0. This problem is a reading exercise, and will not be graded. Read the proof of Theorem 1 in Jonathan Katz’s Lecture 31.

1. Suppose we are using El-Gamal encryption for messages from some known cyclic group G; recall that to encrypt a message $m \in G$, we choose a random $r \in \{0, 1, \ldots, |G| - 1\}$ and send $(g^r, h^r m)$ as ciphertext. (Also, g is a randomly chosen generator for G, and is publicly known.) Now suppose the adversary has been able to see two ciphertexts for the same plaintext M, and that these two ciphertexts are of the form (u, v) and (u^2, w) for some elements u, v, w of G. Show how the adversary can infer the plaintext M from this information.

2. Consider Theorem 1 in Jonathan Katz’s Lecture 32, on two different notions of security for public-key cryptosystems. Katz’s Lecture 32, as well as our discussion in class, only prove the theorem for the case $\ell = 2$. Prove the theorem for an arbitrary value of ℓ.

3. (For graduate students, and extra credit for undergraduate students.) Suppose n is composite and is not a Carmichael number; i.e., there exists some $m \in \mathbb{Z}_n^*$ such that $m^{n-1} \not\equiv 1 \mod n$. Then, show that the simple primality test for n shown in class succeeds with probability at least $1/2$. In more detail, suppose we choose an a at random from the set $\{1, 2, \ldots, n-1\}$. We output “composite” if at least one of the following two conditions hold: (i) $\gcd(a, n) \neq 1$, or (ii) $a^{n-1} \not\equiv 1 \mod n$. Show that we will output “composite” with probability at least $1/2$.

Hint: Suppose G is a group. Then, a subset S of the elements of G is a subgroup of G if and only if the following two conditions hold: (i) $\forall a \in S, a^{-1} \in S$, and (ii) $\forall a, b \in S, ab \in S$. (The values a^{-1} and ab here are computed in the group G as usual.) Then, Lagrange’s Theorem says that if G is a finite group and S is a subgroup of G, then the cardinality of G is divisible by the cardinality of S. Now, in the given problem, apply Lagrange’s Theorem to the group $G = \mathbb{Z}_n^*$ and to a suitably chosen subgroup S.