CMSC 631 — Program Analysis and Understanding
Fall 2003

Data Flow Analysis

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
 - Simpler representation of the program
 - Fewer forms to reason about
- Data flow analysis operates on control flow graph (and other intermediate representations)

Control-Flow Graph

x := a + b;
y := a * b;
while (y > a + b) {
 a := a + 1;
x := a + b
}

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths

Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e is computed on p

- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

Data Flow Facts

- Is expression e available?
- Facts:
 - a + b is available
 - a * b is available
 - y > a + b is available
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a + b</td>
<td></td>
</tr>
<tr>
<td>y := a * b</td>
<td>a * b</td>
<td></td>
</tr>
<tr>
<td>y > a + b</td>
<td>y > a + b</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td></td>
<td>a + b</td>
</tr>
</tbody>
</table>

Data Flow Equations

- Let s be a statement
 - succ(s) = { immediate successor statements of s }
 - pred(s) = { immediate predecessor statements of s }
 - In(s) = program point just before executing s
 - Out(s) = program point just after executing s

\[
\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')
\]

- Out(s) = Gen(s) U (In(s) - Kill(s))

Note: These are also called transfer functions

Liveness Analysis

- A variable \(v \) is live at program point \(p \) if
 - \(v \) will be used on some execution path originating from \(p \)
 - before \(v \) is overwritten

- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment

Computing Available Expressions

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
 - Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if available on some path

\[
\text{In}(s) = \text{Gen}(s) \cup \text{Out}(s) - \text{Kill}(s)
\]

- Out(s) = \(\bigcup_{s' \in \text{succ}(s)} \text{In}(s') \)

Optimization

- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a + b</td>
<td>y, a, b</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
 - Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if available on some path

\[
\text{In}(s) = \text{Gen}(s) \cup \text{Out}(s) - \text{Kill}(s)
\]

- Out(s) = \(\bigcup_{s' \in \text{succ}(s)} \text{In}(s') \)
Computing Live Variables

\[\{a, b\} \]

\[x := a + b \]

\[\{x, a, b\} \]

\[y := a \times b \]

\[y > a + b \]

\[\{y, a, b\} \]

\[a := a + 1 \]

\[\{x\} \]

\[\{x, y, a, b\} \]

\[\{x, y, a, b\} \]

\[\{y, a, b\} \]

\[\{y, a, b\} \]

\[\{x, a, b\} \]

\[\{a, b\} \]

Very Busy Expressions

- An expression \(e \) is very busy at point \(p \) if
 - On every path from \(p \), \(e \) is evaluated before the value of \(e \) is changed
 - Optimization
 - Can hoist very busy expression computation
 - What kind of problem?
 - Forward or backward! \(\text{backward} \)
 - May or must? \(\text{must} \)

Reaching Definitions

- A definition of a variable \(v \) is an assignment to \(v \)
- A definition of variable \(v \) reaches point \(p \) if
 - There is no intervening assignment to \(v \)
 - Also called def-use information

- What kind of problem?
 - Forward or backward! \(\text{forward} \)
 - May or must? \(\text{may} \)

Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

Partial Orders

- A partial order is a pair \((P, \leq) \) such that
 - \(\leq \subseteq P \times P \)
 - \(\leq \) is reflexive: \(x \leq x \)
 - \(\leq \) is anti-symmetric: \(x \leq y \) and \(y \leq x \Rightarrow x = y \)
 - \(\leq \) is transitive: \(x \leq y \) and \(y \leq z \Rightarrow x \leq z \)

Lattices

- A partial order is a lattice if \(\cap \) and \(\cup \) are defined on any set \(S \):
 - \(\cap \) is the meet or greatest lower bound operation:
 - \(x \cap y \leq x \) and \(x \cap y \leq y \)
 - if \(z \leq x \) and \(z \leq y \), then \(z \leq x \cap y \)
 - \(\cup \) is the join or least upper bound operation:
 - \(x \leq x \cup y \) and \(y \leq x \cup y \)
 - if \(x \leq z \) and \(y \leq z \), then \(x \cup y \leq z \)
Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements.
- A lattice has unique elements \(\bot\) and \(\top\) such that:
 - \(x \cap \bot = \bot\)
 - \(x \cup \bot = x\)
 - \(x \cap \top = x\)
 - \(x \cup \top = \top\)

- In a lattice,
 - \(x \leq y \iff x \cap y = x\)
 - \(x \leq y \iff x \cup y = y\)

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice:
 - Example: Available expressions

\[
\begin{align*}
\text{a+b, a*b, y > a+b} \\
\text{a+b, a*b} \\
\text{y > a+b} \\
\text{(none)}
\end{align*}
\]

Forward May Data Flow Algorithm

- \(\text{Out}(s) = \text{Gen}(s)\) for all statements \(s\)
 - Or, if you like, \(\text{Out}(s) = \top\)
 - \(W := \{\text{all statements}\}\) (worklist)
 - repeat
 - Take \(s\) from \(W\)
 - \(\text{In}(s) := \cap \{s \in \text{pred}(s) \mid \text{Out}(s)\}\)
 - \(\text{temp} := \text{Gen}(s) \cup \text{In}(s) - \text{Kill}(s)\)
 - if (temp \(!=\) Out(s)) {
 - \(\text{Out}(s) := \text{temp}\)
 - \(W := W \cup \text{succ}(s)\)
 }
 - until \(W = \emptyset\)

Monotonicity

- A function \(f\) on a partial order is monotonic if
 - \(x \leq y \Rightarrow f(x) \leq f(y)\)

- Easy to check that operations to compute \(\text{In}\) and \(\text{Out}\) are monotonic:
 - \(\cap \{s \in \text{pred}(s) \mid \text{Out}(s)\}\)
 - \(\text{Gen}(s) \cup \text{In}(s) - \text{Kill}(s)\)

Termination

- We know the algorithm terminates because:
 - The lattice has finite height
 - The operations to compute \(\text{In}\) and \(\text{Out}\) are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice.
Distributive Data Flow Problems

• By monotonicity, we also have
 \[f(x \sqcap y) \leq f(x) \sqcap f(y) \]

• A function \(f \) is distributive if
 \[f(x \sqcap y) = f(x) \sqcap f(y) \]

Benefit of Distributivity

• Joins lose no information

\[k(h(f(T)) \sqcap g(T))) = k(h(f(T))) \sqcap k(h(g(T))) \]

Accuracy of Data Flow Analysis

• Ideally, we would like to compute the meet over all paths (MOP) solution:
 ■ Let \(f_s \) be the transfer function for statement \(s \)
 ■ If \(p \) is a path \(\{s_1, \ldots, s_n\} \), let \(f_p = f_{s_n} \ldots f_{s_1} \)
 ■ Let path(\(s \)) be the set of paths from the entry to \(s \)
 \[\text{MOP}(s) = \sqcap_{p \in \text{path}(s)} f_p(T) \]

• If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

• Analyses of how the program computes
 ▪ Live variables
 ▪ Available expressions
 ▪ Reaching definitions
 ▪ Very busy expressions

• All Gen/Kill problems are distributive

A Non-Distributive Example

• Constant propagation

 \[
 \begin{array}{ccc}
 x & = & 1 \\
 y & = & 2 \\
 z & = & x + y \\
 \end{array}
 \]

• In general, analysis of what the program computes in not distributive

Practical Implementation

• Data flow facts = assertions that are true or false at a program point

 ▪ Represent set of facts as bit vector
 ▪ Fact, represented by bit \(i \)
 ▪ Intersection = bitwise and, union = bitwise or, etc

 ▪ “Only” a constant factor speedup
 ▪ But very useful in practice
Basic Blocks

- A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

- In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements

Order Matters

- Assume forward data flow problem

- If G acyclic, visit in topological order
 - Visit head before tail of edge
 - Running time $O(|E|)$
 - No matter what size the lattice

Another Approach: Elimination

- Recall in practice, one transfer function per basic block

- Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information

Complexity

- Data flow algorithm works for any order in which nodes are visited
 - Let $G = (V,E)$ be the CFG
 - Let k be the height of the lattice
 - Running time is $O(k|E|)$

- If k non-trivial, can do better by choosing order carefully

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
 - Let $Q = \max \#$ back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
 - Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 - Running time is $O((Q + 1)|E|)$
 - Slightly better bound than Kam + Ullman paper
 - Note direction of req’t depends on top vs. bottom

Elimination Methods: Conditionals

$$f_{ite} = (f_{then} \circ f_{if}) \cap (f_{else} \circ f_{if})$$

$$\text{Out}(\text{if}) = f_{if}(\text{In}(\text{ite}))$$
$$\text{Out}(\text{then}) = (f_{then} \circ f_{if})(\text{In}(\text{ite}))$$
$$\text{Out}(\text{else}) = (f_{else} \circ f_{if})(\text{In}(\text{ite}))$$
Non-Reducible Flow Graphs

- Elimination methods only work on reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
- Unrestricted goto can yield non-reducible graphs

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
    ```
    /* x : int */ x := ...
    /* x : int */
    ```

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is intraprocedural
- An analysis that takes multiple functions into account is interprocedural
- An analysis that takes the whole program into account is...guess?
 - Note: global analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: \(^\ast\)x := e
 - Assume all data flow facts killed (!)
 - Or, assume x may affect any variable whose address has not been taken
- In general, hard to analyze pointers