Properties

- We would like to verify the following properties (among others):
 - The oven doesn’t heat up until the door is closed
 - If the oven starts, it will eventually start cooking
 - It must be possible to correct errors

Temporal Operators

- Specifications in temporal logic
 - Includes standard logical connectives
 - \(\land, \lor, \neg \)
 - Plus path quantifiers, basic temporal operators
 - \(E \) (exists a path from here), \(A \) (for all paths from here)
 - \(\neg p \) – p holds sometime in the future
 - \(Gp \) – p holds globally (always) in the future
 - \(Xp \) – p holds next time
 - \(pUq \) – p holds until q holds
Properties

- We would like to verify the following properties (among others):
 - The oven doesn’t heat up until the door is closed
 - (~Heat) U Closed
 - If the oven starts, it will eventually start cooking
 - AG(Start = AF Heat)
 - It must be possible to correct errors
 - AG(Error ⇒ AF ¬Error)

The Model Checking Problem

- Let M be a state transition graph
 - A.k.a. a Kripke structure

- Let f be the specification in temporal logic

- Find all states s of M such that $M, s \models f$

A Model Checking Algorithm

- Goal: For each state s, compute
 - $\text{lab}(s) = \{ \text{formulas true in } s \}$

- When algorithm terminates
 - $M, s \models f$ iff $f \in \text{lab}(s)$

- Algorithm: Iterate over subformulas of f inside-out, computing $\text{lab}(s)$

Checking Subformulas

- Lemma: Any CTL (see paper) formula can be expressed in terms of \neg, \lor, \Box, \bigvee, and \Diamond

- Therefore, six cases:
 - Atomic proposition p
 - If p is true in s, then add p to $\text{lab}(s)$
 - $\neg f$
 - If $f \in \text{lab}(s)$, add $\neg f$ to $\text{lab}(s)$
 - $f_1 \lor f_2$
 - If $f_1 \in \text{lab}(s)$ or $f_2 \in \text{lab}(s)$, add $f_1 \lor f_2$ to $\text{lab}(s)$
 - $\Box f$
 - If there exists a successor s' of s such that $f \in \text{lab}(s')$, add $\Box f$ to $\text{lab}(s)$

Checking Subformulas (cont’d)

- $E[f \bigvee \Box g]$
 - Find all states s for which $f \in \text{lab}(s)$
 - Follow paths backward from s, finding all states that can reach s on a path in which every state is labeled with f
 - Label each of these states with $E[f \bigvee \Box g]$

Checking Subformulas (cont’d)

- $\Box g$
 - Idea: Look for an infinite path on which g holds
 - Divide M into nontrivial strongly-connected components
 - A strongly-connected component (SCC) C is
 - a maximal subgraph such that every node in C is reachable from everyone other node in C on a directed path contained entirely within C
 - C is nontrivial if either it has more than one node or it contains a node with a self loop
 - Compute M' from M by removing all states s in which $f \in \text{lab}(s)$
Checking Subformulas (cont’d)

- Lemma: $M, s \models EG f$ iff
 - $s \in M'$
 - There exists a path in M' that leads from s to some node t in a nontrivial SCC
 - Idea of proof:
 - Need cycle to have infinite path (assuming finite state system)
 - So we need to find a path from s to a cycle on which f holds in every state
 - Then we’ve found an infinite path on which f holds

Example (cont’d)

- Next compute $\neg \text{Heat}$ where $\neg \text{Heat}$ holds
 No other state can reach this SCC

Example (cont’d)

- Next compute $\neg \text{Heat}$
 $\neg \text{Heat}$ holds in all states

Example (cont’d)

- Next compute $\neg \text{Heat}$
 Hold in all states

Example (cont’d)

- Next compute $\neg \text{Heat}$
 Hold in all states

Example (cont’d)

- Next compute $\neg \text{Heat}$
 Hold in all states
Example (cont’d)

- Now compute $\neg E[\text{true } U (\text{Start } \land \text{ EG } \neg \text{Heat})]$
 - All states satisfy $E[\text{true } U (\text{Start } \land \text{ EG } \neg \text{Heat})]$
 - So no states satisfy its negation
 - So our safety property doesn’t hold!

Features of Model Checking

- Advantages
 - Completely automatic
 - No proofs
 - Fast in practice
 - Generates counter-examples
 - Handles concurrency

- Disadvantages
 - State explosion problem
 - No dynamic allocation (heap), or recursion