0. This problem is a reading exercise, and will not be graded. Read the following from Jonathan Katz’s lecture notes from his Fall 2002 course: (a) Section 3.1, Lecture 14, on Pseudorandom Permutations; and (b) CFB mode and Counter mode, Lecture 17.

1. Suppose \(f : \{0,1\}^n \rightarrow \{0,1\}^n \) is an one-way permutation. Consider the function \(h : \{0,1\}^n \rightarrow \{0,1\}^n \), where \(h(x) \) is the AND of all the \(n \) bits of \(x \). Show that \(h \) is \textbf{not} a hardcore bit for \(f \); do this by showing that given \(f(x) \), we can predict \(h(x) \) with probability 1 (i.e., with absolute certainty), in polynomial time.

2. Let \(G : \{0,1\}^* \rightarrow \{0,1\}^* \) be a PRG such that \(|G(x)| = |x| + 1 \), for all strings \(x \). Let \(p(k) \) be any particular polynomial function of \(k \), and define \(H : \{0,1\}^k \rightarrow \{0,1\}^{k+p(k)} \) by \(H(x) = G(G(G(\cdots(x))) \))", where \(G \) is applied \(p(k) \) times. (Thus, we stretch the given \(k \)-bit string \(x \) to a new string of length \(k + p(k) \).) Prove that \(H \) is a PRG. (We had done this in class for the special case where \(p(k) = 2 \).

3. Consider the following message authentication scheme. Suppose the messages are elements of the field \(\mathbb{Z}_p \) for some known prime \(p \); the secret key (for authentication) is a pair of elements \(a \) and \(b \) of \(\mathbb{Z}_p \). (Thus, \(a,b \) are known to Alice and Bob, but not to the adversary.) To authenticate a message \(M \in \mathbb{Z}_p \), the tag computed is \((aM + b) \mod p \). Show that this message authentication scheme is insecure.

G1. (For graduate students only.) Suppose \(G : \{0,1\}^k \rightarrow \{0,1\}^{k+1} \) is a PRG. Let \(h_1(x) \) be the \(k \)-bit string denoting the first \(k \) bits of \(G(x) \), and let \(h_2(x) \) be the bit denoting the last bit of \(G(x) \). Show that the following function \(H : \{0,1\}^k \rightarrow \{0,1\}^{k+2} \) is also a PRG:

\[
H(x) = G(h_1(x)) \circ h_2(x),
\]

where “\(\circ \)” denotes concatenation. (\textbf{Hint:} Use an appropriate hybrid argument.)