Computer-System Structures

- Computer System Operation
- I/O Structure
- Storage Structure
- Storage Hierarchy
- Hardware Protection
- General System Architecture
Computer-System Architecture

Each device controller is in charge of a particular device type.
Each device controller has a local buffer.
CPU moves data from/to main memory to/from local buffers
I/O is from the device to local buffer of controller.
Device controller informs CPU that it has finished its operation by causing an interrupt.

Computer-System Operation
Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.
- A trap is a software-generated interrupt caused either by an error or a user request.
- An operating system is interrupt driven.

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter.
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt
Interrupt Time Line For a Single Process Doing Output

I/O Systems

- Many different types of devices
 - disks
 - networks
 - displays
 - mouse
 - keyboard
 - tapes
- Each have a different expectation for performance
 - bandwidth
 - rate at which data can be moved
 - latency
 - time from request to first data back
Different Requirements lead to Multiple Buses

- Processor Bus (on chip)
 - Many Gigabytes/sec
- Memory Bus (on processor board)
 - ~1-2 Gigabyte per second
- I/O Bus (PCI, MCA)
 - ~100 megabytes per second
 - buses are more complex than we saw in class
 - show PCI spec.
- Device Bus (SCSI, USB)
 - tens of megabytes per second

Issues In Busses

- Performance
 - increase the data bus width
 - have separate address and data busses
 - block transfers
 - move multiple words in a single request
- Who controls the bus?
 - one or more bus masters
 - a bus master is a device that can initiate a bus request
 - need to arbitrate who is the bus master
 - assign priority to different devices
 - use a protocol to select the highest priority item
 - daisy chained
 - central control
I/O Structure

- After I/O starts, control returns to user program only upon I/O completion.
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access).
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.
- After I/O starts, control returns to user program without waiting for I/O completion.
 - System call – request to the operating system to allow user to wait for I/O completion.
 - Device-status table contains entry for each I/O device indicating its type, address, and state.
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

Two I/O Methods

Synchronous

- Requesting process
- Waiting
- Device driver
- Hardware
- Data transfer

Asynchronous

- Requesting process
- Device driver
- Hardware
- Data transfer
Device-Status Table

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than the one interrupt per byte.
Storage Structure

- Main memory – only large storage media that the CPU can access directly.
- Secondary storage – extension of main memory that provides large nonvolatile storage capacity.
- Magnetic disks – rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors.
 - The disk controller determines the logical interaction between the device and the computer.

Moving-Head Disk Mechanism
Storage Hierarchy

- Storage systems organized in hierarchy.
 - Speed
 - Cost
 - Volatility
- Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.

Storage-Device Hierarchy

[Diagram showing a hierarchy of storage devices: registers, cache, main memory, electronic disk, magnetic disk, optical disk, magnetic tape.]
Caching

- Use of high-speed memory to hold recently-accessed data.
- Requires a cache management policy.
- Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent.

Migration of A From Disk to Register
Hardware Protection

- Dual-Mode Operation
- I/O Protection
- Memory Protection
- CPU Protection

Dual-Mode Operation

- Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly.
- Provide hardware support to differentiate between at least two modes of operations.
 1. **User mode** — execution done on behalf of a user.
 2. **Monitor mode** (also kernel mode or system mode) — execution done on behalf of operating system.
Dual-Mode Operation (Cont.)

- Mode bit: added to computer hardware to indicate the current mode: monitor (0) or user (1).
- When an interrupt or fault occurs, hardware switches to monitor mode.

Privileged instructions can be issued only in monitor mode.

I/O Protection

- All I/O instructions are privileged instructions.
- Must ensure that a user program could never gain control of the computer in monitor mode (i.e., a user program that, as part of its execution, stores a new address in the interrupt vector).
I/O Interfaces

- Need to adapt Devices to CPU speeds
- Moving the data
 - Programmed I/O
 - Special instructions for I/O
 - Mapped I/O
 - Looks like memory only slower
 - DMA (direct memory access)
 - Device controller can write to memory
 - Processor is not required to be involved
 - Can grab bus bandwidth which can slow the processor down

I/O Interrupts

- Interrupt defined
 - Indication of an event
 - Can be caused by hardware devices
 - Indicates data present or hardware free
 - Can be caused by software
 - System call (or trap)
 - CPU stops what it is doing and executes a handler function
 - Saves state about what was happening
 - Returns where it left off when the interrupt is done
- Need to know what device interrupted
 - Could ask each device (slow!)
 - Instead use an interrupt vector
 - Array of pointers to functions to handle a specific interrupt
2.27 Operating System Concepts

Hardware Protection

- Need to protect programs from each other
- Processor has modes
 - user mode and supervisor (monitor, privileged)
 - operations permitted in user mode are a subset of supervisor mode
- Memory Protection
 - control access to memory
 - only part of the memory is available
 - can be done with base/bound registers
- I/O Protection
 - I/O devices can only be accessed in supervisor mode
- Processor Protection
 - Periodic timer returns processor to supervisor mode

2.28 Operating System Concepts

System Calls

- Provide the interface between application programs and the kernel
- Are like procedure calls
 - take parameters
 - calling routine waits for response
- Permit application programs to access protected resources

```
load r0, x
system call 10
```

User Program

Operating System (kernel)
System Call Mechanism

- Use numbers to indicate what call is made
- Parameters are passed in registers or on the stack
- Why do we use indirection of system call numbers rather than directly calling a kernel subroutine?
 - provides protection since the only routines available are those that are export
 - permits changing the size and location of system call implementations without having to re-link application programs

Types of System Calls

- File Related
 - open, create
 - read, write
 - close, delete
 - get or set file attributes
- Information
 - get time
 - set system data (OS parameters)
 - get process information (id, time used)
- Communication
 - establish a connection
 - send, receive messages
 - terminate a connection
- Process control
 - create/terminate a process (including self)
Use of A System Call to Perform I/O

1. Trap to monitor
2. Perform I/O
3. Return to user

Memory Protection

- Must provide memory protection at least for the interrupt vector and the interrupt service routines.
- In order to have memory protection, add two registers that determine the range of legal addresses a program may access:
 - Base register – holds the smallest legal physical memory address.
 - Limit register – contains the size of the range
- Memory outside the defined range is protected.
Use of A Base and Limit Register

Hardware Address Protection
Hardware Protection

- When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory.
- The load instructions for the base and limit registers are privileged instructions.

CPU Protection

- Timer – interrupts computer after specified period to ensure operating system maintains control.
 - Timer is decremented every clock tick.
 - When timer reaches the value 0, an interrupt occurs.
- Timer commonly used to implement time sharing.
- Time also used to compute the current time.
- Load-timer is a privileged instruction.
Network Structure

- Local Area Networks (LAN)
- Wide Area Networks (WAN)

Local Area Network Structure
Wide Area Network Structure

Operating System Concepts 2.39