Homework is due at the start of class, on the date listed above. Problems numbered G# need only be completed by graduate students.

0. Read the posted handouts on algebra and discrete probability.

1. (a) Suppose $a \in \mathbb{Z}_N^*$, where $N \geq 2$. Show that $a^{\phi(N)} \equiv 1 \pmod{N}$.

 (b) Suppose next that the integer a does not lie in \mathbb{Z}_N^*. Is it possible that $a^{\phi(N)} \equiv 1 \pmod{N}$?
 Justify your answer.

2. Consider private-key encryption, where each character of the plaintext is from the alphabet $\{0, 1, ..., m - 1\}$ rather than $\{0, 1\}$. Derive an analog of the one-time pad, and prove that it is perfectly secure.

3. Stinson 2.1

4. Stinson 2.2

5. Stinson 2.4 – PROBLEM WITHDRAWN

G1. Read Section 1.1.3 from Stinson.

G2. Stinson 2.3, both [a] and [b].
 Note: on part [b], the probability of key (a, b) is $\Pr[a]/26$, NOT $1/(26 \times \Pr[a])$.