Operating System as Decision Maker

- All resource management decisions are taken by the OS
- What information does it have to base those decisions on?
 - It has to collect and keep that information
 - Make sure that the information is not corrupted
 - Update as necessary
 - Use it
- Where to keep information about entities under its control?
 - Control Blocks
Information Based Decision Making

- A decision requires information
- The information available to the decision maker
 - Designed as a part of the system design
 - In the address space of the executing unit taking the decision- OS
- Have to recognize independent action units
 - A unit that continues to operate once triggered
 - CPU
 - Clock
 - Disk
 - Disk controller
 - ...
- Every Action has to be triggered from external source at some point.

Using Information in Decisions

- Access information
- Decide
- Initiate action
- Modify information

Can information Change during this period?

- Shared memory vs messages
Concurrent Executions

- When there are concurrent executions the actions of one process can be affected by the action of another process at any stage of execution –
 - Unless appropriate protection measures are taken
- One way of protection
 - Isolate independent processes
 - But they do share resources – would that cause conflicts??
- Cooperating processes
 - Have to communicate/share
 - Thus they interact

Example

- A program in execution
 -
 - CPU
 - GPRs
 - IR
 - PS
 - Address space
 - Process Control Info
 - Mem
 - ...
Time Quantum

- Time quantum for an executing process

Communication

- Receiver must be ready to receive
 - Prior Arrangement
 - Coordinate in time
 - Use a Buffer – Solves immediate problem – but !!
Producer Consumer

- One process generates data – the producer
- The other process uses it – the consumer
- If directly connected – time coordination
 - How would they coordinate the time ??

Producer Consumer

- One process generates data – the producer
- The other process uses it – the consumer
- If not directly connected – have a buffer
 - Buffer must be accessible to both
 - Finite Capacity N – Number in use - K
Coordination

- Number full – K
 - Incremented by Producer
 - Decremented by Consumer

 Read K
 Increment
 Store K

 Read K
 Decrement
 Store K

Information Needed by Producer/Consumer

- **Producer**
 - There is an empty buffer
 - Empty buffer ID
 - Nobody else is using this buffer for filling or emptying
 - Inform others that it is using this buffer.

- **Consumer**
 - There is a full buffer
 - Full buffer ID
 - Nobody else is using this buffer for filling or emptying
 - Inform others that it is using this buffer.
Mutual Exclusion

- N processes
- Each has a portion of the code called Critical Section
- At any instant no more than one process can be in its critical section
- What should a process do ???

Critical Section

- Entry and Exit Code
- Entry Code
 - Code to ascertain that this process can enter the CS
 - Make sure that other processes know that this process has entered CS
- Exit Code
 - Let other processes know that it has exited from its CS
- HOW ???
Atomic Action

- An action that is either completely done or not done at all
 - Can not be accessed or affected in the middle of its execution
- Necessary for
 - Access the information
 - Take decision
 - Modify the information

Synchronization

- Controlling the execution of processes to conform to stated/required timing/precedence relationships among events
 - Precedence
 - A must occur before B
 - Mutual Exclusion
 - Producer Consumer
 - More complex relationships
- Recognizing the information needs for any such decisions does make the design easier.