can find the sequence of handles for a reverse rightmost derivation using at most 1 token of lookahead past the end of the handle.

Properties

- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars that can be parsed by a non-backtracking, shift-reduce parser
- efficient shift-reduce parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by LL (predictive) parsers

LALR(1) parsers

There are two approaches to constructing LALR(1) parsing tables

1. build LR(1) sets of items, then merge states with same core
2. build LR(0) sets of items, then propagate lookahead information.

LALR(1) properties

- LALR(1) parsers have same number of states as LR(0) parsers (core LR(0) items are the same)
- may perform reduce rather than error, but will catch error before more input is processed
- LALR derived from LR with no shift-reduce conflict will also have no shift-reduce conflict
- LALR may create reduce-reduce conflict not in LR from which LALR is derived
- used by utilities such as **yacc**, **bison**, **cup**

LR(k) languages

<table>
<thead>
<tr>
<th>Languages</th>
<th>Grammars</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR(1)</td>
<td>SLR(1)</td>
</tr>
<tr>
<td>LALR(1)</td>
<td>LALR(1)</td>
</tr>
<tr>
<td>LR(1)</td>
<td>LR(1)</td>
</tr>
<tr>
<td>LR(k)</td>
<td>LR(k)</td>
</tr>
</tbody>
</table>
Recursive Descent A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).

LL(k) An LL(k) parser must be able to recognize the use of a production after seeing only the first k symbols of its right hand side.

Operator Precedence An ad hoc shift-reduce parser suitable for small expression grammars.

LR(k) An LR(k) parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.

Parsing review

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>recursive descent LL(1)</td>
<td>fast, simple, automatable, good error recovery</td>
<td>hand-coded, maintenance hard, no left recursion, $LL(1) \subseteq LR(1)$</td>
</tr>
<tr>
<td>operator precedence</td>
<td>fast, simple, small table</td>
<td>poor error detection, $L(G) \neq L(\text{parser})$, only small languages</td>
</tr>
<tr>
<td>LR(1)</td>
<td>fast, early error detection, automatable</td>
<td>larger table size, poor error recovery</td>
</tr>
</tbody>
</table>