Data flow analysis

Abstract Syntax Trees

Control Flow Graph

```
x = a*b;
y = a*b;
while (y > a+b) {
    a = a+1;
x = a*b;
}
```

AST stopped at statement/expression level for brevity
Choosing a representation

- Control flow graph is more general
- AST allows for more efficient algorithms
 - but new programming constructs require changing the algorithm
 - e.g., continue, break, switch, try-catch-finally, goto
 - program transformations may not leave the program in AST form
 - bytecode/machine code isn’t in AST form
 - although you may be able to recover it

Data flow analysis

- A framework for proving facts about a program
 - reasoning about lots of little facts
 - little or no interaction between facts
 - based on all paths through program
 - including infeasible paths
 - e.g., which assignments to \(x \) can be seen at this read of \(x \)?

Reaching definitions

- Each assignment to a variable is a definition
- \(\text{def}(v) \) represents the set of all definitions of \(v \)
- Assume all variables are scalars
 - no pointers or arrays
Gen and Kill

• Gen(S) = facts that are true after S, regardless of the facts true before S
• Kill(S) = facts that aren’t true after S just because they were true before S
 – but might be true after S
• Out(S) = Gen(S) union (In(S) – Kill(S))

Initial conditions

• Out(Entry) needs to be separately defined

• What is appropriate for reaching definitions?

For reaching definitions

• Gen(d: v = exp) = { d }
• Kill(d: v = exp) = defs(v)
Computing In(S)

- If S has one predecessor P, In(S) = Out(P)
- Otherwise,
 - In(S) = meet \(p \in \text{Pred}(S) \), Out(P)
- The meet function defines how to combine alternatives
- For reaching definitions, meet = union

Iterative Solution

- For control flow graphs with cycles, can’t directly solve the equations
 - compute final answer for values in terms of other final values already known
- Use iterative solution
 - Can compute dataflow values in any order
 - some orders are more efficient than others
 - Computation will converge to right answer

Initial Value

- For iterative solution
 - might need Out(S) before we get a chance to compute In(S)
- Need an initial value for Out(S) of all statements other than Entry
Control Flow Graph

More control flow programs

Available expressions

An expression e is available at point p if on all paths to p, e must have been computed and since that computation, none of the variables in e have been modified — i.e., computation of e here would be redundant.
Backwards problems

- Not all problems are computing from Entry towards exit
- Backwards problems start at Exit, and are computed backwards
- \(\text{In}(S) = \text{Gen}(S) \cup (\text{Out}(S) - \text{Kill}(S)) \)
- \(\text{Out}(S) = \bigcap_{F \in \text{Suc}(S)} \text{In}(F) \)

Backwards problems

- Live variables
 - which variables might be read before they are overwritten or discarded
- Very busy expressions
 - expressions that are guaranteed to be evaluated before any variable used in computing the expression is redefined

Constant Propagation

- Known constant values for variables
Questions

- Does it terminate?
- Does it compute a valid answer?

Definitions

- Meet function: \sqcap
- Meet function is commutative and associative
 - $x \sqcap x = x$
- Unique bottom \bot and top \top element
 - $x \sqcap \bot = \bot$
 - $x \sqcap \top = x$

Ordering

- $x \sqsubseteq y$ if and only if $x \sqcap y = x$
- A function f is monotone if for all x and y,
 - $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$
Lattice example

```
000
010
100
101
110
111
```

meet is bit-vector logical and

Relating to data flow analysis

- Top is value to initialize non-entry nodes to
 - the identity element for the meet function
- If node function is monotone
 - each re-evaluation of a node moves down the lattice, if it moves at all
- If height of lattice is finite, must terminate

Is it accurate?

- We want the meet over all paths solution

- $\text{MOP}(B) = \text{meet}_{p \in \text{Path}(\text{Entry},B)} f_p(\text{Init})$
 - note that Paths can be infinite if there are loops

- As good as we can do given the framework
- Iterative analysis computes Maximum Fixed Point solution
 - largest solution, ordered by \sqsubseteq, that is a fixed point of the iterative computation
 - bottom is also a fixed point, but often not maximal
Is MOP correctly conservative?

- \(\text{MOP}(B) = \bigcap_{p \in \text{Path}(\text{Entry}, B)} f_p(\text{Init}) \)
- Let \(\text{AlmostTruth}(B) = \bigcap_{p \in \text{FeasiblePath}(\text{Entry}, B)} f_p(\text{Init}) \)
- Let \(\text{Bogus}(B) = \bigcap_{p \in \text{InfeasiblePath}(\text{Entry}, B)} f_p(\text{Init}) \)
- \(\text{MOP}(B) = \text{AlmostTruth}(B) \cap \text{Bogus}(B) \)
 - \(\text{MOP}(B) \subseteq \text{AlmostTruth}(B) \)

Distributive functions

- \(x \subseteq y \) implies \(f(x) \subseteq f(y) \)
- Monotone implies
 - \(f(x \sqcap y) \subseteq f(x) \sqcap f(y) \)
- \(f \) is distributive if and only if
 - \(f(x \sqcap y) = f(x) \sqcap f(y) \)
 - doing meet early doesn’t cause any reduction in precision

Restatement of monotone

- A function \(f \) is monotone if for all \(x \) and \(y \),
 - \(x \subseteq y \) implies \(f(x) \subseteq f(y) \)
- Prove \(f(x \sqcap y) \subseteq f(x) \sqcap f(y) \)
- By definition, \(x \subseteq y \) if and only if \(x \sqcap y = x \)
- Prove \(f(x \sqcap y) \sqcap f(x) \sqcap f(y) = f(x \sqcap y) \)
We know \(x \cap y \subseteq x \) since \(f \) is monotone, \(f(x \cap y) \subseteq f(x) \) which means \(f(x \cap y) \cap f(x) = f(x \cap y) \) and \(f(x \cap y) \cap f(y) = f(x \cap y) \).

\[
f(x \cap y) \cap f(x) \cap f(y) = f(x \cap y) = f(x \cap y)
\]

MeetOverAllPaths (\(d_n \)) \(= f_c(f_a(Entry_{out})) \cap f_b(Entry_{out})) \)

MaximalFixedPoint (\(d_n \)) \(= f_c(f_a(Entry_{out}) \cap f_b(Entry_{out}))) \)

Distributive problems

- For a distributive problem
 - you can push transfer functions over meets without causing any reduction in accuracy
- Which problems are distributive?
 - reaching definitions, very busy expressions, live variables, available expressions
- Which are not?
 - most formulations of constant propagation
Constant propagation

Entry

\[x = 1 \quad x = -1 \]

\[y = x \times x \]

All Gen/Kill problems are distributive

- If \(\text{Out}_S = \text{Gen}_S \cup \text{In}_S - \text{Kill}_S \)
- Problem is distributive
 - left at exercise for the reader
 - and/or exam question

Are all problems monotone?

- No, you have to be careful
- Consider constant propagation of truth values
 - What is the rule for \(\text{if } x \text{ then } y \text{ else } z \)
Basic Blocks

• When doing dataflow analysis for real
 – don’t iterate through basic block and store
 in/out values for each statement
 – instead, store one in/out value for entire basic
 block
 – compose all of the transfer functions

Order matters

• For forward problems, visit nodes in
 reverse postorder
 – head visited before tail except for back edges
 – expected # of iterations = nesting depth
• For backwards problems
 – compute reverse postorder on reversed graph

ContextInsensitive Analysis

• Analysis we’ve done so far depends on context
 and statement order
 – e.g., S1; S2 ≠ S2; S1
• Difficult to make context sensitive analysis scale
 to 100,000’s of lines of code
 – let alone millions
• Context insensitive analysis simply combines
 information from statements
 – e.g., which variables are modified