CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Multiple-Processor Scheduling
- Real-Time Scheduling
- Algorithm Evaluation
Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait.
- CPU burst distribution

Alternating Sequence of CPU And I/O Bursts
CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
- CPU scheduling decisions may take place when a process:
 1. Switches from running to waiting state.
 2. Switches from running to ready state.
 3. Switches from waiting to ready.
 4. Terminates.
- Scheduling under 1 and 4 is nonpreemptive.
- All other scheduling is preemptive.
Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- *Dispatch latency* – time it takes for the dispatcher to stop one process and start another running.

Scheduling Criteria

- CPU utilization – keep the CPU as busy as possible
- Throughput – # of processes that complete their execution per time unit
- Turnaround time – amount of time to execute a particular process
- Waiting time – amount of time a process has been waiting in the ready queue
- Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>24</td>
</tr>
<tr>
<td>P₂</td>
<td>3</td>
</tr>
<tr>
<td>P₃</td>
<td>3</td>
</tr>
</tbody>
</table>

Suppose that the processes arrive in the order: P₁, P₂, P₃
The Gantt Chart for the schedule is:

Waiting time for P₁ = 0; P₂ = 24; P₃ = 27
Average waiting time: \((0 + 24 + 27)/3 = 17\)
Suppose that the processes arrive in the order P_2, P_3, P_1.

The Gantt chart for the schedule is:

<table>
<thead>
<tr>
<th></th>
<th>P_2</th>
<th>P_3</th>
<th>P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: $(6 + 0 + 3)/3 = 3$
- Much better than previous case.
- **Convoy effect** short process behind long process.

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time.
- Two schemes:
 - nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst.
 - preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is known as the Shortest-Remaining-Time-First (SRTF).
- SJF is optimal – gives minimum average waiting time for a given set of processes.
Example of Non-Preemptive SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>P_2</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>5.0</td>
<td>4</td>
</tr>
</tbody>
</table>

- SJF (non-preemptive)

Average waiting time = $(0 + 6 + 3 + 7)/4 - 4$

Example of Preemptive SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>P_2</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>5.0</td>
<td>4</td>
</tr>
</tbody>
</table>

- SJF (preemptive)

Average waiting time = $(9 + 1 + 0 +2)/4 - 3$
Determining Length of Next CPU Burst

- Can only estimate the length.
- Can be done by using the length of previous CPU bursts, using exponential averaging.

1. $t_n = \text{actual length of } n^{th} \text{CPU burst}$
2. $\tau_{n+1} = \text{predicted value for the next CPU burst}$
3. $\alpha, 0 \leq \alpha \leq 1$
4. Define:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n.$$
Examples of Exponential Averaging

- \(\alpha = 0 \)
 - \(\tau_{n+1} = \tau_n \)
 - Recent history does not count.
- \(\alpha = 1 \)
 - \(\tau_{n+1} = t_n \)
 - Only the actual last CPU burst counts.

If we expand the formula, we get:

\[
\begin{align*}
\tau_{n+1} &= \alpha t_n + (1 - \alpha) \alpha t_{n-1} + \ldots \\
&\quad + (1 - \alpha) \alpha t_{n-2} + \ldots \\
&\quad + (1 - \alpha) t_0 \\
\end{align*}
\]

- Since both \(\alpha \) and \(1 - \alpha \) are less than or equal to 1, each successive term has less weight than its predecessor.

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority).
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time.
- Problem \(\equiv \) Starvation – low priority processes may never execute.
- Solution \(\equiv \) Aging – as time progresses increase the priority of the process.
Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are \(n \) processes in the ready queue and the time quantum is \(q \), then each process gets \(1/n \) of the CPU time in chunks of at most \(q \) time units at once. No process waits more than \((n-1)q \) time units.
- Performance
 - \(q \) large ⇒ FIFO
 - \(q \) small ⇒ \(q \) must be large with respect to context switch, otherwise overhead is too high.

Example of RR with Time Quantum = 20

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>53</td>
</tr>
<tr>
<td>(P_2)</td>
<td>17</td>
</tr>
<tr>
<td>(P_3)</td>
<td>68</td>
</tr>
<tr>
<td>(P_4)</td>
<td>24</td>
</tr>
</tbody>
</table>

- The Gantt chart is:

```
0 20 37 57 77 97 117 121 134 154 162
P_1 P_2 P_3 P_4 P_1 P_3 P_4 P_1 P_3 P_3
```

- Typically, higher average turnaround than SJF, but better response.
Time Quantum and Context Switch Time

- Process time = 10

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Context Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Turnaround Time Varies With The Time Quantum

<table>
<thead>
<tr>
<th>Process</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>6</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>7</td>
</tr>
</tbody>
</table>
Multilevel Queue

- Ready queue is partitioned into separate queues:
 - foreground (interactive)
 - background (batch)
- Each queue has its own scheduling algorithm,
 - foreground – RR
 - background – FCFS
- Scheduling must be done between the queues.
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS
Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way.
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

- Three queues:
 - Q_0 – time quantum 8 milliseconds
 - Q_1 – time quantum 16 milliseconds
 - Q_2 – FCFS
- Scheduling
 - A new job enters queue Q_0, which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1.
 - At Q_1, job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2.
Multilevel Feedback Queues

CPU scheduling more complex when multiple CPUs are available.

- Homogeneous processors within a multiprocessor.
- Load sharing
- Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing.
Real-Time Scheduling

- **Hard real-time** systems – required to complete a critical task within a guaranteed amount of time.
- **Soft real-time** computing – requires that critical processes receive priority over less fortunate ones.

Dispatch Latency
Algorithm Evaluation

- Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload.
- Queueing models
- Implementation

Evaluation of CPU Schedulers by Simulation
Solaris 2 Scheduling

Windows 2000 Priorities