Subtyping

• Called subclassing in object-oriented programming

class A { ... }
class B extends A { ... }
A x = new A(); // valid
A x = new B(); // valid, since B is a subclass of A
B x = new A(); // invalid

Definition of Subtyping

• Liskov:
 - If for each object o₁ of type S there is an object o₂ of type T such that for all programs P defined in terms of o₁, the behavior of P is unchanged when o₂ is substituted for o₁, then S is a subtype of T.

• Informal statement
 - If anyone expecting a T can be given an S instead, then S is a subtype of T.

The Subtyping Relation

• Let’s assume that we have
 - A set of primitive objects c (e.g., 0, 1, 0.1, 3.14, ...)
 - e ::= c | x | λx.e | e e
 - A set of primitive types C (e.g., int, float)
 - t ::= C | t → t

• We are also given a partial order ≤ on C
 - This is the subtyping relation
 - E.g., int ≤ float
 - Warning: this is a terrible example; implicitly allowing integer to floating point conversions leads to confusion

Type Checking Rules

\[
\begin{align*}
A \vdash c : C(c) & \quad x \in \text{dom}(A) & \quad A \vdash x : A(x) \\
A, x : t \vdash e : t' & \quad A \vdash e_1 : t \rightarrow t' & \quad A \vdash e_2 : t \\
A \vdash \lambda x.e : t \rightarrow t' & \quad A \vdash e_1 e_2 : t' \\
A \vdash e : t & \quad t \leq t' & \quad A \vdash e : t'
\end{align*}
\]

Example

\[
\begin{align*}
& \vdash + : f \rightarrow f \rightarrow f \\
& \vdash 3 : i \quad \vdash i \mapsto f \\
& \vdash 3 : f \\
& \vdash + : f \rightarrow f \rightarrow f \\
& \vdash 3 : f \\
& \vdash + : f \rightarrow f \\
& \vdash 3 : f \\
& \vdash + : f \\
& \vdash 4.0 : f \\
& \vdash + : f \rightarrow f \\
& \vdash 3.4 : f
\end{align*}
\]
Subtyping and Type Constructors

- We’re given ≤ on primitive types
 - How do we extend to type constructors?
 - A type constructor builds new types from existing types
 - E.g., →, ×, ref
 - Product types are straightforward
 \[t_1 \times t_2 \leq t_1' \times t_2' \]
 - Example: \(\text{int} \times \text{float} \leq \text{float} \times \text{float} \)

Subtyping and Function Types

- What about function types?
 \[t_1 \rightarrow t_2 \leq t_1' \rightarrow t_2' \]
- Recall: \(S \) is a subtype of \(T \) if an \(S \) can be used anywhere a \(T \) is expected
 - When can we replace \(R[f x] \) with \(R[g x] \)?

Replacing \(R[f x] \) by \(R[g x] \)

- Assume \(f : t_1 \rightarrow t_1' \) and \(g : t_2 \rightarrow t_2' \)
- Also assume \(R[f x] \) type checks
- ‘When is \(t_2 \rightarrow t_2' \leq t_1 \rightarrow t_1' \)?
- Return type:
 - Every possible result of \(g x \) must be accepted
 - So \(t_2' \leq t_1' \)
- Argument type:
 - Every possible argument to \(f \) must also be accepted by \(g \)
 - So \(t_1 \leq t_2 \)

The Subtype Rule for Functions

- We say that \(\rightarrow \) is
 - \textit{Covariant} in its range (subtyping dir stays the same)
 - \textit{Contravariant} in its domain (subtyping dir flips)

Subtyping and References

- The \textbf{wrong} rule for references
 \[t \leq t' \]
 \[\text{ref } t' \leq \text{ref } t' \]

Counterexample:
\[
\begin{align*}
\text{let } x &= \text{ref } 0 \\
\text{let } y &= x \\
y &= 3.14; & \quad \text{// typechecks, since int \leq \text{float}} \\
\text{printInt } (x) & \quad \text{// oops! typechecks, since } y : \text{ref int}
\end{align*}
\]

The Right Rule for References

- Reduce it to the result from functions
 - A reference is like an object with two methods
 - \texttt{get : unit \rightarrow t} reads the value of the ref
 - \texttt{set : t \rightarrow unit} writes the value of the ref
 - Notice that \(t \) occurs both co- and contravariantly
- The right rule:
 \[
 \begin{align*}
 t \leq t' & \quad t' \leq t & \quad \text{or} & \quad t = t' \\
 \text{ref } t \leq \text{ref } t' & \quad \text{ref } t' \leq \text{ref } t
 \end{align*}
 \]
- We say that ref is \textit{nonvariant} or \textit{invariant}
Subtyping Mistakes

- Well-known languages have gotten subtyping wrong
 - Eiffel function types are covariant in the domain
 - The Java array constructor is covariant, not invariant
 - \(S[\] \) is a subtype of \(T[\] \) if \(S \) is a subtype of \(T \)
- How do they get around the unsoundness?
 - Java adds run-time (dynamic) checks

Type Checking Considerations

- Our type system with subtyping was just our previous type system with the extra rule
 \[
 \frac{A \vdash e : t \quad t \leq t'}{A \vdash e : t'} \quad \text{(Sub)}
 \]
- This rule seems to add non-determinism
 - We can apply it to any term, as often as we like

Type Checking Considerations (cont’d)

- Observation 1: Multiple sequential uses of (Sub)
 can be replaced with a single use
 - Proof: Transitivity of \(\leq \)
- Observation 2: All uses of (Sub) can be pushed down the typing proof to occur just before function application
 - Proof: Omitted
 - Consequence: Can integrate (Sub) into other rules

A Type Checking Algorithm

\[
\begin{align*}
A \vdash c : C(c) & \quad A \vdash x : A(x) \\
A \vdash \lambda x.t : t' & \quad x \in \text{dom}(A)
\end{align*}
\]

- These rules are deterministic
 - Easy to construct an algorithm from them
 - This is sometimes called a syntax-driven system
 - At every step, rule choice determined by syntax

Subtype Polymorphism

- Subtyping (or subclassing from OOP) gives us one kind of polymorphism
 - A polymorphic type represents multiple types
 - For subtyping, we can think of type \(A \) as representing \(A \) and all of \(A \)'s subtypes
 - This is called subtype polymorphism

Limitations of Subtyping

- Suppose \(S \leq T \), and consider the four possible types identity function on \(S \) and \(T \)
 - \(\lambda x : S \rightarrow S \) can’t accept \(T \)'s
 - \(\lambda x : S \rightarrow T \) can’t accept \(T \)'s
 - \(\lambda x : T \rightarrow S \) ill typed
 - \(\lambda x : T \rightarrow T \) can accept \(S \) or \(T \), but returns a \(T \)
- With parametric polymorphism, we can give this type \(\forall \alpha. \alpha \rightarrow \alpha \)
Discussion

- Subtyping is fairly flexible
- Weaker requirements than parametric poly
 - Don’t need to treat parameter with generalizable type as a block box
- Contravariance gets in the way
 - Also a problem with refs

Introduction

- Operational semantics describe program execution
 - E.g., beta reduction $\lambda x.e1 \ e2 \rightarrow e1[e2|x]$
 - But running a program doesn’t make it correct
 - See type checking
- **Axiomatic semantics** describe properties of a program using a logic
 - Examples:
 - This program terminates
 - During the loop, index i is always within bounds of array a

Assertions

- **Assertions** describe the state of the program
 - At a particular program point
- We’ll put assertions in { }’s
 - $x := 2 \ \{ x = 2 \}$
 - “After the assignment $x := 2$, x has the value 2”
 - $(x < 0) \ x := x+1 \ \{ x < 1 \}$
 - “If x is less than 0 and we increment x, then afterwards x is less than 1”
 - (These and other examples are taken from David Gries, Lecture notes for CS211, Cornell University)

History

- Ultimate goal: Proving programs correct
 - Program verification
- Big names: Turing, Floyd (flow charts), Hoare (imperative programs), Dijskstra, Gries
- Hard to implement for large, realistic systems
 - But see ESC/Java

Hoare Triples

- The notation $\{ Q \} S \{ R \}$ has a special meaning
 - “Execution of statement S begun in a state in which Q is true is guaranteed to terminate, and R is true in the final state.” (Gries)
 - Q is a precondition
 - R is a postcondition
- In practice, we often discard the termination requirement
 - I.e., we only check partial correctness
Another Example

{ true }
if x \leq y → z := x
[] x \geq y → z := y
fi
{ z = \min(x,y) }

- This is a guarded command
 - Non-deterministically pick one guard that is true, and execute the corresponding command
 - Notice if x = y, we may execute either command

Considerations

- { false } S { R } is always valid
- { Q } S { R } says nothing about executing S in a state in which Q is not true
- In general, predicates can contain
 - Program variables (and values before/after procedure)
 - Arithmetic
 - Logic connectives and quantifiers (for all, exists)
 - Other uninterpreted predicates (e.g., facts about arrays)

Weakest Preconditions

- A common reasoning technique
 - We have a postcondition R we want to reach
 - We have a statement S we think will get us there
 - What is the weakest precondition \(\wp(S, R) \) that must be true before S in order to establish R?

 Weakest means makes fewest assumptions about environment
 - \{ true \} x := 2 { x = 2 } vs.
 - \{ y = 55 \} x := 2 { x = 2 }

Assignment Statement

- \(\wp(x := e, R) = R[x/e] \)
 - I.e., \(\{R[x/e]\} x := e \{ R \} \) is always a valid triple
 - Example: compute \(\wp(x := x + 1, x = y) \)

 What happens if e contains
 - Side effects?
 - Pointers?

Conditional Statement

- When does \{ Q \} if B then S1 else S2 { R } hold?
 - \(\{ Q \land B \} S1 \{ R \} \) and \(\{ Q \land \neg B \} S2 \{ R \} \)
 - So, \(\wp(\text{if B then S1 else S2, R}) = (B \Rightarrow \wp(S1, R)) \land (\neg B \Rightarrow \wp(S2, R)) \)

 Example:
 - Compute \(\wp(P; z = \max(x, y)) \) where P is
 if x \geq y → z := x
 [] x \leq y → z := y
 fi

Loops

- When does \{ Q \} while B do S { R } hold?
 - This is hard! We need...
 - \(Q \land \neg B \Rightarrow R \) (0 iterations), or
 - \(Q \land B \) S \(\{ R \land \neg B \} \) (1 iteration), or
 - \(Q \land B \) S \(Q \land B \) S \(\{ R \land \neg B \} \) (2 iterations), or
 - ...
 - There’s no mechanical way to compute Q from R
 - And it’s hard to do even non-mechanically
Loop Invariants

- What we need is a predicate I that is true just before, during, and just after the loop executes
 - This is called a loop invariant
- So if we can show $\{I \land B\} S \{I\}$
 - If I is true just before the loop and the loop executes once, then I is true after
- Then we can derive $\{I\}$ while B do $S \{I \land \neg B\}$
 - If I is true before the loop, then I is still true after any number of iterations (and B is false when the loop terminates)

Example

- Let I be
 - $0 \leq i \leq 10$ and
 - s is the sum of the first i elements of a

```plaintext
{ true }
i := 0; s := 0;
{ I }
while i ≠ 10 do
  { I 㱸i ≠ 10 } s := s + a[i]; i := i + 1; { I }
{ I 㱸i = 10 }
```

Termination

- If we’re also concerned about termination, need to prove that loop will eventually exit

- Do this using a *bound function* t
 - An expression whose value decreases with each iteration of the loop
 - For our example, could choose $t = 10 - i$

Proving a Loop (Fully) Correct

- Want to show $\{Q\}$ while B do $S \{R\}$
 - First, invent a loop invariant I and bound function t
 - Then...
 - Prove $Q \Rightarrow I$ (I is true before the loop)
 - Prove $\{I \land B\} S \{I\}$ (I is a loop invariant)
 - Prove $I \land \neg B \Rightarrow R$ (postcondition holds)
 - Prove t decreases with each iteration
 - Prove that $I \land B$ implies $t > 0$ (t is a bound)